遗传病遗传方式的判断

2022-12-10 版权声明 我要投稿

第1篇:遗传病遗传方式的判断

抑郁遗传基础的性别差异

摘要:人类抑郁有着复杂的遗传基础并存在性别差异。抑郁遗传基础的性别差异主要表现在遗传的直接效应及遗传与环境的交互效应两个方面。本文在回顾、梳理既有抑郁遗传基础性别差异相关研究的基础上,进一步探讨了性激素、个体环境敏感性和中间表型在性别差异形成中的作用。未来该领域应关注遗传对抑郁的动态影响,进一步探讨多基因交互作用、不同类型与性质的环境指标与抑郁遗传基础性别差异的关联。

关键词:抑郁;遗传;环境;性别差异

分类号:B845

1 引言

抑郁通常用来指一系列范围较广的情绪问题,包括轻微的消极情绪到严重的情绪障碍。主要表现为悲伤、苦恼等消极情绪,伴随着退缩、注意力涣散等行为特征,重性抑郁患者还表现出失眠、厌食等躯体症状(cassano&Fava,2002;Compas,Ey,&Grant,1993)。抑郁是个体主要的情绪障碍和心理健康问题之一。在世界范围内,抑郁也是造成伤残和疾病负担的5种主要原因之一(Caspi et al.,2003)。

20世纪60年代以来,伴随着行为遗传学的兴起,愈来愈多的研究者开始关注遗传因素在抑郁发生发展中的作用。早期双生子研究显示,儿童青少年抑郁的遗传力约为0.24-0.55(Happonen etal。,2002;Rice,Harold,&Thapar,2002a)。近年来,继Caspi等人(2003)里程碑式的研究之后,采用分子遗传学范式探究抑郁的遗传基础及其与环境的相互作用机制成为抑郁研究领域的前沿课题之一。随着研究的深入,对于抑郁遗传基础的研究不断获得新的发现和突破,其中,较为引人注目的就是遗传因素(Aslund et al.,2009;Eley et al.,2004;Jacobson&Rowe,1999;Jansson et alJ,2004)及其与环境的交互作用(Hammen,Brennan,Keenan-Miller,Hazel,&Najman,2010;sj8berg etal.,2006;Vaske,Beaver,Wright,Boisvert,&Makarios,2009)对抑郁的影响存在显著性别差异。

考察抑郁遗传基础性别差异的表现及其原因,有助于推进抑郁产生机制的研究,对于解释抑郁的发生特点亦具有重要启示。鉴于此,本文对既有抑郁遗传基础的性别差异的相关研究进行综述,进而从性激素、环境敏感性及中间表型3个方面分析性别差异的原因,并在此基础上展望了未来研究的方向。

2 抑郁遗传基础的性别差异

通过对该领域相关文献的梳理,我们发现定量行为遗传学研究主要比较抑郁遗传率的性别差异,较早期的分子行为遗传学研究考察基因与抑郁简单关联的性别差异,随着研究深入,研究者开始探讨抑郁基因一环境交互作用(GxE)的性别差异。鉴于此,本文按照其发展沿革将抑郁遗传基础的性别差异归纳为两个方面:一是基因对抑郁的直接效应,二是基因与环境的交互效应(详见表1)。

2.1 遗传直接效应的性别差异

早期研究大多采用数量遗传学中的双生子范式考察抑郁遗传基础的性别差异。双生子研究通过比较同卵双生子和异卵双生子在心理发展特征上的相似程度来了解遗传和环境对表型变异的相对贡献,以遗传率作为衡量遗传效应大小的指标,即在某一群体的表型变异中,遗传效应所占的比例(曹丛,王美萍,张文新,陈光辉,2012;Plomin,DeFries,McCleam,&McGuffin,2001)。采用这种范式,Jacobson和Rowe(1999)以自我报告的方式对美国青少年健康追踪研究中的2302名青少年(平均年龄16岁)双生子进行了调查,结果显示女性抑郁情绪的遗传率大于男性。之后,Jansson等人(2004)以1918名瑞典老年双生子为被试的研究也发现女性抑郁的遗传率高于男性,而且这种性别差异不受抑郁测评方式(二分法或连续记分法)的影响。此外,Scourfield等人(2003)以儿童青少年(5-17岁)为被试,以母亲报告的被试抑郁症状为指标,考察了抑郁遗传率的性别差异问题,其研究结果亦表明女孩的抑郁遗传率高于男孩。

近年来,随着分子遗传学的兴起与发展,越来越多的研究者采用分子遗传学的方法对抑郁遗传基础的性别差异进行了考察。目前,大多数抑郁研究考察了5一羟色胺系统基因、多巴胺系统基因与抑郁的关联,例如5-HTTLPR(serotonin.transporter-linked promoter region,5-羟色胺转运体)基因、MAOA(monoamine oxidase A,单胺氧化酶A)基因、COMT(catechol-O-methyltransferase,儿茶酚胺氧位甲基转移酶)基因和DRD2 (D2dopamine receptor,多巴胺D2型受体)基因等。相关候选基因可以通过降解(如MAOA、COMT)和转运(如5-HTTLPR)功能调节突触间隙中5一羟色胺或多巴胺的水平,也可以改变脑内受体数量(如DRD2基因)调节信号传导,进而影响个体抑郁水平。

该领域的研究为抑郁遗传基因,特别是5-HTTLPR基因对抑郁影响的性别差异提供了进一步的证据,并且诸多研究一致表明5-HTTLPR基因与女性抑郁存在密切关联。譬如,Eley(2004)等人以377名10-20岁青少年为被试的研究发现,携带5-HTTLPR S等位基因(SS和SL基因型,研究者按照5-HTTLPR区域上重复序列的数量将基因型划分为由14个重复序列组成的短等位基因S和由16个重复序列组成的长等位基因L1的女性抑郁水平较低,但是5-HTTLPR基因与男性抑郁无关。Aslund(2009)等人以1482名17-18岁瑞典青少年为被试进行研究,结果亦发现5-HTTLPR基因多态性仅对女性的抑郁存在直接效应,携带ss基因型的女性其患抑郁的风险较低,但该基因多态性与男性抑郁无关。Uddin及其同事的一系列研究也表明5-HTTLPR基因仅对女性抑郁存在直接效应,具体表现为携带SL基因型的女性抑郁水平较低(Uddin et al.,2010;Uddin。De losSantos,Bakshis,Cheng,&Aiello,2011)。由此可见。5-HTTLPR基因与抑郁的关联存在显著的性别差异,但与此同时我们也注意到这些研究结果在具体基因型上仍然存在分歧,这或许与对5-HTTLPR基因rs25531多态性位点功能的划分有关,需要未来研究进一步进行探讨。

需要指出的是,有小部分研究发现某些遗传基因的直接效应只存在于男性群体中。如Nyman等人(2011)采用北芬兰出生序列(Northem FinlandBirth Cohort)追踪研究中的5225名成人为被试。探索多种候选基因与环境风险因素在抑郁发展中的作用,研究结果发现,DRD2基因仅与男性抑郁症状显著相关(Nyman et al.,201 1)。此外,Baekken等人以北特伦德拉格健康研究fNord-TrondelagHealth Study)中的5531名成人为被试,研究COMT基因与焦虑抑郁的关系,结果表明在男性群体中,携带Met/Met基因型的个体患抑郁的可能性显著低于Val/Val基因型携带者,但在女性中没有发现该趋势(Baekken,Skorpen,Stordal。Zwart,&Hagen,2008)。

综上所述,双生子和分子遗传学研究均表明遗传因素对抑郁的直接效应存在性别差异.而且分子遗传学研究资料进一步显示,不同遗传基因对男女个体抑郁的影响是不同的,5-HTTLPR可能是女性抑郁的风险基因,而对男性抑郁来说,COMT和DRD2基因的影响可能更大。

2.2 遗传与环境交互作用的性别差异

采用基因一环境设计考察抑郁的遗传基础是当前行为遗传学研究领域的前沿课题之一,诸多研究表明抑郁的GxE效应存在显著的性别差异。如Barr等人(2004)选择与人类直系同源的恒河猴为研究对象(恒河猴与人类在5-HTTLPR上具有相同的基因多态性),考察了5-HTTLPR基因与早期不利事件(early adversity)对压力刺激时的促。肾上腺皮质激素和皮质醇分泌的影响,结果发现由同伴养育(即早期不利处境)的雌性恒河猴中,携带5-HTTLPR S等位基因的个体促肾上腺皮质激素分泌增加,总体皮质醇水平下降(通常这一激素的反应模式被认为与压力导致的神经障碍有关),但在雄性中没有出现该反应模式。

除动物研究外,以人类为被试的研究也发现了同样的性别差异模式。例如,Eley等(2004)和Aslund等人(2009)的研究一致表明5-HTTLPR基因与负性生活事件(失业、重病、丧亲等)或虐待对抑郁的交互作用存在性别差异,携带S等位基因的女性在遭遇负性生活事件或虐待时,更容易出现抑郁症状。Hammen等人(2010)以346名青年为被试的研究发现携带5-HTTLPR S等位基因的个体,在15岁时经历的慢性家庭压力(父母关系质量、亲子关系质量等)越多,其成年后的抑郁水平越高,但这一交互效应只存在于女性群体中。Vaske等人以2023名青少年为被试,考察了DRD2基因TaqlA多态性与压力性生活事件对抑郁的交互效应,结果仅在非裔美国女性中发现了GxE效应(Vaske et al.,2009)。

然而,也有小部分研究获得了不同的研究结果。sjoberg等人(2006)以200名青少年(16.19岁)为被试,考察了5-HTTLPR与心理社会压力f创伤性家庭冲突、父母离异、居住地环境)对抑郁的影响,发现在男性和女性群体中GxE交互作用模式截然相反,在女性中,携带s等位基因的个体在经历了创伤性家庭冲突后其抑郁水平显著高于未经历家庭冲突的女性,然而在男性中,当携带L等位基因的个体处于风险环境(父母离异或居住条件不良等)中时,其患抑郁的风险较高。与此类似,Brummett等(2008)分别以288名和142名成人为被试进行了两项研究,结果均发现携带5-HTTLPR S等位基因的女性在面临压力性生活事件(亲属重病、社经地位)时,更容易出现抑郁症状,而携带5-HTTLPR L等位基因的男性在面临压力性生活事件时抑郁水平较高。最近,Priess-Grobe和Hyde(2013)以309名青少年为被试,考察了5-HTTLPR基因与负性生活事件(亲属死亡、父母离异等)对抑郁的影响以及MAOA基因与性别的调节作用(5-HTTLPR×负性生活事件×MAOA×性别),也发现在携带低活性MAOA基因型的个体中,5-HTTLPR基因与负性生活事件对抑郁的交互作用存在性别差异,携带S等位基因的女性经历的负性生活事件越多其抑郁水平越高,而在经历了负性生活事件的男性中,只有携带L等位基因的个体才表现出抑郁症状。以上3项研究似乎表明,面临压力时携带s等位基因的女孩容易患抑郁,而同样情况下携带L基因的男性患抑郁的风险较高。此外,Nyman等人(2011)的研究结果表明COMT基因rs4680多态性与环境的交互效应仅在男性中显著,携带G等位基因的男性在经历了环境压力后抑郁水平较高(Nyman et al.,2011)。

通过分析上述研究可以发现,抑郁的GxE效应存在显著的性别差异,并且在女性群体中的研究结果基本一致,如在压力环境下,携带5-HTTLPR S等位基因的女性的抑郁水平较高。但是,在男性群体中所获得的结论仍存在分歧。

导致男性群体中既有研究结论存在分歧的原因可能有以下几个方面:(1)多数研究采用的是单基因一环境交互作用的研究范式,而没有考察多基因的交互效应。人类行为具有复杂的遗传基础,多数人类行为并不像单基因遗传疾病(如亨廷顿舞蹈病)那样具有清晰简洁的模式,而是会依赖于环境因素和多种基因的交互作用(McGuffin,Riley,&Plomin,2001)。事实上,已有研究证实了多种基因间存在交互效应,并且提供了与单基因研究不同的结果,如上述Priess-Groben和Hyde(20131的研究结果显示,同时携带低活性MAOA和5-HTTLPR L等位基因的男性在经历了负性生活事件后抑郁水平较高,这与Aslund等人(2009)的单基因研究结果不一致。(2)研究者所选择的环境指标不同。多数研究只考察了压力性生活事件等直接对个体产生影响的近端风险因素(proximalrisk factors,指直接对个体产生影响的社会和身体经验,如负性生活事件、虐待等),如Eley等(2004)、Aslund等(2009)和Vaske(2009)等人以不利生活事件、虐待等为环境指标,均发现仅在女性群体中存在GxE效应,而少数不一致的研究则选择了远端风险因素(distal risk factors,指间接对个体产生影响的历史、文化、人口及地理特征等因素,如地区贫困水平等),如Uddin等(2010)选择了地区贫困水平等远端环境指标,发现仅在男性群体中存在G×E效应,而Moffitt等人指出远端环境的效应受到近端环境的调节(Moffitt,Caspi,&Rutter,2006),因而近端和远端风险因素的选择可能对研究结果具有重要影响。(3)研究对象的年龄不同。Moffitt等人(2006)指出在研究基因与不利环境对抑郁的作用时,年龄可能是导致大部分研究结果不一致的重要因素。如Eley等(2004)、Aslund(2009)等人选择青少年为被试的研究发现仅在女性群体中存在GxE效应,但是Brummett等(2008)以中老年人为被试的研究却发现5-HTTLPR基因与压力的交互作用在男性和女性群体中呈相反的作用模式。

3 抑郁遗传基础性别差异的原因

虽然尚未有研究对抑郁遗传基础性别差异的原因进行系统的分析总结,但综述既有文献资料可以发现,抑郁遗传基础的性别差异可能与性激素、个体对不同类型环境的敏感性以及中间表型有关。

3.1 性激素

性激素可能通过以下几个途径影响抑郁遗传基础的性别差异。首先,性激素直接调节基因与抑郁相关生理反应间的关系。Josephs等(2012、以成人为被试通过3种压力反应实验(研究1:通过社会排斥诱发地位威胁,研究2:认知失败,研究3:身体胜任力)考察了5-HTTLPR基因与睾丸素对皮质醇水平的交互作用,研究结果均发现在睾丸素水平较高时,携带5-HTTLPR S等位基因的个体的皮质醇水平较高,而携带LL基因型的个体皮质醇水平较低,但当睾丸素水平较低时,两种基因型的个体皮质醇水平相差不大甚至携带LL基因型的个体皮质醇水平更高,这一结果表明5-HTTLPR基因与皮质醇反应的关系受到睾丸素的调节,而已有研究显示重性抑郁患者的皮质醇水平较高(Maes,Jacobs,Suy,Minner,&Raus,1989),这提示我们性激素可能通过调节遗传基因与抑郁间的关联,进而影响抑郁遗传基础的性别差异,因此有必要进一步探索性激素对基因~抑郁关联的影响。

其次,性激素影响抑郁相关基因的表达。研究发现雌激素可以改变对5-羟色胺(serotonin,5-HT)神经递质有重要作用的基因的表达,这种改变会增加5-HT的合成,减少5-HT的自我阻断(Pecins-Thompson&Bethea,1998;Pecins-Thompson,Brown,&Bethea,1998)。Gundlah等人通过对切除卵巢的恒河猴进行雌性激素治疗(注射雌激素)发现。雌激素的增加会降低中缝核及下丘脑中MAOA基因的表达(Gundlah,Lu,&Bethea,2002),而有研究指出5-HT水平较低的人群更容易产生抑郁(Priess-Groben&Hyde,2013),因而,受雌激素调节的MAOA基因转录减少,会增加突触间隙中5-HT水平,进而影响个体抑郁的发生与发展。

第三,雌激素直接影响5.羟色胺系统的功能。研究者从不同的方面考察了雌激素对5-羟色胺系统功能的影响。首先,雌激素可以影响中脑和下丘脑5-羟色胺受体水平(Beyer et al.,2003;Zhou,Cunningham,&Thomas,2002)。与此一致,Chakravorty和Halbreich(1997)的研究也发现雌激素可以调节5-HT1受体和5-HT2受体,减少单胺氧化酶(monoamine oxidase,MAO)活性。其次,雌激素可以增加5-HT的合成(Dickinson&Curzon,1986)。简言之,雌激素和其他性激素一样作用于细胞内的雌激素受体(Rubinow&Schmidt,2003),当荷尔蒙与受体相结合时,调节编码基因的转录,制造大量蛋白,而这些蛋白对合成五羟色胺来说恰恰是必不可少的。最后,雌激素还能增强5-HT的活性。如Halbreich等人(1995)发现处于绝经期的女性5-HT的活性显著降低,而且更易产生情绪障碍,研究同时指出使用雌激素替代疗法(注射雌激素)可以显著减少抑郁的易感性并且增加了5-HT抗抑郁药物的功效。换言之,雌激素在5-HT功能上的累积效应就如同这一系统的激动剂(agonist)(Halbreich,1997)。

值得指出的是,抑郁的性别差异通常出现在青春期,表现为青春期女孩的抑郁水平高于男孩(Uddin et al.,2011;Piccinelli&Wilknson,2000),但是这一时期女孩的雌激素是升高的,这与上述研究中提到的“低雌激素水平与抑郁有关”相矛盾。对此,一种可能的解释是由于女性在青春期时雌激素迅速升高,导致雌激素内稳态(estrogenhomeostasis)紊乱,而这一紊乱会扰乱五羟色胺的合成过程并引发情绪障碍(Halbreich&Kahn,2001)。还有一种可能的解释是性激素与抑郁的关系可能是非线性的。如一项男性研究指出睾丸素水平与抑郁症的关系呈u型曲线,即睾丸素水平过高或者过低,个体的抑郁水平较高(Booth,Johnson,&Granger,1999)。

3.2 环境敏感性的性别差异

众所周知,环境因素(如压力性事件)是抑郁的重要预测源。如前所述,遗传和环境对抑郁的交互作用存在性别差异,这既与特定遗传基因对两性存在不同影响有关,也可能与男女对环境的敏感性不同有关。一项对346名青年人的研究发现,携带5-HTTLPR S等位基因的女性,其经历的慢性家庭压力(如父母争吵等)越多,患抑郁的可能性越大,但这一GXE效应在男性中并不存在。换言之,相比男性,携带5-HTTLPR S等位基因的女性对家庭人际关系(如父母婚姻质量和亲子关系质量)更为敏感(Hammen et al.,2010)。然而,Uddin等人(2010)以1084名青少年为被试的研究则发现,当地区贫困水平(该地区接受公共救助家庭的比例)较高时,携带5-HTTLPR SL基因型的男性患抑郁的风险较低,而这一GXE交互作用在女性群体中并不显著,这与Hammen等人(2010)的研究结论截然相反。通过分析上述研究方法可以发现,两项研究选择的环境指标存在差异,前者选择的是家庭环境变量,而后者选择的为社会环境变量。这些研究结果提示,男女对不同类型的环境敏感性可能存在差异。Sjoberg等人(2006)的研究进一步证明了该假设的合理性。他们采用不同类型的环境指标(创伤性家庭冲突、父母离异、居住地环境)发现,携带5-HTTLPR L等位基因的男性更容易受到公共居住环境和父母离异的消极影响,而携带5-HTTLPR S等位基因的女性则更容易受到伤害性家庭冲突(与父母或兄弟姐妹的关系等)的影响。

结合上述研究可推知,在宏观社会环境水平(如社区环境)上,男性的敏感性要大于女性,但在人际关系及家庭水平的环境变量上,女性的敏感性要高于男性,但需要指出的是在离婚这一环境指标上,男性的敏感性更高。虽然既有研究表明男女对不同类型的环境敏感程度存在差异,但大多相关研究测量的是女性较为敏感的环境变量。此外,多数研究只考察了消极环境变量的作用,忽略了积极环境对个体抑郁性别差异的贡献:而已有研究发现在社会支持水平较高的环境下.携带5-HTTLPR S等位基因的个体患抑郁的风险较低(Kaufman et al.,2004)。因而,有必要进一步探究不同类型和不同性质的环境指标对抑郁遗传基础性别差异的作用。

3.3 中间表型(intermediate phenotype)

中间表型(intermediate phenotype)是内在的、可遗传的、稳定的个人特质,如神经生理结构、生物化学成分、认知等,与心理障碍、精神疾病等密切相关(Meyer-Lindenberg&Weinberger,2006)。正如心理学家Uher和McGuffin(2008)所言,中间表型比外在的心理症状更具有遗传性,对中间表型的研究将会扩展和深化已知的基因一环境交互作用。近期,已有研究表明基因对抑郁的效应可能受到注意偏好、消极推理风格等中间表型的调节。如Gibb Uhrlass,Grassia,McGeary和Benas(2009)的一项研究发现,5-HTTLPR基因、儿童推理风格和母亲情绪性批评三者存在交互作用,具体表现为在具有消极推理风格的儿童中,携带5-HTTLPR SS基因型的个体经历的母亲情绪性批评越多,其抑郁水平越高。Gibb,Benas和Grassia(2009)的另一项研究还检验了5-HTTLPR基因、母亲抑郁病史与儿童注意偏好之间的联系,结果也发现母亲抑郁水平越高,携带5-HTTLPR S等位基因且同时表现出对悲伤面孔注意回避的儿童患抑郁的可能性更大。伴随着功能性磁共振成像(fMRI)等神经成像技术的广泛应用,研究者开始考察脑功能、脑结构等中间表型与抑郁遗传基础的关联。由于杏仁核活性与个体抑郁有关(Lonsdorf et al.,2009),因此通过考察5-HTTLPR基因与杏仁核活性关联的研究可以推知中间表型对遗传效应的调节作用。Lemogne等人(2011)的研究发现在不同的认知评估任务中,5-HTTLPR基因与生活压力对杏仁核活性的作用模式相反,具体表现为,在自我指向的认知评估任务中,随着生活压力的增加,S等位基因携带者的杏仁核活性降低,而LL基因型携带者的杏仁核活性增强;但在情绪标签的认知评估任务中,随着生活压力的增加,s等位基因携带者的杏仁核活性增强,LL基因型携带者的杏仁核活性则降低。此外,情绪系统中其他脑结构与基因的关联也备受关注(Cole et al.,2011;Andms et al.,2012;Drabant et al.,2012),如Drabant等人(2012)考察了大脑边缘系统与5。HTTLPR基因的关联,结果发现,与携带5-HTTLPR L等位基因的女性相比,携带sS基因型的女性在面临压力情境时表现出杏仁核、海马、前脑岛、丘脑、丘脑后结节、尾状核、楔前叶、前扣带回和内侧前额叶等脑区活性的显著增强,而这些脑区活性的增强与焦虑抑郁密切相关。

上述研究表明遗传效应可能受到中间表型的调节,并且既有研究发现中间表型存在显著的性别差异。如在青少年阶段具有消极归因风格的女性要显著多于男性(Hankin&Abramson,2002;Nolen-Hoeksema&Girgus,1994),并且在女性群体中消极归因风格与抑郁的联系比在男性中更为密切(Gladstone,Kaslow,Seeley,&Lewinsohn,1997)。除了消极归因风格外,反思(rumination)倾向也是抑郁的特征之一(Nolen-Hoeksema,2000),一项关于成人的追踪研究发现反思倾向存在显著的性别差异,女性的反思倾向显著高于男性(Nolen-Hoeksema,Larson,&Grayson,1999),这些研究结果提示,抑郁遗传基础的性别差异可能部分归因于中间表型的性别差异。

4 小结与展望

抑郁具有复杂的遗传基础,不论是遗传直接效应还是遗传一环境的交互作用均存在显著的性别差异,尽管一些具体结论还存在分歧。本文通过综述已有文献,从性激素、环境敏感性及个体中间表型三方面讨论了抑郁遗传基础性别差异的可能原因。基于以上分析,我们认为未来研究应该更加关注如下问题:

(1)采用多基因一环境设计考察抑郁遗传基础的性别差异。

由前可知,多数研究采用的是单基因一环境交互作用的研究范式,即使有的研究(Eley et al.,2004;Nyman et al.,201 1)同时考察了多种基因,也仅仅是分析单个基因与环境对抑郁的影响,并没有考察多种基因的交互效应。然而,神经递质之间的功能关系十分复杂,一种递质功能紊乱可能引起另外一种或几种递质的功能失衡,从而导致一定的病理生理现象(王美萍,张文新,2010)。不同基因间存在交互效应,如Kaufman等人(2006)的一项研究就发现BDNF(brain derived neurophicfactor,脑源性神机更营养因子)和5-HTTLPR基因对个体抑郁存在交互效应。如前所述多基因研究与单基因研究的结果也往往不同,因此未来研究应尽可能采用多基因一环境设计更深入地考察抑郁的遗传基础及其性别差异。

(2)考察不同类型和性质的环境与遗传基因交互影响抑郁的性别差异。

如前所述,抑郁遗传基础的性别差异可能是个体对不同类型的环境的敏感性存在差异造成的,多数研究并没有给男性敏感的环境变量以足够的重视,因此未来研究应同时采用男性和女性的敏感环境因素,考察其在抑郁遗传基础中的效应。此外,现有抑郁的分子遗传学研究的理论基础多是“素质一压力模型”(diathesis-stress model),由于该模型认为,当个体处于应激或高压状态时,具有某种不良遗传素质的个体更容易发生心理与行为问题,因而以该模型为理论基础的研究多以压力性生活事件等消极环境为指标来考察抑郁的GxE效应(Aslund et al.,2009;Caspi et al.,2003;Beach et al.,2010)。然而,新近兴起的理论模型——“不同易感性模型”(differential susceptibilitymodel)明确提出并证明,某些基因型的个体也更容易受到积极成长环境的影响而表现良好或优秀(Belsky&Pluess,2009;Ellis,Boyce,Belsky,Bakermans-Kranenburg,&van Ijzendoom,2011)。因此,现有以“素质一压力模型”为理论基础的研究未能揭示GxE交互作用的多种可能方式,携带不同基因型个体对积极环境的敏感性是否存在性别差异也是未来研究需要进一步重点考察的内容。

(3)抑郁遗传基础的性别差异的发展变化。

发展行为遗传学(developmental behavioralgenetics)可以深入考察遗传与环境对人类心理与行为发展是否存在影响,如何产生影响,以及该影响及其作用基础是否随年龄增长而发展变化的问题(张文新,王美萍,曹丛,2012)。已有研究表明遗传基因的效应随年龄的增长发生变化。如Hilt等(2007)报告了BDNF Val66Met基因多态性与抑郁的关系,发现Val/Val基因型与青少年抑郁有关,而Val/Met基因型与成年抑郁有关;Priess-Groben和Hyde(2013)也指出5-HTTLPR L等位基因影响生命早期(儿童期)的抑郁发展,而s等位基因影响成年期抑郁的发展,由此可以看出不同年龄段基因型的作用可能不同。然而,遗传基因随年龄发展的变化趋势问题尚无定论,譬如Aslund等人(2011)根据其MAOA基因的研究结果指出,MAOA基因型和MAOA酶活性的联系随着年龄而将低,因而随年龄增长,基因的效应可能会减弱,但双生子研究同时也表明抑郁的遗传率从儿童到青少年时期是逐渐增加的(Rice,Harold,&Thapar,2002b)。因而,采用追踪研究考察不同年龄阶段抑郁遗传基础的性别差异及其发展变化模式就显得尤为必要。

此外,仍有一些问题需要进一步探索。如前所述,性激素可能通过影响基因的表达和5一羟色胺系统的功能进而影响抑郁遗传基础的性别差异。据我们所知,目前仅有一项研究(Josephs etal.,2012)考察了性激素对遗传基因的调节作用,但是该研究测定的是与抑郁相关的皮质醇反应水平,未能直接考察性激素在基因与抑郁间的作用。因此未来的研究需要进一步探索性激素在基因与抑郁间的作用。同样,目前只有少数研究考察了抑郁的中间表型,尚无直接证据支持中间表型在性别差异中的效应,并且对其作用机制也知之甚少。随着研究技术的发展,Eisenberger,Way,Taylor,Welch和Lieberman(2007)使用fMRI技术发现背侧前扣带皮层活性在MAOA基因与攻击行为间起中介作用,并且女性的背侧前扣带皮层活性大于男性。近期,Drabant等人(2012)的研究亦发现遗传基因对“脑一行为”通路具有调节作用,具体表现为5-HTTLPR基因显著调节内侧前额叶活性与焦虑的关联,在SS基因型携带者中,其内侧前额叶活性越高,焦虑水平越高,但在L等位基因携带者中,并没有发现内侧前额叶活性与焦虑水平间的关联;同样,5-HTTLPR基因可以调节脑岛与焦虑情绪调控间的关系,在L等位基因携带者中,其脑岛活性越低,焦虑情绪降低越快,而在SS基因型携带者中,没有发现脑岛与焦虑情绪调控间的关联。由此推测,遗传基因可能通过调节脑功能进而影响个体行为。因此,未来的抑郁研究也可借鉴该范式,增加与抑郁相关的脑区活性等中间表型,将数量遗传学、分子遗传学与脑认知神经科学结合起来探索抑郁的“基因一脑一行为”模型,丰富抑郁遗传机制的性别差异研究。

作者:曹衍淼 王美萍等

第2篇:高中遗传学遗传病判断口诀

告诉你个口诀

无中生有为隐性,隐性伴性看女病,父女都病是伴性;有中生无为显性,显性伴性看男病,母女都病是伴性

再给你解释一下

上代两个都没病,而下代有证明父母都是携带者,因此至病基因是隐性,Aa+Aa aa,aa有病,显然是隐性,同理 Aa 有病,aa没病显然至病基因在A上,所以是显性。

首先,判断遗传方式,是显性遗传还是隐性遗传,是伴性遗传还是常染色体遗传。

1、判断显隐性

显性遗传:代与代之间有连续性,子代中有患者,则双亲都有患者,且后代发病率较高(至少为1/2)。(注意若是独生子女,则看不出发病率;若都是患者,也可能是隐性遗传。)隐性遗传:不具备这样的特点。

由此,可总结为“有中生无为显性,无中生有为隐性”。(其中“有中”的“有”指双亲都患病:“无中”的“无”指双亲都正常。)

2、基因定位

确定控制该性状的基因是位于常染色体上,还是位于X染色体或Y染色体上,即判断遗传方式是否与性别有关。

Y染色体遗传有传男不传女的特点,最容易判断。

X染色体隐性遗传的特点:男性患者多于女性患者,交叉隔代遗传。母亲是患者,则儿子全部是患者;女儿是患者,则其父一定是患者。X染色体显性遗传的特点:女性患者多于男性患者,代代交叉遗传。父亲是患者,则女儿全部是患者;儿子是患者,则其母一定是患者。常染色体遗传:没有交叉遗传和发病率不均衡的特点。

这里,可以总结为若已确定为显性遗传病,则找男患者,看他的母亲和女儿,若都患病,则为伴X染色体显性遗传;只要其中一个正常,则为常染色体显性遗传。若已确定为隐性遗传,则找女患者,看她的父亲和儿子,若都是患者,则为伴X染色体隐性遗传;只要其中有一个正常,则为常染色体隐性遗传。

其次,确定有关个体基因型。能确定的先确定下来,如表现型是隐性性状,则基因型肯定是由两个隐性基因组成;如表现型是显性性状,则基因型中至少有一个显性基因,另一个再根据前后代隐性个体的基因型来推断。

3、根据基因型和有关遗传规律计算,分析解决问题

一对相对性状遗传要注意的是,不要见到有男女性别出现,就误认为是伴性遗传。对常染色体遗传要注意“生一患病男孩的概率”与“生一男孩患病的概率”的区别,前者要考虑患病的概率和生男孩的概率(1/2),后者只要考虑患病的概率,因为男孩已经成为事实。二对相对性状遗传的概率计算,一般先根据表现型确定基因型,然后按分离规律分别计算每对等位基因的遗传概率,最后按统计学的加法或乘法定律算出两对性状的总概率,这样可使复杂的问题简单化。

第3篇:遗传病的预防

12.先天性聋哑是一种AR遗传病,一个男性患此病,与其姨表妹结婚后,生下两个女儿未患此病,按Bayes法计算其再生子女的发病风险是: A.1/8 B.1/10 C.1/26 D.1/56 E.1/112 13.白化病(AR)群体发病率为1/10000,一个人的叔叔患此病,他与其姑表妹结婚,所生子女的发病风险是:

A.1/4 B.1/8 C.1/36 D.1/100 E.1/120 14.白化病(AR)群体发病率为1/10000,一个人的叔叔患此病,他与无血亲关系的正常女性婚配所生子女发病风险是:

A.1/100 B.1/10000 C.1/36 D.1/600 E.1/800 15.一女性的两个弟弟患血友病(XR),她父母无病她与正常男性结婚,其所生男孩的发病风险是:

A.1/2 B.1/4 C.1/8 D.1/16 E.1/32 16. 一个女人的两个舅舅患DMD病(XR),此女人与正常男性结婚,其所生男孩的患病风险是:

A.1/2 B.1/4 C.1/8 D.1/16 E.1/32 17.一个女人的两个舅舅患DMD病(XR),她的四个哥均未患病,此女人如与正常男性结婚,按Bayes法计算其所生男孩的发病风险是: A.1/36 B.1/68 C.1/96 D.1/134 E.1/192 18.遗传性舞蹈病是一种延迟显性遗传病,一个男人的母亲(40岁)患此病,他未发病,按分离律计算,其与正常女性婚配后所生子女的发病风险是: A.1/2 B.1/4 C.1/8 D.1/16 E.1/32 19.一个男子把常染色体上的某一突变基因传递给其孙女的概率是: A.0 B.1 C.1/2 D.1/4 E.1/8 20.一种AR遗传病的群体发病率为1/10000,那么表亲婚配要比随机婚配的子代发病风险要高多少倍?

A.6.25 B.62.5 C.625 D.125 E.12.5 一个女人的两个舅舅患DMD病(XR),她的四个哥均未患病,此女人如与正常男性结婚,按Bayes法计算其所生男孩的发病风险是:

A.1/36 B.1/68 C.1/96 D.1/134 E.1/192 答案:B

第4篇:高考生物复习 遗传的基本规律和伴性遗传

上教考资源网 助您教考无忧

遗传的基本规律和伴性遗传

【要点精析】

[基本知识]

一、孟德尔研究性状遗传的方法

(一)正确地选用实验材料:

孟德尔在研究生物的性状遗传时,正确地选用了豌豆作实验材料,原因是:

1.豌豆是自花传粉且闭花受粉的植物,在自然状况下永远是纯种,用豌豆做杂交实验结果可靠。 2.豌豆品种间的性状差别显著,容易区分,用豌豆做杂交实验易于分析。

(二)科学地设计实验方法:

1.首先研究一对相对性状的传递情况,然后研究多对相对性状在一起的传递情况。 2.详细记载实验结果,科学地运用数学统计方法对实验结果进行分析。

3.以丰富的想像提出假说,解释实验结果,并巧妙地设计出严谨的测交实验,对实验结果的解释进行验证。

二、学习遗传的基本规律应掌握的基本概念

(一)显性性状和隐性性状:

具有相对性状的两个亲本杂交后,F1中显现出来的那个亲本的性状叫显性性状;F1中没有显现出来的那个亲本的性状叫隐性性状。

(二)显性基因和隐性基因:

控制显性性状的基因称为显性基因,用大写英文字母表示;控制隐性性状的基因称为隐性基因,用小写英文字母表示。

(三)表现型和基因型:

生物体所表现出来的性状叫表现型,例如豌豆的高茎和矮茎。生物体被研究的性状的有关基因组成叫基因型,例如豌豆高茎的有关基因组成有两种:DD和Dd,矮茎的有关基因组成只有dd一种。

(四)纯合体和杂合体:

由含有相同的显性基因或者隐性基因的雌、雄配子结合形成的合子所发育成的个体称为纯合体,简称纯种。由含有显、隐性不同基因的雌、雄配子结合形成的合子所发育成的个体称为杂合体,简称杂种。例如,被研究的相对性状为一对时,基因型为DD或dd的个体为纯合体,基因型为Dd的个体为杂合体。

(五)等位基因和相同基因:

在杂合体内的一对同源染色体的同一位置上,控制相对性状的基因叫等位基因。在纯合体内的一对同源染色体的同一位置上,两个相同的基因叫相同基因。例如,D和d是等位基因,D和D或者d和d是相同基因。

(六)性状分离:

在杂种后代中,显现出不同性状的现象叫性状分离。例如,在杂种后代中,一部分个体表现为高茎,另一部分个体表现为矮茎的现象就是性状分离现象。

三、基因的分离规律

(一)一对相对性状的遗传实验: 1.实验结果:

(1)F1只表现显性性状;

(2)F2出现性状分离现象,分离比接近于3∶1。 2.对分离现象的解释:见重、难点知识。

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

3.对分离现象解释的验证——测交: (1)方法:让F1与隐性纯合类型相交。 (2)作用:①测定F1配子的种类及比例; ②测定F1的基因型;

③判断F1在形成配子时基因的行为。 (3)结果:与预期的设想相符,证实了: ①F1是杂合体,基因型为Dd;

②F1产生了D和d两种类型、比值相等的配子; ③F1在配子形成时,等位基因彼此分离。

(二)基因的分离规律:见重、难点知识。

(三)基因分离规律在实践中的应用: 1.在杂交育种中的应用:

若要选育的优良性状是显性性状,则应通过连续的自交和选择,确定为纯合体后,才能选用和推广。若要选育的优良性状是隐性性状,经自交测定得到确认后,再选用和推广。 2.在预防人类遗传病方面的应用:

人类有许多遗传病由隐性基因控制,近亲结婚的夫妇,有可能从共同的祖先那里遗传得到相同的隐性致病基因,从而使后代出现隐性遗传病的机会大大增加。因此应禁止近亲结婚。

四、基因的自由组合规律

(一)两对相对性状的遗传实验: 1.实验结果:

(1)F1只表现显性性状;

(2)F2除了出现两种与亲本相同的类型外,还出现了两种与亲本不同的类型(即出现了性状间的自由组合现象);

(3)F2四种表现型的比值接近于9∶3∶3∶1。 2.对自由组合现象的解释:见重、难点知识。 3.对自由组合现象解释的验证——测交: (1)方法:让F1与双隐性类型相交。 (2)作用:①测定F1配子的种类及比例; ②测定F1的基因型;

③判断F1在形成配子时基因的行为。 (3)结果:与预期的设想相符,证实了: ①F1是杂合体,基因型为YyRr;

②F1产生了YR、Yr、yR、yr四种类型,比值相等的配子;

③F1在形成配子时,同源染色体上的等位基因分离的同时,非同源染色体上非等位基因之间进行了自由组合。

(二)基因的自由组合规律:见重、难点知识。

(三)基因自由组合规律的意义: 1.理论意义:

基因重组是生物变异的原因之一,是生物多样性的原因之一。基因重组为生物进化提供了原始的选择材料。 2.实践意义:

在杂交育种中,有目的地将具有不同优良性状的两个亲本进行杂交,使两个亲本的优良性状结合在一起,培育出同时具备两种优良性状的新品种。

五、性别决定和伴性遗传

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

(一)性别决定:

雌、雄异体的生物,决定性别的方式叫性别决定。生物界中雌、雄性别的决定方式多种多样,其中染色体决定性别是一种最普遍的性别决定方式。 1.常染色体:

概念:与决定性别无关的染色体叫常染色体。 2.性染色体:

(1)概念:与决定性别有关的染色体叫性染色体。 (2)类型:

①XY型性别决定:全部的哺乳动物,某些两栖动物和双翅目、直翅目昆虫属于此种性别决定。 ②ZW型性别决定:鸟类、爬行动物,某些两栖动物和鳞翅目昆虫属于此种性别决定。 3.XY型性别决定: (1)特点:

(2)后代性别:决定于父方

(二)伴性遗传:

1.概念:位于性染色体上的基因,在遗传上表现出与性别相伴不离的联系,这种遗传方式叫伴性遗传。 2.实例:人红绿色盲的遗传,血友病的遗传。

3.伴X染色体隐性遗传的特点(以红绿色盲的遗传为例):

红绿色盲遗传的主要婚配方式及后代的发病情况有以下四种:

从上表可以看出伴X染色体隐性遗传的特点是: (1)男性患者多于女性;

(2)致病基因多由男性通过他的女儿遗传给他的外孙。

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

4.男性患者多于女性的原因:

(1)色盲基因(b)与它的等位基因(即正常基因B)分别位于两个X染色体上,Y染色体因过于短小而没有相对应的等位基因。

(2)女性只有在两个X染色体上都带有致病基因时才表现为色盲,而男性只有一个X染色体,因此只要X染色体上带有致病基因就表现为色盲。 5.防止伴性遗传病发生的措施:禁止近亲结婚。 [重、难点知识] 基因的分离规律是学习基因的自由组合规律和伴性遗传的基础,是本小节的重点知识。对分离现象和对自由组合现象的解释,以及基因分离规律和基因自由组合规律的实质,是理解和掌握遗传规律的关键,也是解释自然界中各种遗传现象的科学依据,是本小节的重点知识。

基因的自由组合规律涉及到两对等位基因控制的两对相对性状的遗传,较为复杂;伴性遗传遵循遗传的基本规律,但与常染色体上基因的遗传又不完全相同。因此,基因的自由组合规律,以及伴性遗传与常染色体上基因遗传的关系,是本小节的难点知识。

一、掌握对遗传现象解释的要点

孟德尔的两个经典遗传实验中的性状分离现象和性状间的自由组合现象,都出现在F2。而F2产生这些遗传现象,与F1体细胞中基因的存在状态、F1进行减数分裂形成配子时基因的遗传行为有关,也与F1产生的配子类型及比值、F1各种类型的雌、雄配子结合的机会相关。尽管教材中对两种遗传现象的解释不相同,但解释的要点则基本一致。因此在学习和理解对遗传现象的解释时,关键要掌握以下几个要点: 1.F1体细胞中,控制相对性状的基因在染色体上的相对位置。 2.F1进行减数分裂形成配子时基因的遗传行为。 3.F1形成的配子类型及比例。

4.F1各种类型的雌雄配子彼此结合的机会。

二、对分离现象的解释

高茎豌豆(DD)与矮茎豌豆(dd)杂交后,F2出现性状分离现象这是因为:

1.在F1(Dd)的体细胞中,控制相对性状的一对等位基因D和d位于一对同源染色体上。 2.F1进行减数分裂时,同源染色体上的等位基因D和d彼此分离,各进入一个配子。 3.F1形成含有基因D和含有基因d两种类型比值相等的雌、雄配子。 4.两种类型的雌配子与两种类型的雄配子结合的机会相等。

所以F2出现DD、Dd和dd三种基因型,比值为1∶2∶1,出现高茎和矮茎两种表现型,比值为3∶1。

三、基因分离规律的实质

在杂合体内,等位基因分别位于一对同源染色体上,具有一定的独立性。在杂合体形成配子时,等位基因随着同源染色体的分开而分离,分别进入两个不同的配子,独立地随着配子遗传给后代。 掌握基因的分离规律,关键要理解以下两点:

1.等位基因的独立性:等位基因虽然共存于一个细胞内,但分别位于一对同源染色体上,既不融合,也不混杂,各自保持独立。

2.等位基因的分离性:正是由于等位基因在杂合体内独立存在,才使得等位基因在减数分裂形成配子时,随同源染色体的分开而彼此分离,分别进入不同的配子。

四、对自由组合现象的解释

黄色圆粒豌豆(YYRR)与绿色皱粒豌豆(yyrr)杂交后,F2出现不同相对性状间的自由组合现象,这是因为:

1.在F1(YyRr)的体细胞中,控制豌豆粒色的一对等位基因Y和y位于一对同源染色体上,控制豌豆粒形的另一对等位基因R和r位于另一对同源染色体上。

2.F1进行减数分裂时,同源染色体上的等位基因彼此分离,即Y与y分离,R与r分离,与此同时,非

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

同源染色体上的非等位基因自由组合,即Y可以与R组合,也可以与r组合;y可以与R组合,也可以与r组合。

3.F1形成YR、Yr、yR、yr四种类型比值相等的雌、雄配子。 4.四种类型的雌配子与四种类型的雄配子结合的机会相等。

所以F2出现九种基因型,四种表现型,四种表现型的比值为9∶3∶3∶1。

五、基因自由组合规律的实质

具有两对(或更多对)相对性状的亲本进行杂交,在杂合体形成配子时,同源染色体上的等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。

基因的自由组合规律,又叫独立分配规律。掌握基因的自由组合规律,要注意理解以下两点: 1.同时性:同源染色体上等位基因的分离与非同源染色体上非等位基因间的自由组合同时进行。 2.独立性:同源染色体上等位基因间的相互分离与非同源染色体上非等位基因间的自由组合,互不干扰,各自独立地分配到配子中去。

六、伴性遗传与遗传基本规律间的关系

伴性遗传是由性染色体上基因所控制的遗传。性染色体与生物的性别决定有关。在XY型性别决定的生物中,雌性个体的性染色体为XX,是同源染色体。雄性个体的性染色体为XY,这一对性染色体虽然形态、大小不同,但却分别来自父方(Y)和母方(X),并且在减数分裂时能部分配对,说明X与Y之间有一部分同源,是一对特殊的同源染色体。性染色体在减数分裂时也彼此分离,同时,性染色体也与其他常染色体进行自由组合。因此,伴性遗传同样遵循遗传的基本规律。

然而,伴性遗传又有它的特殊性。因为其一:雌、雄个体的性染色体不同;其二:有些基因只存在于X染色体上,Y染色体上没有相应的等位基因,还有些基因只存在于Y染色体上,X染色体上没有相应的等位基因。因此。位于性染色体上的基因,在遗传时往往与性别相伴不离。

在分析生物的性状遗传时,如果既有性染色体上基因控制的性状,又有常染色体上基因控制的性状,则位于性染色体上基因控制的性状按伴性遗传处理,位于常染色体上基因控制的性状按基因的分离规律处理,整体按基因的自由组合规律处理。

【知识扩展】

一、不完全显性遗传

孟德尔在豌豆的一对相对性状的杂交实验中,共研究了豌豆的七对相对性状,结果都具有明显的显隐性关系,即杂合体(如Dd)与显性纯合体(如DD)的性状表现完全相同,这种遗传现象,称为完全显性遗传,在生物界中具有普遍性。以后遗传学家发现,有的相对性状在F1中不分显隐性,而是同时表现。例如,普通金鱼与透明金鱼杂交,F1呈现一种中间性状,身体的一部分透明,一部分半透明,一部分不透明,叫五花鱼。这说明,在杂合体内,显性基因的显性作用不完全。雌、雄五花鱼相交后,F2出现了普通型,五花型和透明型三种金鱼,三种表现型间的比值与F2三种基因型间的比值一样,接近于1∶2∶1,说明杂合体内的等位基因照样分离。这种杂合体与显性纯合体的性状表现不完全相同,杂合体内显性基因的显性作用不完全的遗传现象叫做不完全显性遗传。所以,等位基因间的显隐性关系,可以是完全的,也可以是不完全的。

二、基因的连锁互换规律

孟德尔在做豌豆的杂交实验时,没有碰到过两对或多对等位基因位于一对同源染色体上的遗传现象。事实上,生物体有许多性状,也会有控制相应性状的许多基因,而任何生物的染色体数目是有限的,因此一个染色体上必然会有很多基因。这些在同一个染色体上呈线性排列的基因,既不能分离,也不能自由组合,它们是如何遗传的呢?

1910年,美国的遗传学家摩尔根及其合作者,通过果蝇实验,研究了位于一对同源染色体上的两对或多对

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

等位基因的遗传行为,揭示了遗传的另一个基本规律——基因的连锁互换规律。基因连锁互换规律的实质是:两对或两对以上等位基因位于一对同源染色体上,在减数分裂形成配子时,位于同一个染色体上的非等位基因,常常连在一起,不相分离,一起进入到配子中去;在减数分裂的四分体时期,由于同源染色体上的等位基因随着非姐妹染色单体间的局部交换而发生了互换,使得染色体上的基因进行了重新组合。

基因的连锁互换现象在生物中普遍存在。这一遗传规律的发现,证实了染色体是基因的载体,基因在染色体上呈线性排列,说明了因基因间互换而发生的基因重组,是生物变异的原因之一。

三、从每对相对性状入手分析基因的自由组合规律

基因的自由组合规律,涉及到两对或两对以上相对性状的遗传,较为复杂。然而,基因的自由组合规律是在基因的分离规律的基础上提出的,就每一对相对性状而言,仍然遵循基因的分离规律。因此我们在分析两对或两对以上相对性状的遗传问题时,只要确定两对或两对以上的等位基因是独立分配的,就可以先对一对相对性状进行分析,然后再将两对相对性状综合在一起分析。 例如,孟德尔的两对相对性状的遗传实验中,F2的结果如下:

黄色圆粒种子315,绿色圆粒种子108,黄色皱粒种子101,绿色皱粒种子32,共计556。 如果按一对相对性状来分析,结果应是: 黄色种子=315+101=416,占74.8%,接近3/4; 绿色种子=108+32=140,占25.2%,接近1/4; 圆粒种子=315+108=423,占76.1%,接近3/4; 皱粒种子=101+32=133,占23.9%,接近1/4。

根据概率的乘法定律:两个相互独立的事件同时发生的概率,等于每个事件发生的概率的乘积。因此,综合分析两对相对性状在F2中存在的情况,结果应是: 黄色圆粒种子出现的概率是:3/4×3/4=9/16; 绿色圆粒种子出现的概率是:1/4×3/4=3/16; 黄色皱粒种子出现的概率是:3/4×1/4=3/16; 绿色皱粒种子出现的概率是:1/4×1/4=1/16; 即F2四种表现型的比值为9∶3∶3∶1。

四、本小节知识间的联系

(一)等位基因与非等位基因:

下图

(一)中有两对同源染色体,其中A与a,B与b为等位基因,在遗传时遵循基因的分离规律。而图中的A与B,A与b,a与B,a与b则是位于非同源染色体上的非等位基因,在遗传时遵循基因的自由组合规律。图

(二)中的一对同源染色体上有两对等位基因,其中C和D,c与d是位于同一染色体上的非

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

等位基因,它们在遗传时遵循基因的连锁互换规律。

(二)基因型与表现型的关系:

基因型与表现型的关系可概括为以下三点:

1.基因型是生物性状表现的内在因素,表现型是基因型的表现形式。

2.表现型相同,基因型不一定相同。例如,在完全显性遗传时,显性杂合体与显性纯合体的表现型相同,而二者的基因型则不同。

3.基因型相同,表现型不一定相同。因为生物的生活环境也会影响生物的性状表现。

所以,基因是生物性状表现的物质基础,是内因;环境因素是生物性状表现的外因。生物的表现型是基因型与环境因素共同作用的结果。

(三)两大遗传规律的联系和区别: 1.两大遗传规律的联系:

(1)两大遗传规律在生物的性状遗传中同时进行,同时起作用。 (2)基因的分离规律是基因自由组合规律的基础。

2.两大遗传规律的区别:见下表

(四)多对相对性状的遗传分析:

基因自由组合规律的遗传实验表明,随着控制杂合体相对性状的等位基因对数的增加,杂种后代的性状表现更为复杂。下表表示的是,在非等位基因独立遗传的情况下,F1等位基因的对数与F2基因型和表现型间的数量关系,可以从理论上对多对相对性状的遗传作出预测和分析。

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

(五)人类遗传病的特点:

根据控制人类遗传病的基因在染色体上的位置和基因的显、隐性关系,可将人类遗传病分为五种类型,其主要特点列表如下:

从上表中可看出:

1.常染色体上基因控制的遗传病,男女患病机会均等,无性别差异;由性染色体上基因控制的遗传病,男女患病的机会不等,有明显的性别差异。

2.由显性基因控制的遗传病,有连续遗传,代代发病的现象;由隐性基因控制的遗传病,有隔代遗传现象,一般双亲无病,后代有病。

五、与其他章节知识间的联系

(一)细胞核遗传与细胞质遗传的关系:

细胞核遗传,是指由细胞核内的基因所控制的遗传现象。染色体是核基因的载体,在生物的传种接代过程中,细胞核内的遗传物质是通过雌、雄配子共同传递的。细胞核遗传遵循基因的三大遗传规律。 细胞质遗传,是指由细胞质内的基因所控制的遗传现象。细胞质遗传的物质基础是叶绿体和线粒体中含有的DNA分子。细胞质遗传的主要特点是,在杂交过程中,杂种后代只表现母本性状。原因是大多数生物卵细胞的细胞质比精子的细胞质多,精子与卵细胞结合形成受精卵时,进入卵细胞的一般是精子的细胞核,精子的细胞质很少进入甚至没有进入到卵细胞内,因此受精卵的细胞质主要来源于卵细胞。在生物的传种接代过程中,细胞质内的遗传物质只能通过雌配子来传递。所以细胞质遗传不按基因的三大遗传规律进行。 虽然细胞核遗传和细胞质遗传各自都具有相对的独立性,但并不意味着二者之间没有丝毫的关系。细胞核和细胞质共同存在于细胞这个统一的整体内,它们相互依存,相互制约,不可分割。它们控制的遗传现象必定也会相互影响。所以生物的遗传是细胞核和细胞质共同作用的结果。

(二)遗传的基本规律与第三章的减数分裂知识密切相关。减数分裂第一次分裂时,同源染色体的分离是理解基因分离规律的关键。在同源染色体分离的同时,非同源染色体随机组合,是理解基因的自由组合规律的关键。在四分体时期,同源染色体中的非姐妹染色单体间相互交叉,进行部分片段的互换,是理解基因连锁互换规律的关键。总之,遗传基本规律方面的知识要与减数分裂方面的知识联系起来掌握。

(三)非同源染色体上的非等位基因间的自由组合和同源染色体上原来连锁的等位基因间的互换,使基因间进行了重组,与本章第二节生物的变异知识相关。

(四)生物的表现型是基因型与环境共同作用的结果。环境对生物的影响将在第七章中学到。

【例题讲解】

【例1】

某种基因型为Aa的高等植物产生的雌雄配子的数目是

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

[

] A.雌配子∶雄配子=1∶1 B.雌配子∶雄配子=1∶3 C.A雌配子∶a雄配子=1∶1 D.雄配子很多,雌配子很少

【解析】

与此题相关的知识点是对分离现象的解释。课本中在解释分离现象时,有这么一段话:“F1(Dd)进行减数分裂时,等位基因随着同源染色体的分开而分离,最终产生了含有基因D和d的两种雌配子和两种雄配子,它们之间的比数近1∶1。”这里所讲的1∶1,是指含有基因D和含有基因d的两种雌配子的数目相当,含有基因D和含有基因d的两种雄配子的数目也相当,不能误认为含有基因D和d的雌配子与含有基因D和d的雄配子的数目相等。因为,一个精原细胞经减数分裂形成四个精子,而一个卵原细胞经减数分裂只形成一个卵细胞。所以,含有D和d基因的雄配子,要比含有D和d基因的雌配子的数目多得多。同样,基因型为Aa的高等植物产生的含有A和a基困的雄配子,要比含有A和a基因的雌配子的数目多得多。 答案:D

【例2】

玉米的黄粒(A)对白粒(a)为显性,将一株纯合的黄粒玉米与一株纯合的白粒玉米相互授粉,则这两株玉米结出的种子中

[

] A.胚的基因型不同,胚乳的基因型相同 B.胚的基因型相同,胚乳的基因型不同 C.胚和胚乳的基因型都相同 D.胚和胚乳的基因型都不同

【解析】

与此题相关的知识点是基因的分离规律和植物的个体发育。解答此题可分两步进行: (1)当纯合的黄粒玉米(AA)作母本时,卵细胞的基因型为A,两个极核的基因型为AA,则纯合的白粒玉米(aa)作父本,精子的基因型为a,遗传图解如下:

(2)当纯合的白粒玉米(aa)作母本时,卵细胞的基因型为a,两个极核的基因型为aa,则纯合的黄粒玉米(AA)作父本,精子的基因型为A,遗传图解如下:

将上述两次杂交的结果进行比较,可知这两株玉米结出的种子中,胚的基因型相同,而胚乳的基因型不同。 答案:B

【例3】

豚鼠的毛色由一对等位基因B和b控制。黑毛雌鼠甲与白毛雄鼠丙交配,甲生殖7窝,共产下8只黑毛豚鼠和6只白毛豚鼠。黑毛雌鼠乙与白毛雄鼠丙交配,乙生殖7窝,共产下15只黑毛豚鼠。 请分别写出三只亲鼠的基因型:甲______,乙______,丙____________。

【解析】

与此题相关的知识点是基因的分离规律。应用基因的分离规律解遗传题,一般分以下三步进行: (1)正确判断相对性状间的显、隐性关系:

判断方法通常有两种:①具有相对性状的纯合体杂交,后代中表现出来的亲本性状为显性性状。②具有相同性状的个体相交,后代中分离出来的那个性状为隐性性状。 此题有两种交配类型:

① 亲代: 甲黑毛 × 丙白毛 ↓

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

子代: 黑毛(8只): 表现型比: 1 ↓

子代: 黑毛(15只) ∶ 1 白毛(6只)

② 亲代: 乙黑毛 × 丙白毛

根据判断方法第①和第②种交配类型可知,黑毛是显性,白毛为隐性。 (2)写出隐性个体的基因型和显性个体基因型中的已知部分: 甲:B______;乙:B______;丙:bb (3)求出显性个体基因型的未知部分:

具有显性性状的个体,可能是纯合体,也可能是杂合体。它们基因型中的未知部分,可以根据后代的表现型及比例去推测,也可以根据后代中隐性个体的基因型去推测。

由于第①种交配类型的后代中,黑毛∶白毛=1∶1,而且亲代丙的基因型又为bb,所以甲的基因型应为Bb。 由于第②种交配类型的后代全是黑毛,而且亲代丙的基因型为bb,所以乙的基因型肯定为BB。 答案:Bb BB bb

【例4】

蕃茄的高茎(D)对矮茎(d)是显性,茎的有毛(H)对无毛(h)是显性(这两对基因分别位于不同对的同源染色体上)。将纯合的高茎无毛蕃茄与纯合的矮茎有毛蕃茄进行杂交,所产生的子代又与“某蕃茄”杂交,其后代中高茎有毛,、高茎无毛、矮茎有毛、矮茎无毛的蕃茄植株数分别是3

54、1

12、3

41、108。“某蕃茄”的基因型是______。

【解析】

与此题相关的知识点是基因的自由组合规律。基因的自由组合规律是在基因的分离规律基础上提出的,用基因的自由组合规律解遗传题时,可先对每对相对性状分别进行分析,然后再综合分析两对相对性状同时存在的情况。此题的解题步骤如下: (1)确定第一次杂交后产生的子代的基因型: 根据题意写出第一次杂交图解: 亲代: 高茎无毛DDhh ↓

子代: 高茎有毛DdHh (2)确定“某蕃茄”的基因型: ①根据题意写出第二次杂交图解: 亲代: 高茎有毛DdHh ↓

子代: 高茎有毛 354株 112株 高茎无毛

矮茎有毛

矮茎无毛

341株 108株 × 某蕃茄______ × 矮茎有毛ddHH ②分别统计第二次杂交后,每对相对性状在后代中的分离比: 如果只考虑茎的高矮这一对相对性状,后代中: 高茎∶矮茎=(354+112)∶(341+108)=1∶1 由此可知,第二次杂交的双亲中,一个是杂合体,另一个是隐性纯合体。现已知一个亲本的基因型为Dd,则另一亲本(某蕃茄)的基因型为dd。

如果只考虑茎的有毛与无毛这一对相对性状,后代中: 有毛∶无毛=(354+341)∶(112+108)=3∶1 由此可知,第二次杂交的双亲都是杂合体。现已知一个亲本的基因型为Hh,则另一亲本(某蕃茄)的基因型也为Hh。

③将两对相对性状综合考虑:

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

“某蕃茄”的基因型应该是:ddHh,表现型是:矮茎有毛。 答案:ddHh

【例5】

纯合的黄色圆粒豌豆(YYRR)与纯合的绿色皱粒豌豆(yyrr)杂交,F2中出现绿色圆粒豌豆的概率是______。

【解析】

这是一道运用基因的自由组合规律计算概率的遗传题。解题过程如下: (1)求出F2中出现绿色豌豆的概率: 亲代: 黄色YY × 绿色yy ↓

黄色Yy ↓

黄色YY 黄色Yy 绿色yy ∶ 2 ∶ 1 F1: F2:

比值: 1 其中绿色豌豆yy占1/4。

(2)求出F2中出现圆粒豌豆的概率: 亲代: 圆粒RR × 皱粒yy ↓

圆粒Rr ↓

圆粒RR 圆粒Rr 皱粒rr F1: F2:

比值: 1

∶ 2

∶ 1 其中基因型为RR和Rr的是圆粒豌豆,占3/4。

(3)求出绿色性状和圆粒性状在F2中同时出现的概率:

根据概率的乘法定律计算,F2中出现绿色圆粒豌豆的概率为:1/4 ×3/4=3/16。 答案:3/16

【例6】

人类的红绿色盲和血友病属于伴X染色体隐性遗传病,其隐性致病基因在亲代与子代间的传递方式中哪一项不存在:

[

] A.男性→男性

B.女性→女性 C.女性→男性

D.男性→女性

【解折】

伴X染色体隐性遗传,是指隐性致病基因与正常的显性等位基因,均位于X染色体上,Y染色体上不存在相对应的等位基因。因此,这对基因只能随X染色体传递。在受精过程中,男性的X染色体不能传递给儿子,只能传递给女儿,女性的X染色体既可传递给儿子,又可传递给女儿。所以X染色体上的隐性致病基因也就不能从男性→男性。 答案:A

【例7】

下列各图分别是五个家庭的遗传系谱图。其中______图是伴X染色体显性遗传病系谱图,______图是伴X染色体隐性遗传病系谱图,______图是常染色体显性遗传病系谱图,______图是常染色体隐性遗传病系谱图,______图是伴Y染色体遗传病系谱图。

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

【解析】

这是一道识图分析遗传题,解这类遗传题必须掌握这几种遗传病的主要特征: 由显性基因控制的遗传病:有连续遗传现象,一般代代发病。

由隐性基因控制的遗传病:有隔代遗传现象,一般双亲无病,后代有病。 由常染色体上基因控制的遗传病:男女患病的机会均等,无性别差异。

由性染色体上基因控制的遗传病:男女患病的机会不等,有明显的性别差异。①伴X染色体显性遗传病:女性患者多于男性。②伴X染色体隐性遗传病:男性患者多于女性。③伴Y染色体遗传病:只在男性中出现,有连续遗传现象。 然后根据上述特征分两步解题。 解题过程:(以C图为例)

(1)根据系谱图,确定致病基因的显、隐性。

从C系谱图上看,该家族Ⅰ、Ⅲ代有患者、Ⅱ代无患者,有隔代遗传现象,说明致病基因为隐性基因。 (2)根据患者的性别比例确定致病基因的位置。

C系谱图中只有男性患者,有明显的性别差异,属伴性遗传,而第Ⅱ代中的男性不患病,不可能是伴Y染色体遗传病,而应为伴X染色体隐性遗传病。

其余各图均可用上述两步解题法得出答案。如果系谱图中患者的性别比例不明显,则可根据系谱图用假设排除法确定答案。 答案:B C A E D

【能力训练】

一、选择题

1.控制相对性状的基因叫 [

] A.显性基因

B.隐性基因

C.相同基因

D.等位基因

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

2.下列叙述正确的是 [

] A.杂合体相交后代必定是杂合体 B.纯合体相交后代必定是纯合体 C.纯合体自交后代都是纯合体 D.测交后代都是杂合体

3.在杂交育种过程中,一旦出现就能稳定遗传的是 [

] A.显性性状

B.隐性性状

C.相对性状

D.优良性状

4.下列哪一组实验结果将出现性状分离现象 [

] A.AA×aa B.AA×Aa C.Aa×Aa D.aa×aa 5.豌豆的高茎和矮茎是一对相对性状,下列哪一组杂交实验能确定相对性状中的显、隐性关系 [

] A.高茎×矮茎→高茎

B.高茎×矮茎→高茎∶矮茎=1∶1 C.高茎×高茎→高茎

D.矮茎×矮茎→矮茎

6.子叶的黄色对绿色为显性,鉴别一株黄色子叶豌豆是否是纯合体,最常用的方法是 [

] A.杂交

B.测交

C.检查染色体

D.观察性状

7.一株“国光”苹果树,开花后“去雄”、授予“香蕉”苹果的花粉,所结苹果的口味是 [

] A.两种苹果的混合味

B.“国光”苹果的口味 C.“香蕉”苹果的口味

D.二者中显性性状的口味 8.基因分离规律的实质是 [

] A.F2出现性状分离现象 B.F2性状分离比为3∶1 C.等位基因随同源染色体分开而分离 D.测交后代性状分离比为1∶1 9.具有一对相对性状的两个纯合体亲本杂交,隐性性状是

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

[

] A.F1没有表现出来的性状

B.各代都不表现的性状 C.F2没有表现出来的性状

D.测交后代没有表现的性状 10.隐性性状的意义是 [

] A.具有隐性性状的个体都是杂合体,不能稳定遗传 B.具有隐性性状的个体都是纯合体,可以稳定遗传 C.隐性性状可隐藏在体内而不表现出来 D.隐性性状对生物都有害

11.测交后代的种类及比例由下列哪一项决定 [

] A.亲本的基因型

B.F1配子的种类和比例 C.隐性个体的配子

D.显性个体的配子

12.许多杂合高茎豌豆彼此异花传粉,其子代中可能有

[

] A.100%纯合高茎

B.100%杂合高茎 C.50%纯合高茎

D.50%杂合高茎

13.在一对相对性状的遗传实验中,当有3/4的子代表现显性性状时,其亲本 [

] A.都是隐性纯合体 B.都是显性杂合体 C.都是显性纯合体

D.一个是显性杂合体,一个是显性纯合体

14.豚鼠有黑色和白色,一位饲养员让两只杂合黑豚鼠交配,一胎生下的小豚鼠可能 [

] A.全是黑色

B.全是白色

C.黑色占75%,白色占25%

D.上述情况都有可能

15.牛的黑色对红色为显性,若要确定一条黑色公牛是否纯合,最好选择下列何种母牛与之交配? [

] A.纯合黑母牛

B.杂合黑母牛 C.任何黑母牛

D.任何红母牛

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

16.基因的自由组合规律揭示了 [

] A.同源染色体上等位基因间的关系 B.非同源杂色体上非等位基因间的关系 C.同源染色体上非等位基因间的关系 D.姐妹染色单体上基因间的关系

17.某植株与隐性类型测交,其后代的基因型都是AaBb,则该植株的基因型是 [

] A.aabb B.Aabb C.AaBb D.AABB 18.取基因型为AABB植株的枝条(接穗),嫁接到基因型为aabb的植株(砧木)上,成活后,该枝条上所结果实的果肉细胞的基因型是

[

] A.AaBb B.AABB C.aabb D.AAaaBBbb 19.基因型为AaBB的父亲和基因型为Aabb的母亲,所生子女的基因型一定不可能是 [

] A.AaBB B.AABb C.AaBb D.aaBb 20.小麦的高秆(易倒伏D)对矮秆(抗倒伏d)是显性,抗锈病(T)对不抗锈病(t)是显性,两对基因独立遗传。现用纯合的高秆抗锈病品种和纯合的矮秆不抗锈病的品种杂交。 (1)在F2中能隐定遗传的个体占 [

] (2)在F2中能稳定遗传的矮秆抗锈病个体占 [

] A.4/16 B.3/16 C.9/16 D.1/16 (3)假如在F2中共得到600株矮秆抗锈病小麦,则其中可作良种培育的矮秆抗锈病小麦约有 [

] A.600株 C.200株 B.400株 D.100株

21.豌豆的黄色对绿色是显性,圆粒对皱粒是显性,现让黄色圆粒豌豆(YYRR)与绿色皱粒豌豆(yyrr)杂交,在F2的4800株豌豆中,表现型为新类型,且是纯合体的豌豆约有 [

] A.300株 C.900株 [

]

版权所有@中国教育考试资源网 B.600株 D.2700株

22.基因自由组合规律的实质是

上教考资源网 助您教考无忧

A.同源染色体在减数分裂时彼此自由组合

B.非同源染色体上的基因在减数分裂时彼此自由组合 C.F1产生的各类雌、雄配子彼此自由组合 D.F2发生9∶3∶3∶1的性状分离

23.基因型为AABb的植株自交,其后代表现型的比例为

[

] A.9∶3∶3∶1 B.1∶2∶1 C.1∶1∶1∶1 D.3∶1 24.黄色(Y)圆粒(R)豌豆和绿色(y)皱粒(r)豌豆进行杂交,子代中有黄色圆粒71粒,黄色皱粒70粒,绿色圆粒73粒,绿色皱粒72粒,其亲本的相交组合应是 [

] A.YyBr×yyrr B.yyRr×YyRr C.YYRR×yyrr D.YYRr×yyRr 25.基因型为DdEe的动物个体,其两对基因是独立遗传的。在生殖时,假如卵巢中有8万个卵原细胞进行减数分裂,那么可以形成具有双隐性基因的卵细胞多少个 [

] A.8万 B.4万 C.2万 D.1万

26.上题中,如果精巢中有8万个精原细胞进行减数分裂,能形成具有双显性基因的精子多少个 [

] A.32万 B.8万 C.4万 D.2万

27.纯合的黄色圆粒豌豆(YYRR)与绿色皱粒豌豆(yyrr)杂交,F2中出现绿色圆粒豌豆的概率是 [

] A.1/4 B.3/4 C.1/16 D.3/16 28.一个基因型为AaBb的精原细胞经过减数分裂形成几种类型的精子 [

] A.一种 B.两种 C.三种 D.四种

29.下列哪一项不是配子的基因型 [

] A.YR B.Dd C.Br [

] A.两对相对性状分别由两对等位基因控制

版权所有@中国教育考试资源网 D.BT 30.下列关于孟德尔两对相对性状遗传实验的叙述错误的是

上教考资源网 助您教考无忧

B.两对等位基因位于一对同源染色体上 C.每一对等位基因的传递都遵循基因的分离规律 D.F2中共有九种基因型和四种表现型

31.下列是关于基因型和表现关系的叙述,其中错误的是

[

] A.表现型是基因型与环境共同作用的结果 B.基因型不同的同种生物表现型可能相同 C.基因型相同的同种生物表现型可能不同

D.基因型决定表现型,基因型相同则表现型也相同 32.果蝇的体细胞内有8个染色体,则雄果蝇的体细胞内有

[

] A.6个常染色体+Y B.8个常染色体+Y C.6个常染色体+XY D.6个常染色体+XX 33.据观察,体细胞内染色体数为47的人,性染色体组成异常为XXY,为男性,但睾丸发育不全,不能产生精子。这说明对人类男女性别起决定作用的是 [

] A.X与Y染色体的比例 B.性染色体与常染色体的比例 C.X染色体

D.Y染色体

34.若父亲正常,母亲色盲,则他们子女的色觉为 [

] A.儿、女都正常 B.儿、女都色盲 C.儿子色盲女儿正常 D.儿子正常女儿色盲

35.若子女中两个男孩一个是色盲,女孩色觉都正常,则他们父母的色觉为 [

] A.父亲色盲母亲正常 B.父亲色盲母亲为携带者 C.父亲正常母亲色盲 D.父亲正常母亲为携带者

36.若一对夫妇有两个儿子,一个女儿,其中一个儿子色觉正常,另一个儿子和女儿色盲。则这对夫妇的基因型可能为 [

] A.XBY、XBXB B.XBY、XBXb C.XbY、XbXb D.XbY、XBXb

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

37.血友病基因(h)与它的等位基因(H)位于X染色体上,则血友病的发病特点是 [

] A.患者全部是女性

B.患者中一半男性一半女性 C.男性患者多于女性

D.女性患者多于男性

38.我国婚姻法规定,禁止近亲结婚,其理论依据是 [

] A.近亲结婚增加后代患遗传病的机会 B.近亲结婚后代都患遗传病 C.近亲结婚不道德 D.近亲结婚后代成活率低

39.一个受精卵发育成男孩还是女孩主要决定于 [

] A.父母双方提供的配子

B.父方提供的配子 C.母方提供的配子

D.环境因素 40.人的性染色体 [

] A.只存在于体细胞中

B.只存在于性细胞中 C.只存在于性原细胞中

D.存在于以上三者中

41.遗传方式与性别决定相联系的基因一定位于 [

] A.性染色体上

B.常染色体上 C.X染色体上

D.Y染色体上

42.社会调查中发现,色盲患者总是女性比男性少,原因是

[

] A.男性对色盲病缺乏免疫力 B.色盲基因在Y染色体上

C.色盲基因是X染色体上隐性基因,女性必须隐性纯合才患病 D.色盲基因是X染色体上显性基因

43.一对表现型正常的夫妇,生下一个患遗传病的男孩,该遗传病一定不可能是 [

] A.常染色体遗传

B.显性遗传 C.伴性遗传

D.隐性遗传

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

44.血友病受隐性基因控制并位于X染色体上,正常情况下,下列哪种传递方式不存在 [

] A.母亲把致病基因传给女儿

B.母亲把致病基因传给儿子 C.父亲把致病基因传给女儿

D.父亲把致病基因传给儿子

45.某男孩是色盲,他的父母、祖父、祖母、外祖父、外祖母色觉都正常。这个男孩的色盲基因是通过下列哪条途径传来的 [

] A.祖母→父亲→男孩

B.祖父→父亲→男孩 C.外祖母→母亲→男孩

D.外祖父→母亲→男孩

二、简答题

1.孟德尔在研究生物遗传中获得成功的主要原因是: (1)选用______作实验材料。

(2)在研究______的遗传性状时,先针对__________________的传递情况进行研究,再对_______在一起的传递情况进行研究。

(3)用______方法对实验结果进行分析。

2.在杂种后代中,显现出同一性状不同表现类型的现象在遗传学上称为______现象。 3.具有两对相对性状的纯合体杂交,按照基因的自由组合规律,F2出现的性状中: (1)能稳定遗传的个体占总数的______。 (2)与F1性状不同的个体占总数的______。

4.生物的性别主要由______来控制。生物界中比较普遍存在的性别决定类型有______型和______型。果蝇、人和多种高等动物的性别决定类型是______型。

5.鸡的短脚对正常脚为显性,分别由等位基因B和b控制,在这对相对性状的遗传实验中,得到下列结果:

①短脚鸡×短脚鸡→2972只短脚鸡:955只正常鸡 ②短脚鸡×正常鸡→1676只正常鸡:1661只正常鸡 分析上述结果,并回答下列问题:

(1)第①组两个亲本的基因型是______和______,子代中短脚鸡的基因型是_________,正常鸡的基因型是________。

(2)第②组两个亲本的基因型是______和______,子代中短脚鸡的基因型是____________,正常鸡的基因型是________。

(3)第②组遗传实验相当于孟德尔遗传实验过程中的______实验,此实验的目的是为了_____________。 6.丹麦人中蓝色眼睛的人居多,也有人是褐色眼睛。设控制蓝眼和褐眼这对相对性状的基因为A和a。现将眼色的社会调查情况列表如下: (1)这对相对性状中______是显性性状。

(2)每组亲本的基因型是:①_______,②_________,③_________。

7.玉米幼苗绿色G对白色g为显性。用杂合体自交产生的种子做实验:将400粒种子播种在黑暗处,另400粒种子播种在有光处。数日后,种子萌发成幼苗,结果统计如下表: 请按表回答下列问题:

版权所有@中国教育考试资源网

上教考资源网 助您教考无忧

(1)所得种子的基因型及比值是________。

(2)所得幼苗的表现型及比值理论上是______,而实际是____________。 (3)所得种子中,纯合体占______。 (4)叶绿体形成的主要环境因素是______。

(5)从实验得出的结论是:生物的性状受______控制,同时又受____________的影响。

8.豌豆的黄色(Y)对绿色(y)为显性,圆粒(R)对皱粒(r)为显性。某豌豆的基因型如右图所示,请根据图回答下列问题: (1)该豌豆的表现型是______。

(2)该豌豆的细胞内有______对等位基因。

(3)该豌豆是由基因型为______和_______的配子结合发育而来的。 (4)图中有______对基因位于______对同源染色体上。

(5)该豌豆自交,其后代的基因型及比例是__________,后代的表现型及比例是_________,出现这些表现型的现象在遗传学上称为______________。

9.右图是某家族遗传病系谱图,设控制相对性状的等位基因为A、a,请根据图回答下列问题: (1)该病的致病基因是位于______染色体上的____________基因。

(2)Ⅱ5Ⅲ10的基因型分别是______和______。Ⅲ9的基因型可能为____________,她是杂合体的机率是________。

(3)Ⅲ8和Ⅲ9属于______结婚,他们的子女中患此病的概率是______。

(4)若Ⅲ8与另一家族中纯合正常的女性婚配,则后代中患此病的概率为____________。

(5)从(3)、(4)小题可知______婚配所生子女患______性遗传病的机率较高,其原因是:___________________________。

10.黄色圆粒豌豆与绿色圆粒豌豆杂交,对其子代的表现型按每对相对性状进行分析和统计,其结果如下图所示:

(1)子代中黄色与绿色的比例为______,圆粒与皱粒的比例为______。 (2)亲本中黄色圆粒的基因型为______,绿色圆粒的基因型为______。

(3)杂交后代的表现型分别为________,各表现型在总数中所占的比例分别是_______________。 (4)杂交后代中能稳定遗传的占总数的______,它们的表现型分别是_____________。

11.牵牛花的花色由一对等位基因R和r控制,叶的形吠由另一对等位基因W和w控制,这两对相对性状是自由组合的。下表是三组不同亲本杂交的结果:

(1)根据第______个组合能判断出花色中______是显性,叶形中______是显性。理由是______________________。

(2)各个组合中两个亲本的基因型是:①________,②____________,③_________。

(3)让第③个组合的后代红色阔叶自交,所产生的下一代的表现型及比值是_________________________。 12.人的正常色觉(B)对红绿色盲(b)为显性,是伴性遗传,人的褐眼(A)对蓝眼(a)为显性,是常染色体遗传。有一个蓝眼色觉正常的女子与一个褐眼色觉正常的男子婚配,生了一个蓝眼色盲的男孩。这对夫妇中:

(1)男子的基因型是______。 (2)女子的基因型是______。

(3)他们的子女中出现蓝眼色盲男孩的概率是______。

版权所有@中国教育考试资源网

第5篇:

上一篇:作文心灵深处的感动下一篇:践行初心使命发言稿