减速器附件

2022-08-14 版权声明 我要投稿

第1篇:减速器附件

减速器的附件

减速器附件的功能说明

窥视孔和窥视孔盖:为了便于检查箱内传动零件的啮合情况及将润滑油注入箱体内,在减速器箱体的箱盖顶部设有窥视孔。为防止润滑油飞溅出来和油污进入箱体内,在窥视孔上应加设视孔盖。

通气器:减速器工作时箱体内温度升高,气体膨胀,箱内气压增大。为了避免由此引起密封部位的密封性下降,造成润滑油向外渗漏,大多在视孔盖上设置通气器,使箱体内的热膨胀气体能自由逸出,保持箱内压力正常,从而保证箱体的密封性。

油面指示器:用于检查箱内油面高度,以保证传动件的润滑。一般设置在箱体上便于观察油面较稳定的部位。

定位销:为了保证每次拆装箱盖时,仍保持轴承座孔的安装精密度,需在箱盖与箱座的联接凸缘上配装两个定位销,定位销的相对位置越远越好。

起盖螺钉:为了保证减速器的密封性,常在箱体剖分结合面上涂有水玻璃或密封胶。为便于拆卸箱盖,在箱盖凸缘上设置1~2个起盖螺钉。拆卸箱盖时,拧动起盖螺钉,便可顶起箱盖。 起吊装置:为了搬运和装卸箱盖,在箱盖上装有吊环螺钉,或铸出吊耳或吊钩。为了搬运箱座或整个减速器,在箱座两端连接凸缘处铸出吊钩。

放油孔及螺塞:为了排除油污,在减速器箱座最底部设有放油孔,并用放油螺塞和密封垫圈将其堵住。

第2篇:减速器附件设计

第9章 减速器附件设计

9.1 观察孔及观察孔盖的选择与设计

观察孔用来检查传动零件的啮合,润滑情况,并可由该孔向箱内注入润滑油。平时观察孔盖用螺钉封住,。为防止污物进入箱内及润滑油渗漏,在盖板与箱盖之间加有纸质封油垫片,油孔处还有虑油网。

查[6]表15-3选观察孔和观察孔盖的尺寸分别为140120和11090。 9.2 油面指示装置设计

油面指示装置采用油标指示。 9.3 通气器的选择

通气器用来排出热膨胀,持气压平衡。查表[6]表15-6选M362 型通气帽。 9.4 放油孔及螺塞的设计

放油孔设置在箱座底部油池的最低处,箱座内底面做成1.5外倾斜面,在排油孔附近做成凹坑,以便能将污油放尽,排油孔平时用螺塞堵住。查表[6]表15-7选M201.5型外六角螺塞。 9.5 起吊环、吊耳的设计

为装卸和搬运减速器,在箱盖上铸出吊环用于吊起箱盖。为吊起整台减速器,在箱座两端凸缘下部铸出吊钩。 9.6 起盖螺钉的选择

为便于台起上箱盖,在上箱盖外侧凸缘上装有1个启盖螺钉,直径与箱体凸缘连接螺栓直径相同。 9.7 定位销选择

为保证箱体轴承座孔的镗孔精度和装配精度,在精加工轴承座孔前,在箱体联接凸缘长度方向的两端,个装配一个定位销。采用圆锥销,直径是凸缘连接螺栓直径的0.8倍。

第11章 参考文献

1 宋宝玉,王连明主编,机械设计课程设计,第3版。哈尔滨:哈滨工业大学出版社,2008年1月。

2 濮良贵,纪明刚主编,机械设计,第8版。北京:高等教育出版社,2006年5月。

3 蔡春源主编,机械设计手册齿轮传动,第4版,北京:机械工业出版社,2007年3月。

4 吴宗泽主编,机械零件设计手册,第10版,北京:机械工业出版社,2003年11月。

5 吴宗泽,罗圣国主编,机械课程设计手册,第3版,北京:高等教育出版社。 6 骆素君,朱诗顺主编. 机械设计课程设计简明手册,化学工业出版社,2000年8月.

第3篇:《主减速器设计》

第三章

主减速器设计

一、主减速器结构方案分析

主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。

主减速器的齿轮主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。

1.螺旋锥齿轮传动

螺旋锥齿轮传动(图5-3a)的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。

图5—3 主减速器齿轮传动形式

a)螺旋锥齿轮传动 b)双曲面齿轮传动 c)圆柱齿轮传动 d)蜗杆

传动

2.双曲面齿轮传动

双曲面齿轮传动(图5-3b)的主、从动齿轮的轴线相互垂直而不相交,主动齿轮轴线相对从动齿轮轴线在空间偏移一距离E,此距离称为偏移距。由于偏移距E的存在,使主动齿轮螺旋角1大于从动齿轮螺旋角2(图5—4)。根据啮合面上法向力相等,可求出主、从动齿轮圆周力之比

F1cos1F2cos2

【中文word文档库】-专业海量word文档免费下载:http:// (5-1)

图5-4双曲面齿轮副受力情况

式中,F

1、F2分别为主、从动齿轮的圆周力;β

1、β2分别为主、从动齿轮的螺旋角。

螺旋角是指在锥齿轮节锥表面展开图上的齿线任意一点A的切线TT与该点和节锥顶点连线之间的夹角。在齿面宽中点处的螺旋角称为中点螺旋角(图5—4)。通常不特殊说明,则螺旋角系指中点螺旋角。

双曲面齿轮传动比为

i0sF2r2r2cos2F1r1r1cos1

(5-2) 式中,i0s为双曲面齿轮传动比;r

1、r2分别为主、从动齿轮平均分度圆半径。

螺旋锥齿轮传动比i0L为

i0Lr2r1

(5-3) 令Kcos2cos,则i0sKi0L。由于1>2,所以系数K>1,一般

1为1.25~1.50。 这说明:

1)当双曲面齿轮与螺旋锥齿轮尺寸相同时,双曲面齿轮传动有更大的传动比。

2)当传动比一定,从动齿轮尺寸相同时,双曲面主动齿轮比相应的螺旋锥齿轮有较大的直径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。

3)当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮直径比相应的螺旋锥齿轮为小,因而有较大的离地间隙。

另外,双曲面齿轮传动比螺旋锥齿轮传动还具有如下优点: 1)在工作过程中,双曲面齿轮副不仅存在沿齿高方向的侧向滑动,而且还有沿齿长方向的纵向滑动。纵向滑动可改善齿轮的磨合过程,使其具有更高的运转平稳性。

2)由于存在偏移距,双曲面齿轮副使其主动齿轮的1大于从动齿轮的2,这样同时啮合的齿数较多,重合度较大,不仅提高了传动平稳性,而且使齿轮的弯曲强度提高约30%。

3)双曲面齿轮传动的主动齿轮直径及螺旋角都较大,所以相啮合轮齿的当量曲率半径较相应的螺旋锥齿轮为大,其结果使齿面的接触【中文word文档库】-专业海量word文档免费下载:http:// 强度提高。

4)双曲面主动齿轮的变1大,则不产生根切的最小齿数可减少,故可选用较少的齿数,有利于增加传动比。

5)双曲面齿轮传动的主动齿轮较大,加工时所需刀盘刀顶距较大,因而切削刃寿命较长。6)双曲面主动齿轮轴布置在从动齿轮中心上方,便于实现多轴驱动桥的贯通,增大传动轴的离地高度。布置在从动齿轮中心下方可降低万向传动轴的高度,有利于降低轿车车身高度,并可减小车身地板中部凸起通道的高度。

但是,双曲面齿轮传动也存在如下缺点:

1)沿齿长的纵向滑动会使摩擦损失增加,降低传动效率。双曲面齿轮副传动效率约为96%,螺旋锥齿轮副的传动效率约为99%。

2)齿面间大的压力和摩擦功,可能导致油膜破坏和齿面烧结咬死,即抗胶合能力较低。3)双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。

4)双曲面齿轮传动必须采用可改善油膜强度和防刮伤添加剂的特种润滑油,螺旋锥齿轮传动用普通润滑油即可。

由于双曲面齿轮具有一系列的优点,因而它比螺旋锥齿轮应用更广泛。

一般情况下,当要求传动比大于4.5而轮廓尺寸又有限时,采用双曲面齿轮传动更合理。这是因为如果保持主动齿轮轴径不变,则双曲面从动齿轮直径比螺旋锥齿轮小。当传动比小于2时,双曲面主动齿轮相对螺旋锥齿轮主动齿轮显得过大,占据了过多空间,这时可选用螺旋锥齿轮传动,因为后者具有较大的差速器可利用空间。对于中等传动比,两种齿轮 传动均可采用。

3.圆柱齿轮传动

圆柱齿轮传动(图5—3c)一般采用斜齿轮,广泛应用于发动机横置且前置前驱动的轿

车驱动桥(图5—5)和双级主减速器贯通式驱动桥。

【中文word文档库】-专业海量word文档免费下载:http://

图5—5 发动机横置且前置前驱动轿车驱动桥 4.蜗杆传动

蜗杆(图5—3d)传动与锥齿轮传动相比有如下优点:

1)在轮廓尺寸和结构质量较小的情况下,可得到较大的传动比(可大于7)。

2)在任何转速下使用均能工作得非常平稳且无噪声。 3)便于汽车的总布置及贯通式多桥驱动的布置。 4)能传递大的载荷,使用寿命长。 5)结构简单,拆装方便,调整容易。

但是由于蜗轮齿圈要求用高质量的锡青铜制作,故成本较高;另外,传动效率较低。

蜗杆传动主要用于生产批量不大的个别重型多桥驱动汽车和具有高转速发动机的大客车上。

主减速器的减速形式可分为单级减速、双级减速、双速减速、单双级贯通、单双级减速配以轮边减速等。

【中文word文档库】-专业海量word文档免费下载:http://

1.单级主减速器

单级主减速器(图5—6)可由一对圆锥齿轮、一对圆柱齿轮或由蜗轮蜗杆组成,具有结构简单、质量小、成本低、使用简单等优点。但是其主传动比i0不能太大,一般i0≤7,进一步提高i0将增大从动齿轮直径,从而减小离地间隙,且使从动齿轮热处理困难。

单级主减速器广泛应用于轿车和轻、中型货车的驱动桥中。

2.双级主减速器

双级主减速器(图5—7)与单级相比,在保证离地间隙相同时可得到大的传动比,i0一般为7~12。但是尺寸、质量均较大,成本较高。它主要应用于中、重型货车、越野车和大客车上。

整体式双级主减速器有多种结构方案:第一级为锥齿轮,第二级为圆柱齿轮(图5—8a);第一级为锥齿轮,第二级为行星齿轮;第一级为行星齿轮,第二

图5—6 单级主减速器 级为锥齿轮(图5—8b);第一级为圆柱齿轮,第二级

为锥齿轮(图5—8c)。

对于第一级为锥齿轮、第二级为圆柱齿轮的双级主减速器,可有纵向水平(图5—8d)、斜向(图5—8e)和垂向(图5—8f)三种布置方案。

纵向水平布置可以使总成的垂向轮廓尺寸减小,从而降低汽车的质心高度,但使纵向尺寸增加,用在长轴距汽车上可适当减小传动轴长度,但不利于短轴距汽车的总布置,会使传动轴过短,导致万向传动轴夹角加大。垂向布置使驱动桥纵向尺寸减小,可减小万向传动轴夹角,但由于主减速器壳固定在桥壳的上方,不仅使垂向轮廓尺寸增大,而且降低了桥壳刚度,不利于齿轮工作。这种布置可便于贯通式驱动桥的布置。斜向布置对传动轴布置和提高桥壳刚度有利。

在具有锥齿轮和圆柱齿轮的双级主减速器中分配传动比时,圆柱齿轮副和锥齿轮副传动

比的比值一般为1.4~2.O,而且锥齿轮副传动比一般为1.7~3.3,这样可减小锥齿轮啮合时的轴向载荷和作用在从动锥齿轮及圆柱齿轮上的载荷,同时可使主动锥齿轮的齿数适当增多,使其支承轴颈的尺寸适当加大,以改善其支承刚度,提高啮合平稳性和工作可靠性。

3.双速主减速器

双速主减速器(图5—9)内由齿轮的不同组合可获得两种传动比。它与普通变速器相配合,可得到双倍于变速器的挡位。双速主减速器的高低挡减速比是根据汽车的使用条件、发动机功率及变速器各挡速【中文word文档库】-专业海量word文档免费下载:http:// 比的大小来选定的。大的主减速比用于汽车满载行驶或在困难道路上行驶,以克服较大的行驶阻力并减少变速器中间挡位的变换次数;小的主减速比则用于汽车空载、半载行驶或在良好路面上行驶,以改善汽车的燃料经济性和提高平均车速。

图5-7双级主减速器

【中文word文档库】-专业海量word文档免费下载:http://

图5-8双级主减速器布置方案

双速主减速器可以由圆柱齿轮组(图5-9a)或行星齿轮组(图5-9b)构成。圆柱齿轮式双速主减速器结构尺寸和质量较大,可获得的主减速比较大。只要更换圆柱齿轮轴、去掉一对圆柱齿轮,即可变型为普通的双级主减速器。行星齿轮式双速主减速器结构紧凑,质量较小,具有较高的刚度和强度,桥壳与主减速器壳都可与非双速通用,但需加强行星轮系和差速器的润滑。

图5—9 双速主减速器 a)圆柱齿轮式 b)行星齿轮式

1-太阳轮 2-齿圈 3-行星齿轮架 4-行星齿轮

5-接合齿轮

对于行星齿轮式双速主减速器,当汽车行驶条件要求有较大的牵引力时,驾驶员通过操纵机构将啮合套及太阳轮推向右方(图示位置),接合齿轮5的短齿与固定在主减速器上的接合齿环相接合,太阳轮1就与主减速器壳联成一体,并与行星齿轮架3的内齿环分离,【中文word文档库】-专业海量word文档免费下载:http:// 而仅与行星齿轮4啮合。于是,行星机构的太阳轮成为固定轮,与从动锥齿轮联成一体的齿圈2为主动轮,与差速器左壳联在一起的行星齿轮架3为从动件,行星齿轮起减速作用,其减速比为(1+a),a为太阳轮齿数与齿圈齿数之比。在一般行驶条件下,通过操纵机构使啮合套及太阳轮移到左边位置,啮合套的接合齿轮5与固定在主减速器壳上的接合齿环分离,太阳轮1与行星齿轮4及行星齿轮架3的内齿环同时啮合,从而使行星齿轮无法自转,行星齿轮机构不再起减速作用。显然,此时双速主减速器相当于一个单级主减速器。

双速主减速器的换挡是由远距离操纵机构实现的,一般有电磁式、气压式和电一气压综合式操纵机构。由于双速主减速器无换挡同步装置,因此其主减速比的变换是在停车时进行的。双速主减速器主要在一些单桥驱动的重型汽车上采用。

4.贯通式主减速器

贯通式主减速器(图5-10,图5-1 1)根据其减速形式可分成单级和双级两种。单级贯通式主减速器具有结构简单,体积小,质量小,并可使中、后桥的大部分零件,尤其是使桥壳、半轴等主要零件具有互换性等优点,主要用于轻型多桥驱动的汽车上。根据减速齿轮形式不同,单级贯通式主减速器又可分为双曲面齿轮式及蜗轮蜗杆式两种结构。双曲面齿轮式单级贯通式主减速器(图5-lOa)是利用双曲面齿轮副轴线偏移的特

【中文word文档库】-专业海量word文档免费下载:http://

图5—10 单级贯通式主减速器 a)双曲面齿轮式 b)蜗轮蜗杆式

点,将一根贯通轴穿过中桥并通向后桥。但是这种结构受主动齿轮最少齿数和偏移距大小的

限制,而且主动齿轮工艺性差,主减速比最大值仅在5左右,故多用于轻型汽车的贯通式驱

动桥上。当用于大型汽车时,可通过增设轮边减速器或加大分动器速比等方法来加大总减速

比。蜗轮蜗杆式单级贯通式主减速器(图5—10b)在结构质量较小的情况下可得到较大的 速比。它使用于各种吨位多桥驱动汽车的贯通式驱动桥的布置。另外,它还具有工作平滑无

声、便于汽车总布置的优点。如蜗杆下置式布置方案被用于大客车的贯通式驱动桥中,可降 低车厢地板高度。

对于中、重型多桥驱动的汽车,由于主减速比较大,多采用双级贯通式主减速器。根据齿轮的组合方式不同,可分为锥齿轮一圆柱齿轮式和圆柱齿轮一锥齿轮式两种形式。锥齿轮一圆柱齿轮式双级贯通式主减速器(图5—11a)可得到较大的主减速比,但是结构高度尺寸大,主动锥齿轮工艺性差,从动锥齿轮采用悬臂式支承,支承刚度差,拆装也不方便。圆柱齿轮一锥齿轮式双级贯通式主减速器(图5—11b)的第一级圆柱齿轮副具有减速和贯通的作用。有时仅用作贯通用.将其速比设计为1。在设计中应根据中、后桥锥齿轮的布置、旋转方向、双曲面齿轮的偏移方式以及圆柱齿轮副在锥齿轮副前后的布置位置等因素来确定

锥齿轮的螺旋方向,所选的螺旋方向应使主、从动锥齿轮有相斥的轴【中文word文档库】-专业海量word文档免费下载:http:// 向力。这种结构与前者

相比,结构紧凑,高度尺寸减小,有利于降低车厢地板及整车质心高度。

图5—11 双级贯通式主减速器 a)锥齿轮一圆柱齿轮式 b)圆柱齿轮一锥齿轮式

1-贯通轴 2-轴间差速器

5.单双级减速配轮边减速器

在设计某些重型汽车、矿山自卸车、越野车和大型公共汽车的驱动桥时,由于传动系总传动比较大,为了使变速器、分动器、传动轴等总【中文word文档库】-专业海量word文档免费下载:http://

成所受载荷尽量小,往往将驱动桥的速比分配得较大。当主减速比大于12时,一般的整体式双级主减速器难以达到要求,此时常采用轮边减速器(图5—12)。这样,不仅使驱动桥的中间尺寸减小,保证了足够的离地间隙,

图5—12 轮边减速器

【中文word文档库】-专业海量word文档免费下载:http://

a)圆柱行星齿轮式 b)圆锥行星齿轮式 c)普通外啮合圆柱齿轮式

1-轮辋 2-环齿轮架 3-环齿轮 4-行星齿轮 5-行星齿轮架 6-行星齿轮轴 7-太阳轮 8-锁紧螺母

9、10-螺栓 11-轮毂 12-接合轮 13-操纵机构 14-外圆锥齿轮 15-侧盖

而且可得到较大的驱动桥总传动比。另外,半轴、差速器及主减速器从动齿轮等零件由于所受载荷大为减小,使它们的尺寸可以减小。但是由于每个驱动轮旁均设一轮边减速器,使结构复杂,成本提高,布置轮毂、轴承、车轮和制动器较困难。

圆柱行星齿轮式轮边减速器(图5-12a)可以在较小的轮廓尺寸条件下获得较大的传动比,且可以布置在轮毂之内。作驱动齿轮的太阳轮连接半轴,内齿圈由花键连接在半轴套管上,行星齿轮架驱动轮毂。行星齿轮一般为3~5个均匀布置,使处于行星齿轮中间的太阳轮得到自动定心。圆锥行星齿轮式轮边减速器(图5-1 2b)装于轮毂的外侧,具有两个轮边减速比。当换挡用接合轮12位于图示位置时,轮边减速器位于低挡;当接合轮被专门的操纵机构1 3移向外侧并与侧盖1 5的花键孔内齿相接合,使半轴直接驱动轮边减速器壳及轮毂时,轮边减速器位于高挡。

普通外啮合圆柱齿轮式轮边减速器,根据主、从动齿轮相对位置的不同,可分为主动齿轮上置和下置两种形式。主动齿轮上置式轮边减速器主要用于高通过性的越野汽车上,可提高桥壳的离地间隙;主动齿轮下置式轮边减速器(图5-12c)主要用于城市公共汽车和大客车上,可降低车身地板高度和汽车质心高度,提高了行驶稳定性,方便了乘客上、下车。

二、主减速器主、从动锥齿轮的支承方案

主减速器中必须保证主、从动齿轮具有良好的啮合状况,才能使它们很好的工作。齿轮的正确啮合,除与齿轮的加工质量、装配调整及轴承、主减速器壳体的刚度有关以外,与齿轮的支承刚度密切相关。

1.主动锥齿轮的支承

主动锥齿轮的支承形式可分为悬臂式支承和跨置式支承两种。 悬臂式支承结构(图5-13a)的特点是在锥齿轮大端一侧采用较长的轴颈,其上安装两个圆锥滚子轴承。为了减小悬臂长度倪和增加两支承间的距离b,以改善支承刚度,应使两轴承圆锥滚子的大端朝外,使作用在齿轮上离开锥顶的轴向力由靠近齿轮的轴承承受,而反向轴向力则由另一轴承承受。为了尽可能地增加支承刚度,支承距离b应大于2.5倍的悬臂长度a,且应比齿轮节圆直径的70%还大,另外靠近齿轮的轴径应不小于尺寸a。为了方便拆装,应使靠近齿轮的轴承【中文word文档库】-专业海量word文档免费下载:http:// 的轴径比另一轴承的支承轴径大些。靠近齿轮的支承轴承有时也采用圆柱滚子轴承,这时另一轴承必须采用能承受双向轴向力的双列圆锥滚子轴承。支承刚度除了与轴承形式、轴径大小、支承间距离和悬臂长度有关以外,还与轴承与轴及轴承与座孔之间的配合紧度有关。

图5—13 主减速器锥齿轮的支承形式

a)主动锥齿轮悬臂式 b)主动锥齿轮跨置式 c)从动锥齿轮

悬臂式支承结构简单,支承刚度较差,用于传递转矩较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。

跨置式支承结构(图5-13b)的特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,因此齿轮的承载能力高于悬臂式。此外,由于齿轮大端一侧轴颈上的两个相对安装的圆锥滚子轴承之间的距离很小,可以缩短主动齿轮轴的长度,使布置更紧凑,并可减小传动轴夹角,有利于整车布置。但是跨置式支承必须在主减速器壳体上有支承导向轴承所需要的轴承座,从而使主减速器壳体结构复杂,加工成本提高。另外,因主、从动齿轮之间的空间很小,致使主动齿轮的导向轴承尺寸受到限制,有时甚至布置不下或使齿轮拆装困难。跨置式支承中的导向轴承都为圆柱滚子轴承,并且内外圈可以分离或根本不带内圈。它仅承受径向力,尺寸根据布置位置而定,是易损坏的一个轴承。

在需要传递较大转矩情况下,最好采用跨置式支承。 2.从动锥齿轮的支承

从动锥齿轮的支承(图5-13c),其支承刚度与轴承的形式、支承间的距离及轴承之间的分布比例有关。从动锥齿轮多用圆锥滚子轴承支承。为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸c+d。为了使从动锥齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承稳定性,c+d应不小于从动锥齿轮大端分度圆直径的70%。为了使载荷能尽量均匀分配在两轴承上,应尽量使尺寸c等于或大于尺寸d。在具有大的主传动比和径向尺寸较大的从动锥齿轮的主减速器中,为了限制从动锥齿轮因受轴向力作用而产生偏移,在从动锥齿轮的外缘背面加设辅助支承(图5-14)。辅助支承与从动锥齿【中文word文档库】-专业海量word文档免费下载:http:// 轮背面之间的间隙,应保证偏移量达到允许极限时能制止从动锥齿轮继续变形。主、从动齿轮受载变形或移动的许用偏移量如图5-15所示。

图5—14 从动锥齿轮辅助支承 图5—15 主、从动锥齿轮的许用偏移量

三、主减速器锥齿轮主要参数的选择

主减速器锥齿轮的主要参数有主、从动锥齿轮齿数z1和z

2、从动锥齿轮大端分度圆直径D2和端面模数ms主、从动锥齿轮齿面宽b1和b

2、双曲面齿轮副的偏移距E、中点螺旋角、法向压力角等。

1.主、从动锥齿轮齿数z1和z2

选择主、从动锥齿轮齿数时应考虑如下因素: 1)为了磨合均匀,z

1、z2之间应避免有公约数。

2)为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不少于 40。

3)为了啮合平稳、,噪声小和具有高的疲劳强度,对于轿车,z1一般不少于9;对于货 车,z1一般不少于6。

4)当主传动比主。较大时,尽量使z1取得少些,以便得到满意的离地间隙。

5)对于不同的主传动比,z1和z2应有适宜的搭配。 2.从动锥齿轮大端分度圆直径D2和端面模数m。

对于单级主减速器,D2对驱动桥壳尺寸有影响,D2大将影响桥壳离地间隙;D2小则

影响跨置式主动齿轮的前支承座的安装空间和差速器的安装。

D2可根据经验公式初选

D2KD23Tc【中文word文档库】-专业海量word文档免费下载:http:// (5-4) 式中,为D2从动锥齿轮大端分度圆直径(mm);KD2为直径系数,一般为13.0~15.3;Tc

为从动锥齿轮的计算转矩(N·m),TcminTce,Tcs(见本节计算载荷确定部分)。

ms由下式计算

msD2z2

(5-5) 式中,ms为齿轮端面模数。

同时,ms还应满足

msKm3Tc

(5-6) 式中,Km为模数系数,取0.3~0.4。

3.主、从动锥齿轮齿面宽b1和b2

锥齿轮齿面过宽并不能增大齿轮的强度和寿命,反而会导致因锥齿轮轮齿小端齿沟变窄引起的切削刀头顶面宽过窄及刀尖圆角过小。这样,不但减小了齿根圆角半径,加大了应力集中,还降低了刀具的使用寿命。此外,在安装时有位置偏差或由于制造、热处理变形等原因,使齿轮工作时载荷集中于轮齿小端,会引起轮齿小端过早损坏和疲劳损伤。另外,齿面过宽也会引起装配空间的减小。但是齿面过窄,轮齿表面的耐磨性会降低。

从动锥齿轮齿面宽b2推荐不大于其节锥距A2的0.3倍,即b2≤0.3A2,而b2应满足b2≤10ms,一般也推荐b2=0.155D2。对于螺旋锥齿轮,b1一般比b2大10%。

4.双曲面齿轮副偏移距E E值过大将使齿面纵向滑动过大,从而引起齿面早期磨损和擦伤;E值过小,则不能发挥双曲面齿轮传动的特点。一般对于轿车和轻型货车E≤0.2D2且E≤40%A2;对于中、重型货车、越野车和大客车,E≤(0.10~0.12)D2,且E≤20%A2。另外,主传动比越大,则E也应越大,但应保证齿轮不发生根切。

双曲面齿轮的偏移可分为上偏移和下偏移两种。由从动齿轮的锥顶向其齿面看去,并使主动齿轮处于右侧,如果主动齿轮在从动齿轮中心线的上方,则为上偏移;在从动齿轮中心线下方,则为下偏移。如果主动齿轮处于左侧,则情况相反。图5-16a、b为主动齿轮轴线下偏移情况,图5-16c、d为主动齿轮轴线上偏移情况。

【中文word文档库】-专业海量word文档免费下载:http://

图5—16 双曲面齿轮的偏移和螺旋方向 a)、b)主动齿轮轴线下偏移 c)、d)主动齿轮轴线上偏移

5.中点螺旋角

螺旋角沿齿宽是变化的,轮齿大端的螺旋角最大,轮齿小端的螺旋角最小。

弧齿锥齿轮副的中点螺旋角是相等的,双曲面齿轮副的中点螺旋角是不相等的,而且1>2,1与2之差称为偏移角(图5-4)。

选择时,应考虑它对齿面重合度F、轮齿强度和轴向力大小的影响。越大,则F也越大,同时啮合的齿数越多,传动就越平稳,噪声越低,而且轮齿的强度越高。一般F应不小于1.25,在1.5~2.0时效果最好。但是过大,齿轮上所受的轴向力也会过大。

汽车主减速器弧齿锥齿轮螺旋角或双曲面齿轮副的平均螺旋角一般为35°~40°。轿车选仔较大的值以保证较大的F,使运转平稳,噪声低;货车选用较小值以防止轴向力过大,通常取35°。

6.螺旋方向

从锥齿轮锥顶看,齿形从中心线上半部向左倾斜为左旋,向右倾斜为右旋。主、从动锥旨轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受轴向力的方向。当变速导挂前进挡时,应使主动齿轮的轴向力离开锥顶方向,这样可使主、从动齿轮有分离趋势,号止轮齿卡死而损坏。

7.法向压力角

法向压力角大一些可以增加轮齿强度,减少齿轮不发生根切的最少齿数。但对于小尺寸的齿轮,压力角大易使齿顶变尖及刀尖宽度过小,并使齿轮端面重合度下降。因此,对于轻负荷工作的齿轮一般采用小压力角,可使齿轮运转平稳,噪声低。对于弧齿锥齿轮,轿车:

货车:为20°;重型货车:为22°一般选用14°30′或16°;30′。对于双曲面齿轮,大齿轮轮齿两侧压力角是相同的,但小齿轮轮齿两侧的压力角是不等的,选取平均压力角时,轿车为19°或【中文word文档库】-专业海量word文档免费下载:http://

20°,货车为20°。或22°30′。

四、主减速器锥齿轮强度计算

(一)计算载荷的确定

汽车主减速器锥齿轮的切齿法主要有格里森和奥利康两种方法,这里仅介绍格里森齿制锥齿轮计算载荷的三种确定方法。

(1)按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩Tce

TceKdTemaxki1ifi0n

(5-7) 式中,为计算转矩(N·m);其它见表4-1的注释。

(2)按驱动轮打滑转矩确定从动锥齿轮的计算转矩

TcsrrG2m2imm

(5-8) 式中,Tcs为计算转矩(N·m);其它见表4-1的注释。

(3)按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩TcF

TcFFtrrimmn

(5-9) 式中,TcF为计算转矩(N·m);Ft为汽车日常行驶平均牵引力(N);其它见表4-1的注释。

用式(5-7)和式(5-8)求得的计算转矩是从动锥齿轮的最大转矩,不同于用式(5-9)求得的日常行驶平均转矩。当计算锥齿轮最大应力时,计算转矩Tc取前面两种的较小值,即TcminTce,Tcs;当计算锥齿轮的疲劳寿命时,Tc取TcF。

主动锥齿轮的计算转矩为

TzTci0G

(5-10) 式中,Tz为主动锥齿轮的计算转矩(N·m);i0为主传动比;G为主、从动锥齿轮间的传动效率。计算时,对于弧齿锥齿轮副,G取95%;对于双曲面齿轮副,当i0>6时,G取85%,当i0≤6时,G取90%。

(二)主减速器锥齿轮的强度计算 在选好主减速器锥齿轮主要参数后,可根据所选择的齿形计算锥齿轮的几何尺寸,而后根据所确定的计算载荷进行强度验算,以保证锥齿轮有足够的强度和寿命。

【中文word文档库】-专业海量word文档免费下载:http:// 轮齿损坏形式主要有弯曲疲劳折断、过载折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。下面所介绍的强度验算是近似的,在实际设计中还要依据台架和道路试验及实际使用情况等来检验。

1.单位齿长圆周力

主减速器锥齿轮的表面耐磨性常用轮齿上的单位齿长圆周力来估算

pFb2

(5-11) 式中,p为轮齿上单位齿长圆周力;F为作用在轮齿上的圆周力;b2为从动齿轮齿面宽。

按发动机最大转矩计算时

p2kdTemaxkigifnD1b2103

(5-12) 式中,ig为变速器传动比;D1为主动锥齿轮中点分度圆直径(mm);其它符号同前。

按驱动轮打滑转矩计算时

prr2G2m2D2b2imm

(5-13) 式中符号同前。

许用的单位齿长圆周力[p]见表5-1。在现代汽车设计中,由于材质及加工工艺等制造质量的提高,[p]有时高出表中数值的20%~25%。

表5—1 单位齿长圆周力许用值[p]

2.轮齿弯曲强度

锥齿轮轮齿的齿根弯曲应力为

【中文word文档库】-专业海量word文档免费下载:http://

w2Tk0kskm103kvmsbDJw

(5-14) 式中,w为锥齿轮轮齿的齿根弯曲应力(MPa);T为所计算齿轮的计算转矩(N·m),对于从动齿轮,TminTce,Tcs和TcF,对于主动齿轮,T还要按式(5-10)换算;k0为过载系数,一般取1;ks为尺寸系数,它反映了材料性质的不均匀性,与齿轮尺寸及热处理等因素有关,当ms≥1.6mm时,ks=(ms/25.4)0.25,当ms<1.6mm时,ks=0.5;km为齿面载荷分配系数,跨置式结构:悬臂式结构:km=1.0~1.1,km=1.10~1.25;kv为质量系数,当轮齿接触良好,齿距及径向跳动精度高时,kv=1.0;b为所计算的齿轮齿面宽(mm);D为所讨论齿轮大端分度圆直径(mm);.jw为所计算齿轮的轮齿弯曲应力综合系数,取法见参考文献[10]。

上述按minTce,Tcs计算的最大弯曲应力不超过700MPa;按TcF计算的疲劳弯曲应力不应超过210MPa,破坏的循环次数为6106。

3.轮齿接触强度

锥齿轮轮齿的齿面接触应力为

jcpD12TZk0kmkfkvbjj103

(5-15) 式中,j为锥齿轮轮齿的齿面接触应力(MPa);D1为主动锥齿轮大端分度圆直径(mm);b取b1和b2的较小值(mm);ks为尺寸系数,它考虑了齿轮尺寸对淬透性的影响,通常取1.0;kf为齿面品质系数,它取决于齿面的表面粗糙度及表面覆盖层的性质(如镀铜、磷化处理等),对于制造精确的齿轮,kf取1.0;cp为综合弹性系数,钢对钢齿轮,cp取232.6N/mm,jj为齿面接触强度的综合系数,取法见参考文献12[10];k0、km、kv见式(5-14)的说明。

上述按minTce,Tcs计算的最大接触应力不应超过2800MPa,按TcF计算的疲劳接触应力不应超过1750MPa。主、从动齿轮的齿面接触应力是相同的。

五、主减速器锥齿轮轴承的载荷计算

1.锥齿轮齿面上的作用力

锥齿轮在工作过程中,相互啮合的齿面上作用有一法向力。该法向力可分解为沿齿轮切线方向的圆周力、沿齿轮轴线方向的轴向力及垂直于齿轮轴线的径向力。

【中文word文档库】-专业海量word文档免费下载:http:// (1)齿宽中点处的圆周力.齿宽中点处的圆周力F为

F2TDm2

(5-16)

式中,T为作用在从动齿轮上的转矩;Dm2为从动齿轮齿宽中点处的分度圆直径,由式(5-17)确定,即

Dm2D2b2sin2(5-17) 式中,D2为从动齿轮大端分度圆直径;b2为从动齿轮齿面宽;2为从动齿轮节锥角。

由F1Fcos1cos可知,对于弧齿锥齿轮副,作用在主、从动22齿轮上的圆周力是相等的;对于双曲面齿轮副,它们的圆周力是不等的。

(2)锥齿轮的轴向力和径向力图5-1 7为主动锥齿轮齿面受力图。其螺旋方向为左旋,从锥顶看旋转方向为逆时针。FT为作用在节锥面上的齿面宽中点A处的法向力。在A点处的螺旋方向的法平面内,FT分解成两个相互垂直的力FN和Ff。FN垂直于OA且位于∠OOA所在的平面,Ff位于以OA为切线的节锥切平面内。Ff在此切平面内又可分解成沿切线方向的圆周力F和沿节锥母线方向的力Fs。F与Ff之间的夹角为螺旋角,FT与Ff之间的夹角为法向压力角。这样有

FFTcoscos

(5-18)

FNFTsinFtancos

(5-19)

FsFTcossinFtan

(5-20) 于是作用在主动锥齿轮齿面上的轴向力Faz和径向力Frz分别为

FazFNsinFscos

(5-21)

FrzFNcosFssin

(5-22) 若主动锥齿轮的螺旋方向和旋转方向改变时,主、从动齿轮齿面上所受的轴向力和径向力见表5-2。

表5-2 齿面上的轴向力和径向力

轴承上的载荷确定后,很容易根据轴承型号来计算其寿命,或根据寿命要求来选择轴承型号。

【中文word文档库】-专业海量word文档免费下载:http://

六、锥齿轮的材料

驱动桥锥齿轮的工作条件是相当恶劣的,与传动系其它齿轮相比,具有载荷大、作用时间长、变化多、有冲击等特点。它是传动系中的薄弱环节。锥齿轮材料应满足如下要求:

1)具有高的弯曲疲劳强度和表面接触疲劳强度,齿面具有高的硬度以保证有高的耐磨性。

2)轮齿芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下齿根折断。

3)锻造性能、切削加工性能及热处理性能良好,热处理后变形小或变形规律易控制。

4)选择合金材料时,尽量少用含镍、铬元素的材料,而选用含锰、钒、硼、钛、钼、硅等元素的合金钢。

汽车主减速器锥齿轮目前常用渗碳合金钢制造,主要有20CrMnTi、20MnVB、20MnTiB、22CrNiMo和l 6SiMn2WMoV等。

渗碳合金钢的优点是表面可得到含碳量较高的硬化层(一般碳的质量分数为0.8%一1.2%),具有相当高的耐磨性和抗压性,而芯部较软,具有良好的韧性,故这类材料的弯曲强度、表面接触强度和承受冲击的能力均较好。由于较低的含碳量,使锻造性能和切削加工性能较好。其主要缺点是热处理费用高,表面硬化层以下的基底较软,在承受很大压力时可能产生塑性变形,如果渗透层与芯部的含碳量相差过多,便会引起表面硬化层剥落。

为改善新齿轮的磨合,防止其在运行初期出现早期的磨损、擦伤、胶合或咬死,锥齿轮在热处理及精加工后,作厚度为0.005~0.020mm的磷化处理或镀铜、镀锡处理。对齿面壶行应力喷丸处理,可提高25%的齿轮寿命。对于滑动速度高的齿轮,可进行渗硫处理以击高耐磨性。渗硫后摩擦因数可显著降低,即使润滑条件较差,也能防止齿面擦伤、咬死习胶合。

【中文word文档库】-专业海量word文档免费下载:http://

第4篇:减速器文献总结

液力减速器

一、产生背景

车辆液力减速器高速制动力矩大、制动平稳、噪声小,寿命长,而结构体积较小,在现代车辆上得到了日益广泛的应用。国外液力减速器研究和应用开展得比较早,技术成熟,结构类型多样,目前在车辆上应用比较普遍。德国的ZF公司,美国的阿里森公司等都有自己的液力减速器系列。我国液力减速器研究和应用开展得比较晚,主要用于内燃机车和工程机械上,在军用车辆、重型货车及大型轿车上也有一些应用。

二、工作原理

液力减速器主要由转子、定子、快速充放油机构、减少泵气损失机构等组成。转子和定子共同组成工作腔。液力减速器工作时,工作腔中充油,油液在转子叶片带动下在工作腔中循环冲击,动量矩发生变化,产生制动力矩,将旋转机械的机械能转化为工作液体的热能,通过散热机构将热量带走。

三、优点

1. 提高了车辆行驶的安全性。大大减少了坡道行驶时由于行车制动器热衰退引发的安全事故,使得汽车在下坡时平均行驶速度提高,在平路行驶时,可以比较容易地控制调节车速和保持车间距离。

2.减少了频繁的缓速和制动,提高了车辆的舒适性和操纵灵活性,大大降低了驾驶员的疲劳强度,减少了制动噪声。

3.提高了车辆运输的经济性。由于行车制动次数的减少,制动器和轮胎的磨损大大减少,从而延长了制动器和轮胎维修更换的周期,延长了汽车实际运行时间,由此带来的经济效益非常明显。

综上所述,车辆在安装了液力缓速器后可以有效地提高驾驶安全性、乘座舒适性和路面适应性;具有下坡平均车速高、车辆运输经济性好等优点。

四、解决的问题

缺点:转速下降时制动转矩下降快。低于500r/min时制动转矩有波动,在转速为0时完全失去制动能力。 解决方法:作为辅助制动与其它制动防水配合使用。

行星减速器

一、产生背景:

行星减速器行星顾名思义就是围绕恒星转动,因此行星减速器就是如此,有三个行星轮围绕一个太阳轮旋转的减速器。随着行星减速器行业的不断飞速发展,越来越多的行业和不同的企业都运用到了行星减速器,也有越来越多的企业在行星减速器行业内发展壮大,生产减速器的公司是从事传动机械研发、制造、销售的专业性公司,致力于传动产品的研制和生产,产品在国际市场享有很高的声誉,在动力传输领域有极高的知名度。公司拥有世界先进的加工机床与检测设备、雄厚的技术力量,可以为用户提供高品质的产品。主要产品有P系列行星齿轮减速机;K系列斜齿轮-螺旋伞齿轮减速机;T系列螺旋伞齿轮转向箱;R系列硬齿面斜齿轮减速机;F系列平行轴斜齿轮减速机;S系列斜齿轮-蜗轮蜗杆减速机;H、B系列硬齿面工业齿轮箱;MB系列无级变速机;NMRV系列蜗轮蜗杆减速机以及各系列非标减速机等,齿轮全部采用渗碳淬火热处理,磨齿加工精度5级,确保产品的可靠性及低噪音。

二、优点:

减变速机具有高强度、体积小、噪音低、传动扭矩大,寿命高等特点,广泛用于石油、化工、轻工、纺织、食品、塑料、制药、陶瓷、印染、冶金、矿山、烟草、造纸、制革、木工、电子仪表、玻璃、环保等机械设备领域中。 产品采用了系列化、模块化的设计思想,具有广泛的适应性,能满足广大客户群体的需求。行星减速机是一种用途广泛的工业产品,其性能可与其它军品级行星减速机产品相媲美,却有着工业级产品的价格,被应用于广泛的工业场合。

齿轮传动式主减速器

一、产生背景:

直升机一般为齿轮传动式主减速器, 它有发动机的功率输入端以及与旋翼、尾桨附件传动轴相联的功率输出端,是直升机上主要传动部件之一,也是传动装置中最复杂、最大、最重要的一个部件。其工作特点是减速、转向。它将高转速、小扭矩的发动机功率变成低转速、大扭矩传递给旋翼轴,并按转速、扭矩需要将功率传递给尾桨、附件等。在直升机中它还起中枢受力构件的作用,它将直接承受旋翼产生的全部作用力和力矩并传递给机体。

二、工作原理:

在直升机上主减速器是一个独立的部件,安装在机身上部 的减速器舱内,用支架支撑在机体承力结构上。主减速器由机 匣、减速齿轮及轴系和润滑系统组成。见某直升机的主减速器 外形和部面图。

该主减速器机匣为铝合金(或镁合金)铸件,构成主减速 器的主要承力构件,内部装有带游星齿轮及轴系的减速装置和滑油润滑系统附件。旋翼轴从顶部伸出,四周有两个与发动机动力输出轴相连的安装座以及尾传动轴、其他附件传动轴相联的安装座,最下方为滑油池。

三、工作特点:

主减速器的工作特点是减速、转向及并车。它将高转速小扭短的发动机功率变成低转速、大扭短传递给旋翼轴,并按转速、扭矩需要将功率传递给尾桨、附件等,在直升机中它还起作中枢受力构件的作用,它将直接承受旋翼产生的全部作用力和力矩并传递给机体。

四、优点:

1、传递功率大、重量轻。

2、减速比大,传递效率高。

3、寿命长、可靠性好。

4、干运转能力强。

少齿差行星减速器

一、产生背景:

少齿差行星减速器是一种新型减速器,随着我国社会主义建设的飞速发展,国内已有许多单位自行设计和制造了这种减速器,并已日益广泛地应用在国防、矿山、冶金、化工、纺织、起重运输、建筑工程、食品工业和仪表制造等工业部门的机械设备中,今后将会得到更加广泛的应用。

二、工作原理

由于在各种类型的行星齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。

三、优点:

行星齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点。

四、解决问题:

输出机构精度要求较高,对大功率减速器无实践经验,一些计算方法和图表还很不完善。

少齿差星轮型减速器

一、产生背景:

少齿差星轮型减速器作为一种新型内平动行星齿轮传动装置,因其可利用有效圆原理实现正多边形对称式连续滚动以传递扭矩和转速,故与传统行星减速器及外平动行星齿轮装置(即少齿差环板式减速器)相比,具有传动比大、功重比高、输出构型灵活等优点,目前已在能源、矿山、电力、水利等行业获得一定应用。

二、优点:

传动比大、功重比高、输出构型灵活。

三、解决问题

缺点:由于对少齿差星轮型减速器的力学行为缺乏足够认识,导致该类传动缺乏完善的设计理论,工程中大多类比常规减速器的设计方法来确定设计方案,致使实际使用中出现振动噪声大、行星轴承烧蚀、星轮轮齿断裂等问题。 解决方法:

1 )综合考虑齿轮副、行星轴承副的弹性变形和各轴的扭转变形,构建减速器各运动副处的变形协调条件,并运用子结构综合法建立了少齿差星轮型减速器的弹性静力学方程。

2 )少齿差星轮型减速器两相机构的齿轮副啮合平稳,其啮合力呈周期性变化但波动幅度较小。相比之下,减速器中行星轴承载荷状况较为恶劣。其中,输入轴行星轴承所受当量载荷较大,而星轮轴行星轴承载荷的波动范围较大,易导致行星轴承的早蚀,这与工程应用中常见的行星轴承失效相符。

3 )在进行少齿差星轮型减速器的设计时,应针对行星轴承载荷状况较为恶劣这一特性,在结构允许条件下,尽量优化齿轮和行星轴承的尺寸比例,提高行星轴承的承载能力。

环板式减速机

一、产生背景:

环板式减速机的传动方式为少齿差行星传动,主要应用于桩工机械、冶金、水泥、船舶行业等需要较大减速比等情况下,其结构较相同减速比的其他型号的减速机结构简单、重量轻、传动效率机电工程类技术应用心高、传动平稳、输出轴刚度大、材质要求低等。近年来得到了快速发展。

二、工作原理:

三环板减速机的结构特点是:具有功率分流、内齿啮合、多齿接触,因而具有较强的承载能力和抗过载能力;克服了双环板和四环 板式摆线行星齿轮传动中存在的死点问题。

双曲柄四环板式针摆行星减速器

一、产生背景:

双曲柄四环板式针摆行星减速器是一种新型环式摆线针轮减速器,摆线针轮减速机是一种应用行星式传动原理,采用摆线针齿啮合的新颖传动装置。摆线针轮减速机全部传动装置可分为三部分:输入部分、减速部分、输出部分。在输入轴上装有一个错位180°的双偏心套,在偏心套上装有两个称为转臂的滚柱轴承,形成H机构、两个摆线轮的中心孔即为偏心套上转臂轴承的滚道,并由摆线轮与针齿轮上一组环形排列的针齿相啮合,以组成齿差为一齿的内啮合减速机构,(为了减小摩擦,在速比小的减速机中,针齿上带有针齿套)。

二、工作原理:

摆线针轮减速机是一种应用行星式传动原理,采用摆线针齿啮合的新颖传动装置。当输入轴带着偏心套转动一周时,由于摆线轮上齿廓曲线的特点及其受针齿轮上针齿限制之故,摆线轮的运动成为既有公转又有自转的平面运动,在输入轴正转周时,偏心套亦转动一周,摆线轮于相反方向转过一个齿从而得到减速,再借助输出机构,将摆线轮的低速自转运动通过销轴,传递给输出轴,从而获得较低的输出转速。

三、优点:

1、能达到1:87的高的减速比和90%以上的高效率单级传动,如果采用多级传动,减速比更大。

2、结构紧凑体积小由于采用了行星传动原理,输入轴输出轴在同一轴心线上,使其机型获得尽可能小的尺寸。

3、运转平稳噪声低摆线针齿啮合齿数较多,重叠系数大以及具有机件平衡的机理,使振动和嗓声限制在最小程度。

4、使用可靠、寿命长因主要零件采用轴承钢材料,经淬火处理(HRC58~62)获得高强度,并且,部分传动接触采用了滚动摩擦,所以经久耐用寿命长。

5、设计合理,维修方便,容易分解安装,最少零件个数以及简单的润滑,使摆线针轮减速机深受用户的信赖。

四、解决问题:

摆线针轮减速机负荷不能太大,不管是多大的减速机,里面的中心轴是最容易断,拆装麻烦。

参考文献(文献格式)

[1]王峰.基于CFD和FEA的液力减速器叶片强度分析[J].北京理工大学学报,2006,26:1050-1055 [2]张干清.基于可靠灰色粒子群算法的盾构机行星减速器轮系的多目标优化设计[J].机械工程学报.2010,46:136-145 [3]王新峰.基于离散粒子群优化算法的直升机减速器齿轮故障特征选择[J].航空动力学报2005,20;966-972 [4]秦大同. 基于啮合相位分析的盾构机减速器多级行星齿轮传动动力学特性[J].机械工程学报2011,47:18-29 [5]石珍.少齿差行星减速器振动特性仿真与实验研究[J].振动与冲击.2014,33:130-138 [6]张俊. 少齿差环板式减速器的弹性动力学分析[J].机械工程学报.2008,44:119-128 [7]杨冰. 双曲柄四环板式针摆行星减速器减振降噪研究[J].兵工学报,2011,32:1280-1286

第5篇:二级减速器课程设计

目 录

一.设计任务书……………………………………………………1 二.传动方案的拟定及说明………………………………………3 三.电动机的选择…………………………………………………3 四.计算传动装置的运动和动力参数……………………………4 五.传动件的设计计算……………………………………………5 六.轴的设计计算…………………………………………………14 七.滚动轴承的选择及计算………………………………………26 八.箱体内键联接的选择及校核计算……………………………27 九.连轴器的选择…………………………………………………27 十.箱体的结构设计………………………………………………29 十

一、减速器附件的选择……………………………………………30 十

二、润滑与密封……………………………………………………31 十

三、设计小结………………………………………………………32 十

四、参考资料………………………………………………………33

第6篇:二级减速器开题报告

课程设计开题报告

题目:二级圆柱齿轮减速器设计

姓名: 学号: 专业年级:

指导教师:

二○一四年十月七日

一、选题的依据及意义:

随着社会的发展和人民生活水平的提高,人们对产品的需求是多样化的,这就决定了未来的生产方式趋向多品种、小批量。在各行各业中十分广泛地使用着齿轮减速器,它是一种不可缺少的机械传动装置. 它是机械设备的重要组成部分和核心部件。目前,国内各类通用减速器的标准系列已达数百个,基本可满足各行业对通用减速器的需求。国内减速器行业重点骨干企业的产品品种、规格及参数覆盖范围近几年都在不断扩展,产品质量已达到国外先进工业国家同类产品水平,承担起为国民经济各行业提供传动装置配套的重任,部分产品还出口至欧美及东南亚地区,推动了中国装配制造业发展。

圆柱齿轮减速器是一种使用非常广泛的机械传动装置。减速器是用于原动机与工作机之间的独立的传动装置,用来降低转速和增大转矩,以满足工作需要。在现代机械中应用极为广泛,具有品种多、批量小、更新换代快的特点。目前生产的各种类型的减速器还存在着体积大、重量重、承载能力低、成本高和使用寿命短等问题,与国外先进产品相比还有较大的差距。对减速器进行优化设计,选择最佳参数是提高承载能力、减轻重量和降低成本等各项指标的一种重要途径。 目的: 通过设计熟悉机器的具体操作,增强感性认识和社会适应能力,进一步巩固、 深化已学过的理论知识,提高综合运用所学知识发现问题、解决问题的能力。学习机械设计的一般方法,掌握通用机械零件、机械传动装置或简单机械的设计原理和过程。对所学技能的训练,例如:计算、绘图、查阅设计资料和手册,运用标准和规范等。学会利用多种手段(工具)解决问题,如:在本设计中可选择CAD等制图工具。了解减速器内部齿轮间的传动关系。 意义: 通过设计,培养学生理论联系实际的工作作风,提高分析问题、解决问题的独立工作能力;通过实习,加深学生对专业的理解和认识,为进一步开拓专业知识创造条件,锻炼动手动脑能力,通过实践运用巩固了所学知识,加深了解其基本原理

二、国内外研究概况及发展趋势(含文献综述):

1、国外减速器技术发展简况

齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。 国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。最近报导,日本住友重工研制的FA型高精度减速器,美国Alan-Newton公司研制的X-Y式减速器,在传动原理和结构上与本项目类似或相近,都为目前先进的齿轮减速器。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。因此,除了不断改进材料品质、提高工艺水平外,还在传动原理和传动结构上深入探讨和创新,平动齿轮传动原理的出现就是一例。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。

目前,超小型的减速器的研究成果尚不明显。在医疗、生物工程、机器人等领域中,微型发动机已基本研制成功,美国和荷兰近期研制的分子发动机的尺寸在纳米级范围,如能辅以纳米级的减速器,则应用前景远大。

2、国内减速器技术发展简况

国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。国内使用的大型减速器(500kw以上),多从国外(如丹麦、德国等)进口,花去不少的外汇。60年代开始生产的少齿差传动、摆线针轮传动、谐波传动等减速器具有传动比大,体积小、机械效率高等优点?。但受其传动的理论的限制,不能传递过大的功率,功率一般都要小于40kw。由于在传动的理论上、工艺水平和材料品质方面没有突破,因此,没能从根本上解决传递功率大、传动比大、体积小、重量轻、机械效率高等这些基本要求。90年代初期,国内出现的三环(齿轮)减速器,是一种外平动齿轮传动的减速器,它可实现较大的传动比,传递载荷的能力也大。它的体积和重量都比定轴齿轮减速器轻,结构简单,效率亦高。由于该减速器的三轴平行结构,故使功率/体积(或重量)比值仍小。且其输入轴与输出轴不在同一轴线上,这在使用上有许多不便。北京理工大学研制成功的"内平动齿轮减速器"不仅具有三环减速器的优点外,还有着大的功率/重量(或体积)比值,以及输入轴和输出轴在同一轴线上的优点,处于国内领先地位。国内有少数高等学校和厂矿企业对平动齿轮传动中的某些原理做些研究工作,发表过一些研究论文,在利用摆线齿轮作平动减速器开展了一些工作。

二、平动齿轮减速器工作原理简介,平动齿轮减速器是指一对齿轮传动中,一个齿轮在平动发生器的驱动下作平面平行运动,通过齿廓间的啮合,驱动另一个齿轮作定轴减速转动,实现减速传动的作用。平动发生器可采用平行四边形机构,或正弦机构或十字滑块机构。本成果采用平行四边形机构作为平动发生器。平动发生器可以是虚拟的采用平行四边形机构,也可以是实体的采用平行四边形机构。有实用价值的平动齿轮机构为内啮合齿轮机构,因此又可以分为内齿轮作平动运动和外齿轮作平动运动两种情况。外平动齿轮减速机构,其内齿轮作平动运动,驱动外齿轮并作减速转动输出。该机构亦称三环(齿轮)减速器。由于内齿轮作平动,两曲柄中心设置在内齿轮的齿圈外部,故其尺寸不紧凑,不能解决体积较大的问题。?内平动齿轮减速,其外齿轮作平动运动,驱动内齿轮作减速转动输出。由于外齿轮作平动,两曲柄中心能设置在外齿轮的齿圈内部,大大减少了机构整体尺寸。由于内平动齿轮机构传动效率高、体积小、输入输出同轴线,故由广泛的应用前景。?

三、本项目的技术特点与关键技术? 1.本项目的技术特点,本新型的"内平动齿轮减速器"与国内外已有的齿轮减速器相比较,有如下特点:(1)传动比范围大,自I=10起,最大可达几千。若制作成大传动比的减速器,则更显示出本减速器的优点。(2)传递功率范围大:并可与电动机联成一体制造。(3)结构简单、体积小、重量轻。比现有的齿轮减速器减少1/3左右。(4)机械效率高。啮合效率大于95%,整机效率在85%以上,且减速器的效率将不随传动比的增大而降低,这是别的许多减速器所不及的。 (5)本减速器的输入轴和输出轴是在同一轴线上

三、研究内容及实验方案:

研究内容:

1.采用复合形法,以体积最小为目标进行减速器优化设计;

2.与常规设计结果进行比较分析;

3.绘制减速器装配图及主要零件图。

实验方案:

1. 收集有关资料写开题报告

2. 以减速器体积最小为目标函数建立优化设计的数学模型

3.采用复合型法编写优化设计程序、计算

4. 计算减速器各项尺寸,并进行结果分析

5. 运用OUT-CAD绘制减速器装配图及主要零件图

6. 撰写设计总结

四、目标、主要特色及工作进度

目标:本课题以减速器体积最小为目标函数,设计减速器的最优参数, 绘制减速器装配图及主要零件图。

主要特色:减速器体积小,重量轻,承载能力提高,降低成本 工作安排:

1. 收集资料、开题报告、外文翻译

2. 建立优化设计的数学模型

3.编写优化设计程序、计算

4. 减速器常规设计计算、结果分析

5. 绘制减速器装配图及主要零件图

6. 撰写设计总结

7. 答辩准备及论文答辩

五、预期结果

1、一份减速器设计任务书;

2、一减速器设计说明说;

3、一张减速器装配图;

六、参考文献

【1】璞良贵,纪名刚主编.机械设计.第八版.北京:高等教育出版社

【2】唐增宝 常建娥主编.机械设计课程设计.第4版武汉:华中科技大学出版社 【3】孙靖民主编.机械优化设计.第三版.北京:机械工业出版社 【4】王昆等主编. 机械设计课程设计手册.北京:机械工业出版社 【5】杨黎明主编.机械零件设计手册.北京:国防工业出版社

上一篇:浦发银行柜员实习周记下一篇:英语学习培训心得体会