聚氨酯树脂技术说明书

2023-07-09 版权声明 我要投稿

第1篇:聚氨酯树脂技术说明书

聚氨酯清漆安全技术说明书

产品名称:聚氨酯清漆

SDS编号:21401

化学品安全技术说明书

修订日期:2014年04月16日

SDS编号:21401 产品名称:聚氨酯清漆

版本:2

第一部分 化学品及企业标识

化学品中文名:聚氨酯清漆

化学品英文名:Polyurethane resin varnish 企业名称: 企业地址:

编:

真: 联系电话: 电子邮件地址:

国家化学事故应急咨询电话:

产品推荐及限制用途:用于家具制造业、木制建材业、家装业及其他木制品加工行业。

第二部分 危险性概述

紧急情况概述:高度易燃液体和蒸气;可能引起呼吸道刺激,可能引起昏昏欲睡或眩晕;引起严重眼睛刺激。

GHS危险性类别:根据化学品分类、警示标签和警示性说明规范系列标准(参阅第十五部分),该产品属于易燃液体,类别2;严重眼损伤/眼睛刺激性,类别2;特异性靶器官系统毒性一次接触,类别3。

标签要素:

象形图:

警示词:危险

修订日期:2014年04月16日

第 1 页 共 1 页 产品名称:聚氨酯清漆

SDS编号:21401

危险信息:高度易燃液体和蒸气;可能引起呼吸道刺激,可能引起昏昏欲睡或眩晕;引起严重眼睛刺激。

防范说明:

预防措施:远离热源、火花、明火、热表面。禁止吸烟。保持容器密闭。容器和接收设备接地、连接。使用防爆电器、通风、照明等设备。只能使用不产生火花的工具。采取防止静电措施。戴防护手套、防护眼镜、防护面罩。操作后彻底清洗。避免吸入粉尘、烟气、气体、烟雾、蒸汽、喷雾。

事故响应:如皮肤(或头发)接触,立即脱掉所有被污染的衣服,用水冲洗皮肤,淋浴。火灾时使用泡沫、干粉、二氧化碳、砂土灭火。如接触眼睛:用水细心冲洗数分钟,如戴隐形眼镜并可方便地取出,取出隐形眼镜,继续冲洗。如果眼睛刺激继续,就医。如吸入:将患者转移至空气新鲜处,休息,保持利于呼吸的体位。如感觉不适,呼叫中毒控制中心或就医。

安全储存:在阴凉、通风良好处储存。保持容器密闭。上锁保管。

废弃处置:按照地方、区域、国家、国际法规(规定)处置本品、容器。 物理化学危险:高度易燃液体和蒸汽。其蒸气与空气可形成爆炸性混合物,遇明火、高热可引起燃烧爆炸。与氧化剂接触猛烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。

健康危害:对眼及上呼吸道均有强烈的刺激作用,有麻醉作用。吸入高浓度本品出现流泪、咽痛、咳嗽、胸闷、气短等,严重者出现心血管和神经系统的症状可引起结膜炎、角膜炎,角膜上皮有空泡形成。皮肤接触可引起皮肤干燥。

环境危害:详见十二部分。

第三部分 成分/组成信息

物质

√混合物

危险组分

浓度或浓度范围

CAS No. 修订日期:2014年04月16日

第 2 页 共 2 页 产品名称:聚氨酯清漆

SDS编号:21401 丁醇

1~5%

71-36-3 异丙醇

1~5%

67-63-0 乙酸丁酯

10~20%

123-86-4 甲基环己烷

1~5%

108-87-2

第四部分 急救措施

急救:

-皮肤接触:脱去污染的衣着,尽快用布擦拭粘附物,用大量的水以及香皂,或皮肤用的洗剂充分地进行清洗。不要使用溶剂,稀释剂等,如果外观看到有变化,或疼痛时要接受医生诊断。

-眼睛接触:即翻开上下眼睑,立即用大量的清水冲洗15分钟以上。眼睛里面也要完全的清洗尽快接受医生诊断。眼部损伤后,立即取下隐形眼镜,请有经验者处置。

-吸

入:吸入大量的蒸气,马上脱离现场转移至空气新鲜的地方,让其保暖静养。如果呼吸不规则或停止呼吸,请进行人工呼吸。防止吞咽呕吐物,请把头放平,立即接受医生诊断。就医。

-食

入:误食时不要过分吞咽,保持静养并立即安排医生诊断。防止吞咽呕吐物。请听从医生的指导,不要强制催吐。

第五部分 消防措施

特别危险性:高度易燃液体和蒸汽。其蒸气与空气可形成爆炸性混合物,遇明火、高热可引起燃烧爆炸。与氧化剂接触猛烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。

灭火方法和灭火剂:用泡沫、干粉、二氧化碳、砂土灭火。避免使用直流水。

灭火注意事项及措施:消防人员必须佩戴自给式呼吸器,穿全身防火服,在上风向灭火。喷水冷却容器,可能的话将容器从火场移至空旷处。处在火场中的容器若已变色,必须马上撤离。用水灭火无效。

修订日期:2014年04月16日

第 3 页 共 3 页 产品名称:聚氨酯清漆

SDS编号:21401

第六部分 泄漏应急处理

作业人员防护措施、防护装备和应急处置程序:消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸器,穿防毒、防静电服,戴橡胶耐油手套。作业时使用的所有设备应接地。禁止接触或跨越泄漏物。

环境保护措施:防止泄漏物进入水体、下水道、地下室或受限空间。

泄漏化学品的收容、清除方法及所使用的处置材料:小量泄漏:用活性炭或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

第七部分 操作处置与储存

操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类、碱类接触。灌装时应控制流速,且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。

储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。保持容器密封。应与氧化剂、酸类、碱类分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。

第八部分 接触控制/个体防护

接触限值: 丁

醇:

修订日期:2014年04月16日

第 4 页 共 4 页 产品名称:聚氨酯清漆

SDS编号:21401 PC-TWA(mg/m³)100;PC-STEL(mg/m³)无资料 异 丙 醇:

PC-TWA(mg/m³)350;PC-STEL(mg/m³)700 乙酸丁酯:

PC-TWA(mg/m³)200;PC-STEL(mg/m³)300 甲基环己烷:无资料 生物限值:无资料。 监测方法:气相色谱法。

工程控制:提供充足的通风以保证现场不超过接触限值。提供安全淋浴和洗眼设备。 呼吸系统防护:可能接触其蒸气时,应该佩戴自吸过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,建议佩戴空气呼吸器。

眼睛防护:戴化学安全防护眼镜。 皮肤和身体防护:穿防静电工作服。 手 防 护:戴橡胶耐油手套。

其他防护:工作现场严禁吸烟、进食和饮水。工作完毕,淋浴更衣。注意个人清洁卫生。实行就业前和定期的体检。

第九部分 理化特征

外观与性状:乳白色液体,有溶剂臭。 PH值(指明浓度):无资料

熔点/凝固点(℃):-73.5 沸点、初沸点和沸程(℃):80.3126.1

引燃温度(℃):250 相对蒸气密度(空气=1):2.07~4.1

相对密度(水=1):0.98±0.02 燃烧热(kJ/mol):无资料

饱和蒸汽压(kPa):无资料 临界压力(MPa): 无资料

临界温度(℃):无资料 闪点(℃):-4

n-辛醇/水分配系数:无资料 分解温度:无资料

爆炸上限%(V/V):6.7~12.7 爆炸下限%(V/V):1.2~2.0 易燃性:高度易燃。

溶解性:微溶于水,溶于醇、醚等多数有机溶剂。

第十部分 稳定性和反应性

修订日期:2014年04月16日

第 5 页 共 5 页 产品名称:聚氨酯清漆

SDS编号:21401 稳定性:正常条件下稳定 禁配物:强氧化剂、碱类、酸类。 避免接触的条件:明火、高热。 聚合危害:不能发生

分解产物:一氧化碳、二氧化碳、氧化氮

第十一部分 毒理学信息

急性毒性:

醇:大鼠经口LD50:4360mg/kg;兔经皮:3400 mg/kg;大鼠吸入LC50:24240mg/m3,4小时。

异 丙 醇:大鼠经口LD50:5045 mg/kg;兔经皮:12800 mg/kg。 乙酸丁酯:大鼠经口LD50:13100mg/kg;大鼠经口LC50:9480mg/kg;

甲基环己烷:小鼠经口LD50:2250 mg/kg;小鼠吸入LC50:41500mg/m3,2小时 皮肤刺激或腐蚀: 丁

醇:无资料。 异 丙 醇:无资料。

乙酸丁酯:家兔经皮开放性刺激试验:500mg,轻度刺激;家兔经皮500mg/24小时,中度刺激。

甲基环己烷:无资料。 眼睛刺激或腐蚀: 丁

醇:无资料。 异 丙 醇:无资料。

乙酸丁酯:家兔经眼:20mg,重度刺激。 甲基环己烷:无资料。 生殖细胞突变性:无资料。 致癌性:无资料。 生殖毒性:无资料。

特异性靶器官系统毒性:无资料。

修订日期:2014年04月16日

第 6 页 共 6 页 产品名称:聚氨酯清漆

SDS编号:21401

第十二部分 生态学信息

生态毒性:无资料。 持久性和降解性:无资料。 潜在的生物累积性:无资料。 迁移性:无资料。

其他有害作用:该物质对环境可能有危害,对水体应给予特别注意。

第十三部分 废弃处置

废弃处置方法:建议用控制焚烧法处置。

废弃注意事项:处置前应参阅国家和地方有关法规。

第十四部分 运输信息

联合国危险货物编号(UN号):1139 联合国运输名称:无资料 联合国危险性分类:3 包装类别:Ⅱ

包装标志:易燃液体或

包装方法:小开口钢桶;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外普通木箱。

海洋污染物(是/否):否。

运输注意事项:运输时运输车辆应配备相应品种和数量的消防器材及泄漏应急处理设备。夏季最好早晚运输。严禁与氧化剂、酸类、碱类、食用化学品等混装混运。运输途中应防曝晒、雨淋,防高温。中途停留时应远离火种、热源、高温区。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。公路运输时要按规定路线行驶,勿在居民区和人口稠修订日期:2014年04月16日

第 7 页 共 7 页 产品名称:聚氨酯清漆

SDS编号:21401 密区停留。铁路运输时要禁止溜放。严禁用木船、水泥船散装运输。

第十五部分 法规信息

法规信息:下列法律法规和标准,对化学品的安全使用、储存、运输、装卸、分类和标志等方面均作了相应的规定:

化学品分类、警示标志和警示性说明规范系列标准(GB 20576-2006~GB20602-2006)。

《危险化学品名录》:列入,将该物质划为第3.2类中闪点液体。

《剧毒化学品目录》:未列入。

《危险货物品名表》(GB 12268-2012):列入,将该物质划分为第3类易燃液体。

第十六部分 其他信息

参考文献:1.刘登良,《涂料工艺》(第四版),化学工业出版社,2009

2.程能林,《溶剂手册》,化学工业出版社,1994 最新修订版日期:

修改说明:本SDS按照《化学品安全技术说明书

内容和项目顺序》(GB/T16483-2008)标准编制;由于目前国家尚未颁布化学品GHS分类目录,本SDS中化学品的GHS分类是根据化学品分类、警示标志和警示性说明规范系列标准(GB 20576-2006~GB20602-2006)自行进行分类,待国家化学品GHS分类目录颁布后再进行相应调整。

缩略语说明:

MAC:制工作地点、在一个工作日内、任何时间有毒化学物质均不应超过的浓度。

PC-TWA:指以时间为权数规定的8h工作日、40h工作周的平均容许接触浓度。

PC-STEL:指在遵守PC-TWA前提允许短时间(15min)接触的浓度。

修订日期:2014年04月16日

第 8 页 共 8 页 产品名称:聚氨酯清漆

SDS编号:21401

修订日期:2014年04月16日

第2篇:2017-2018年中国聚氨酯树脂类型船舶水性涂料行业市场需求分析及趋势预测

2017-2021年中国聚氨酯树脂类型船舶水性涂料行业发展深度研究与

投资咨询报告

▄ 核心内容提要

【出版日期】2017年4月 【报告编号】5715 【交付方式】Email电子版/特快专递

【价

格】纸介版:7000元

电子版:7200元

纸介+电子:7500元 【文章来源】http://report/20170114/5715.html ▄ 报告目录

第一章、聚氨酯树脂类型船舶水性涂料行业相关概述 第一节、聚氨酯树脂类型船舶水性涂料行业定义及分类 第二节、聚氨酯树脂类型船舶水性涂料行业发展历程 第三节、聚氨酯树脂类型船舶水性涂料分类情况 第四节、聚氨酯树脂类型船舶水性涂料产业链分析

一、产业链模型介绍

二、聚氨酯树脂类型船舶水性涂料产业链模型分析 第二章、聚氨酯树脂类型船舶水性涂料发展环境及政策分析 第一节、中国经济发展环境分析

一、2015中国宏观经济发展

二、2016中国宏观经济走势分析 第二节、行业相关政策、法规、标准

第三章、中国聚氨酯树脂类型船舶水性涂料生产现状分析 第一节、聚氨酯树脂类型船舶水性涂料行业总体规模 第二节、聚氨酯树脂类型船舶水性涂料产能概况

一、2011-2016年产能分析

二、2016-2020年产能预测

第三节、聚氨酯树脂类型船舶水性涂料产量概况

1

一、2011-2016年产量分析

二、产能配置与产能利用率调查

三、2016-2020年产量预测

第四节、聚氨酯树脂类型船舶水性涂料产业的生命周期分析

第四章、聚氨酯树脂类型船舶水性涂料国内产品价格走势及影响因素分析 第一节、国内产品2011-2016年价格回顾 第二节、国内产品当前市场价格及评述 第三节、国内产品价格影响因素分析

第四节、2016-2020年国内产品未来价格走势预测

第五章、2010-2015年中国聚氨酯树脂类型船舶水性涂料行业总体发展状况 第一节、中国聚氨酯树脂类型船舶水性涂料行业规模情况分析

一、行业单位规模情况分析

二、行业人员规模状况分析

三、行业资产规模状况分析

四、行业市场规模状况分析

五、行业敏感性分析

第二节、中国聚氨酯树脂类型船舶水性涂料行业产销情况分析

一、行业生产情况分析

二、行业销售情况分析

三、行业产销情况分析

第三节、中国聚氨酯树脂类型船舶水性涂料行业财务能力分析

一、行业盈利能力分析与预测

二、行业偿债能力分析与预测

三、行业营运能力分析与预测

四、行业发展能力分析与预测

第六章、2015年中国聚氨酯树脂类型船舶水性涂料行业发展概况

2

第一节、 2015年中国聚氨酯树脂类型船舶水性涂料行业发展态势分析 第二节、 2015年中国聚氨酯树脂类型船舶水性涂料行业发展特点分析 第三节、 2015年中国聚氨酯树脂类型船舶水性涂料行业市场供需分析 第七章、聚氨酯树脂类型船舶水性涂料行业市场竞争策略分析 第一节、行业竞争结构分析

一、现有企业间竞争

二、潜在进入者分析

三、替代品威胁分析

四、供应商议价能力

五、客户议价能力

第二节、聚氨酯树脂类型船舶水性涂料市场竞争策略分析

一、聚氨酯树脂类型船舶水性涂料市场增长潜力分析

二、聚氨酯树脂类型船舶水性涂料产品竞争策略分析

三、典型企业产品竞争策略分析

第三节、聚氨酯树脂类型船舶水性涂料企业竞争策略分析

一、2016-2020年我国聚氨酯树脂类型船舶水性涂料市场竞争趋势

二、2016-2020年聚氨酯树脂类型船舶水性涂料行业竞争格局展望

三、2016-2020年聚氨酯树脂类型船舶水性涂料行业竞争策略分析 第八章、聚氨酯树脂类型船舶水性涂料上游原材料供应状况分析 第一节、主要原材料

第二节、主要原材料202011—2015年价格及供应情况 第三节、2016-2020年主要原材料未来价格及供应情况预测 第九章、聚氨酯树脂类型船舶水性涂料产业用户度分析 第一节、聚氨酯树脂类型船舶水性涂料产业用户认知程度 第二节、聚氨酯树脂类型船舶水性涂料产业用户关注因素

一、功能

3

二、质量

三、价格

四、外观

五、服务

第十章、2011-2016年聚氨酯树脂类型船舶水性涂料行业发展趋势及投资风险分析

第一节、当前聚氨酯树脂类型船舶水性涂料存在的问题 第二节、聚氨酯树脂类型船舶水性涂料未来发展预测分析

一、中国聚氨酯树脂类型船舶水性涂料发展方向分析

二、2011-2016年中国聚氨酯树脂类型船舶水性涂料行业发展规模

三、2011-2016年中国聚氨酯树脂类型船舶水性涂料行业发展趋势预测 第三节、2011-2016年中国聚氨酯树脂类型船舶水性涂料行业投资风险分析

一、市场竞争风险

二、原材料压力风险分析

三、技术风险分析

四、政策和体制风险

五、外资进入现状及对未来市场的威胁

第十一章、聚氨酯树脂类型船舶水性涂料国内重点生产厂家分析 第一节、企业1

一、聚氨酯树脂类型船舶水性涂料概况

二、聚氨酯树脂类型船舶水性涂料竞争优势分析

三、聚氨酯树脂类型船舶水性涂料经营状况分析

四、2017-2022年企业投资前景分析 第二节、企业2

一、聚氨酯树脂类型船舶水性涂料概况

二、聚氨酯树脂类型船舶水性涂料竞争优势分析

4

三、聚氨酯树脂类型船舶水性涂料经营状况分析

四、2017-2022年企业投资前景分析 第三节、企业3

一、聚氨酯树脂类型船舶水性涂料概况

二、聚氨酯树脂类型船舶水性涂料竞争优势分析

三、聚氨酯树脂类型船舶水性涂料经营状况分析

四、2017-2022年企业投资前景分析 第四节、企业4

一、聚氨酯树脂类型船舶水性涂料概况

二、聚氨酯树脂类型船舶水性涂料竞争优势分析

三、聚氨酯树脂类型船舶水性涂料经营状况分析

四、2017-2022年企业投资前景分析 第五节、企业5

一、聚氨酯树脂类型船舶水性涂料概况

二、聚氨酯树脂类型船舶水性涂料竞争优势分析

三、聚氨酯树脂类型船舶水性涂料经营状况分析

四、2017-2022年企业投资前景分析

第十二章、聚氨酯树脂类型船舶水性涂料产品竞争力优势分析 第一节、整体产品竞争力评价 第二节、体产品竞争力评价结果分析 第三节、竞争优势评价及构建建议

第十三章、聚氨酯树脂类型船舶水性涂料行业供需平衡预测分析 第一节、2017-2022年中国聚氨酯树脂类型船舶水性涂料行业产量预测 第二节、2017-2022年中国聚氨酯树脂类型船舶水性涂料行业需求量预测 第三节、2017-2022年中国聚氨酯树脂类型船舶水性涂料行业市场规模预测 第四节、2017-2022年中国聚氨酯树脂类型船舶水性涂料行业价格走势

5

第十四章、业内专家观点与结论

第一节、聚氨酯树脂类型船舶水性涂料行业发展前景预测

一、把握客户对产品需求动向

二、渠道发展变化预测

三、行业总体发展前景及市场机会分析

第二节、聚氨酯树脂类型船舶水性涂料企业营销策略

一、价格策略

二、渠道建设与管理策略

三、促销策略

四、服务策略

五、品牌策略

第三节、聚氨酯树脂类型船舶水性涂料企业投资策略

一、子行业投资策略

二、区域投资策略

三、产业链投资策略

四、生产策略

▄ 公司简介

中宏经略是一家专业的产业经济研究与产业战略咨询机构。成立多年来,我们一直聚焦在“产业研究”领域,是一家既有深厚的产业研究背景,又只专注于产业咨询的专业公司。我们针对企业单位、政府组织和金融机构,提供产业研究、产业规划、投资分析、项目可行性评估、商业计划书、市场调研、IPO咨询、商业数据等咨询类产品与服务,累计服务过近10000家国内外知名企业;并成为数十家世界500强企业长期的信息咨询产品供应商。

公司致力于为各行业提供最全最新的深度研究报告,提供客观、理性、简便的决策参考,提供降低投资风险,提高投资收益的有效工具,也是一个帮助咨询行业人员交流成果、交流报告、交流观点、交流经验的平台。依托于各行业协会、政府机构独特的资源优势,致力于发展中国机械电子、电力家电、能源矿产、钢

6

铁冶金、嵌入式软件纺织、食品烟酒、医药保健、石油化工、建筑房产、建材家具、轻工纸业、出版传媒、交通物流、IT通讯、零售服务等行业信息咨询、市场研究的专业服务机构。经过中宏经略咨询团队不懈的努力,已形成了完整的数据采集、研究、加工、编辑、咨询服务体系。能够为客户提供工业领域各行业信息咨询及市场研究、用户调查、数据采集等多项服务。同时可以根据企业用户提出的要求进行专项定制课题服务。服务对象涵盖机械、汽车、纺织、化工、轻工、冶金、建筑、建材、电力、医药等几十个行业。

我们的优势

强大的数据资源:中宏经略依托国家发展改革委和国家信息中心系统丰富的数据资源,建成了独具特色和覆盖全面的产业监测体系。经十年构建完成完整的产业经济数据库系统(含30类大行业,1000多类子行业,5000多细分产品),我们的优势来自于持续多年对细分产业市场的监测与跟踪以及全面的实地调研能力。

行业覆盖范围广:入选行业普遍具有市场前景好、行业竞争激烈和企业重组频繁等特征。我们在对行业进行综合分析的同时,还对其中重要的细分行业或产品进行单独分析。其信息量大,实用性强是任何同类产品难以企及的。

内容全面、数据直观:报告以本年度最新数据的实证描述为基础,全面、深入、细致地分析各行业的市场供求、进出口形势、投资状况、发展趋势和政策取向以及主要企业的运营状况,提出富有见地的判断和投资建议;在形式上,报告以丰富的数据和图表为主,突出文章的可读性和可视性。报告附加了与行业相关的数据、政策法规目录、主要企业信息及行业的大事记等,为业界人士提供了一幅生动的行业全景图。

深入的洞察力和预见力:我们不仅研究国内市场,对国际市场也一直在进行职业的观察和分析,因此我们更能洞察这些行业今后的发展方向、行业竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。我们有多位专家的智慧宝库为您提供决策的洞察这些行业今后的发展方向、行业竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。

有创造力和建设意义的对策建议:我们不仅研究国内市场,对国际市场也一直在进行职业的观察和分析,因此我们更能洞察这些行业今后的发展方向、行业

7

竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。我们行业专家的智慧宝库为您提供决策的洞察这些行业今后的发展方向、行业竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。

▄ 最新目录推荐

1、智慧能源系列

《2017-2021年中国智慧能源前景预测及投资咨询报告》 《2017-2021年中国智能电网产业前景预测及投资咨询报告》 《2017-2020年中国微电网前景预测及投资咨询报告》 《2017-2020年中国小水电行业前景预测及投资咨询报告》 《2017-2020年中国新能源产业发展预测及投资咨询报告》 《2017-2020年中国太阳能电池行业发展预测及投资咨询报告》 《2017-2020年中国氢能行业发展预测及投资咨询报告》 《2017-2020年中国波浪发电行业发展预测及投资咨询报告 《2017-2020年中国潮汐发电行业发展预测及投资咨询报告》 《2017-2020年中国太阳能光伏发电产业发展预测及投资咨询报告》 《2017-2020年中国燃料乙醇行业发展预测及投资咨询报告》 《2017-2020年中国太阳能利用产业发展预测及投资咨询报告》 《2017-2020年中国天然气发电行业发展预测及投资咨询报告》 《2017-2020年中国风力发电行业发展预测及投资咨询报告》

2、“互联网+”系列研究报告

《2017-2021年中国互联网+广告行业运营咨询及投资建议报告》 《2017-2021年中国互联网+物流行业运营咨询及投资建议报告》 《2017-2021年中国互联网+医疗行业运营咨询及投资建议报告》 《2017-2021年中国互联网+教育行业运营咨询及投资建议报告》

3、智能制造系列研究报告

《2017-2021年中国工业4.0前景预测及投资咨询报告》 《2017-2021年中国工业互联网行业前景预测及投资咨询报告》

8

《2017-2021年中国智能装备制造行业前景预测及投资咨询报告》 《2017-2021年中国高端装备制造业发展前景预测及投资咨询报告》

《2017-2021年中国工业机器人行业前景预测及投资咨询报告》 《2017-2021年中国服务机器人行业前景预测及投资咨询报告》

4、文化创意产业研究报告

《2017-2020年中国动漫产业发展预测及投资咨询报告》 《2017-2020年中国电视购物市场发展预测及投资咨询报告》 《2017-2020年中国电视剧产业发展预测及投资咨询报告》 《2017-2020年中国电视媒体行业发展预测及投资咨询报告》 《2017-2020年中国电影院线行业前景预测及投资咨询报告》 《2017-2020年中国电子竞技产业前景预测及投资咨询报告》 《2017-2020年中国电子商务市场发展预测及投资咨询报告》 《2017-2020年中国动画产业发展预测及投资咨询报告》

5、智能汽车系列研究报告

《2017-2021年中国智慧汽车行业市场前景预测及投资咨询报告》 《2017-2021年中国无人驾驶汽车行业市场前景预测及投资咨询报告》 《2017-2021年中国智慧停车市场前景预测及投资咨询报告》 《2017-2021年中国新能源汽车市场推广前景及发展战略研究报告》 《2017-2021年中国车联网产业运行动态及投融资战略咨询报告》

6、大健康产业系列报告

《2017-2020年中国大健康产业深度调研及投资前景预测报告》 《2017-2020年中国第三方医学诊断行业深度调研及投资前景预测报告》 《2017-2020年中国基因工程药物产业发展预测及投资咨询报告》 《2017-2020年中国基因检测行业发展预测及投资咨询报告》 《2017-2020年中国健康服务产业深度调研及投资前景预测报告》 《2017-2020年中国健康体检行业深度调研及投资前景预测报告》 《2017-2020年中国精准医疗行业深度调研及投资前景预测报告》 《2017-2020年中国康复医疗产业深度调研及投资战略研究报告》

9

7、房地产转型系列研究报告

《2017-2021年房地产+众创空间跨界投资模式及市场前景研究报告》 《2017-2021年中国养老地产市场前景预测及投资咨询报告》 《2017-2021年中国医疗地产市场前景预测及投资咨询报告》 《2017-2021年中国物流地产市场前景预测及投资咨询报告》 《2017-2021年中国养老地产前景预测及投资咨询报告告》

8、城市规划系列研究报告

《2017-2021年中国城市规划行业前景调查及战略研究报告》 《2017-2021年中国智慧城市市场前景预测及投资咨询报告》

《2017-2021年中国城市综合体开发模式深度调研及开发战略分析报告》 《2017-2021年中国城市园林绿化行业发展前景预测及投资咨询报告》

9、现代服务业系列报告

《2017-2021年中国民营医院运营前景预测及投资分析报告》 《2017-2020年中国婚庆产业发展预测及投资咨询报告》

《2017-2021年中国文化创意产业市场调查及投融资战略研究报告》 《2017-2021年中国旅游行业发展前景调查及投融资战略研究报告》 《2017-2021年中国体育服务行业深度调查与前景预测研究报告》 《2017-2021年中国会展行业前景预测及投资咨询报告》 《2017-2021年中国冷链物流市场前景预测及投资咨询报告》 《2017-2021年中国在线教育行业前景预测及投资咨询报告》 《2017-2021年中国整形美容市场发展预测及投资咨询报告》 《2017-2021年中国职业教育市场前景预测及投资咨询报告》 《2017-2021年中国职业中介服务市场前景预测及投资咨询报告》

第3篇:2017-2018年中国聚氨酯树脂类型绝缘水性涂料行业市场需求分析及趋势预测

2017-2021年中国聚氨酯树脂类型绝缘水性涂料行业发展深度研究与

投资咨询报告

▄ 核心内容提要

【出版日期】2017年4月 【报告编号】5713 【交付方式】Email电子版/特快专递

【价

格】纸介版:7000元

电子版:7200元

纸介+电子:7500元 【文章来源】http://report/20170114/5713.html ▄ 报告目录

第一章、聚氨酯树脂类型绝缘水性涂料行业相关概述 第一节、聚氨酯树脂类型绝缘水性涂料行业定义及分类 第二节、聚氨酯树脂类型绝缘水性涂料行业发展历程 第三节、聚氨酯树脂类型绝缘水性涂料分类情况 第四节、聚氨酯树脂类型绝缘水性涂料产业链分析

一、产业链模型介绍

二、聚氨酯树脂类型绝缘水性涂料产业链模型分析 第二章、聚氨酯树脂类型绝缘水性涂料发展环境及政策分析 第一节、中国经济发展环境分析

一、2015中国宏观经济发展

二、2016中国宏观经济走势分析 第二节、行业相关政策、法规、标准

第三章、中国聚氨酯树脂类型绝缘水性涂料生产现状分析 第一节、聚氨酯树脂类型绝缘水性涂料行业总体规模 第二节、聚氨酯树脂类型绝缘水性涂料产能概况

一、2011-2016年产能分析

二、2016-2020年产能预测

第三节、聚氨酯树脂类型绝缘水性涂料产量概况

1

一、2011-2016年产量分析

二、产能配置与产能利用率调查

三、2016-2020年产量预测

第四节、聚氨酯树脂类型绝缘水性涂料产业的生命周期分析

第四章、聚氨酯树脂类型绝缘水性涂料国内产品价格走势及影响因素分析 第一节、国内产品2011-2016年价格回顾 第二节、国内产品当前市场价格及评述 第三节、国内产品价格影响因素分析

第四节、2016-2020年国内产品未来价格走势预测

第五章、2010-2015年中国聚氨酯树脂类型绝缘水性涂料行业总体发展状况 第一节、中国聚氨酯树脂类型绝缘水性涂料行业规模情况分析

一、行业单位规模情况分析

二、行业人员规模状况分析

三、行业资产规模状况分析

四、行业市场规模状况分析

五、行业敏感性分析

第二节、中国聚氨酯树脂类型绝缘水性涂料行业产销情况分析

一、行业生产情况分析

二、行业销售情况分析

三、行业产销情况分析

第三节、中国聚氨酯树脂类型绝缘水性涂料行业财务能力分析

一、行业盈利能力分析与预测

二、行业偿债能力分析与预测

三、行业营运能力分析与预测

四、行业发展能力分析与预测

第六章、2015年中国聚氨酯树脂类型绝缘水性涂料行业发展概况

2

第一节、 2015年中国聚氨酯树脂类型绝缘水性涂料行业发展态势分析 第二节、 2015年中国聚氨酯树脂类型绝缘水性涂料行业发展特点分析 第三节、 2015年中国聚氨酯树脂类型绝缘水性涂料行业市场供需分析 第七章、聚氨酯树脂类型绝缘水性涂料行业市场竞争策略分析 第一节、行业竞争结构分析

一、现有企业间竞争

二、潜在进入者分析

三、替代品威胁分析

四、供应商议价能力

五、客户议价能力

第二节、聚氨酯树脂类型绝缘水性涂料市场竞争策略分析

一、聚氨酯树脂类型绝缘水性涂料市场增长潜力分析

二、聚氨酯树脂类型绝缘水性涂料产品竞争策略分析

三、典型企业产品竞争策略分析

第三节、聚氨酯树脂类型绝缘水性涂料企业竞争策略分析

一、2016-2020年我国聚氨酯树脂类型绝缘水性涂料市场竞争趋势

二、2016-2020年聚氨酯树脂类型绝缘水性涂料行业竞争格局展望

三、2016-2020年聚氨酯树脂类型绝缘水性涂料行业竞争策略分析 第八章、聚氨酯树脂类型绝缘水性涂料上游原材料供应状况分析 第一节、主要原材料

第二节、主要原材料202011—2015年价格及供应情况 第三节、2016-2020年主要原材料未来价格及供应情况预测 第九章、聚氨酯树脂类型绝缘水性涂料产业用户度分析 第一节、聚氨酯树脂类型绝缘水性涂料产业用户认知程度 第二节、聚氨酯树脂类型绝缘水性涂料产业用户关注因素

一、功能

3

二、质量

三、价格

四、外观

五、服务

第十章、2011-2016年聚氨酯树脂类型绝缘水性涂料行业发展趋势及投资风险分析

第一节、当前聚氨酯树脂类型绝缘水性涂料存在的问题 第二节、聚氨酯树脂类型绝缘水性涂料未来发展预测分析

一、中国聚氨酯树脂类型绝缘水性涂料发展方向分析

二、2011-2016年中国聚氨酯树脂类型绝缘水性涂料行业发展规模

三、2011-2016年中国聚氨酯树脂类型绝缘水性涂料行业发展趋势预测 第三节、2011-2016年中国聚氨酯树脂类型绝缘水性涂料行业投资风险分析

一、市场竞争风险

二、原材料压力风险分析

三、技术风险分析

四、政策和体制风险

五、外资进入现状及对未来市场的威胁

第十一章、聚氨酯树脂类型绝缘水性涂料国内重点生产厂家分析 第一节、企业1

一、聚氨酯树脂类型绝缘水性涂料概况

二、聚氨酯树脂类型绝缘水性涂料竞争优势分析

三、聚氨酯树脂类型绝缘水性涂料经营状况分析

四、2017-2022年企业投资前景分析 第二节、企业2

一、聚氨酯树脂类型绝缘水性涂料概况

二、聚氨酯树脂类型绝缘水性涂料竞争优势分析

4

三、聚氨酯树脂类型绝缘水性涂料经营状况分析

四、2017-2022年企业投资前景分析 第三节、企业3

一、聚氨酯树脂类型绝缘水性涂料概况

二、聚氨酯树脂类型绝缘水性涂料竞争优势分析

三、聚氨酯树脂类型绝缘水性涂料经营状况分析

四、2017-2022年企业投资前景分析 第四节、企业4

一、聚氨酯树脂类型绝缘水性涂料概况

二、聚氨酯树脂类型绝缘水性涂料竞争优势分析

三、聚氨酯树脂类型绝缘水性涂料经营状况分析

四、2017-2022年企业投资前景分析 第五节、企业5

一、聚氨酯树脂类型绝缘水性涂料概况

二、聚氨酯树脂类型绝缘水性涂料竞争优势分析

三、聚氨酯树脂类型绝缘水性涂料经营状况分析

四、2017-2022年企业投资前景分析

第十二章、聚氨酯树脂类型绝缘水性涂料产品竞争力优势分析 第一节、整体产品竞争力评价 第二节、体产品竞争力评价结果分析 第三节、竞争优势评价及构建建议

第十三章、聚氨酯树脂类型绝缘水性涂料行业供需平衡预测分析 第一节、2017-2022年中国聚氨酯树脂类型绝缘水性涂料行业产量预测 第二节、2017-2022年中国聚氨酯树脂类型绝缘水性涂料行业需求量预测 第三节、2017-2022年中国聚氨酯树脂类型绝缘水性涂料行业市场规模预测 第四节、2017-2022年中国聚氨酯树脂类型绝缘水性涂料行业价格走势

5

第十四章、业内专家观点与结论

第一节、聚氨酯树脂类型绝缘水性涂料行业发展前景预测

一、把握客户对产品需求动向

二、渠道发展变化预测

三、行业总体发展前景及市场机会分析

第二节、聚氨酯树脂类型绝缘水性涂料企业营销策略

一、价格策略

二、渠道建设与管理策略

三、促销策略

四、服务策略

五、品牌策略

第三节、聚氨酯树脂类型绝缘水性涂料企业投资策略

一、子行业投资策略

二、区域投资策略

三、产业链投资策略

四、生产策略

▄ 公司简介

中宏经略是一家专业的产业经济研究与产业战略咨询机构。成立多年来,我们一直聚焦在“产业研究”领域,是一家既有深厚的产业研究背景,又只专注于产业咨询的专业公司。我们针对企业单位、政府组织和金融机构,提供产业研究、产业规划、投资分析、项目可行性评估、商业计划书、市场调研、IPO咨询、商业数据等咨询类产品与服务,累计服务过近10000家国内外知名企业;并成为数十家世界500强企业长期的信息咨询产品供应商。

公司致力于为各行业提供最全最新的深度研究报告,提供客观、理性、简便的决策参考,提供降低投资风险,提高投资收益的有效工具,也是一个帮助咨询行业人员交流成果、交流报告、交流观点、交流经验的平台。依托于各行业协会、政府机构独特的资源优势,致力于发展中国机械电子、电力家电、能源矿产、钢

6

铁冶金、嵌入式软件纺织、食品烟酒、医药保健、石油化工、建筑房产、建材家具、轻工纸业、出版传媒、交通物流、IT通讯、零售服务等行业信息咨询、市场研究的专业服务机构。经过中宏经略咨询团队不懈的努力,已形成了完整的数据采集、研究、加工、编辑、咨询服务体系。能够为客户提供工业领域各行业信息咨询及市场研究、用户调查、数据采集等多项服务。同时可以根据企业用户提出的要求进行专项定制课题服务。服务对象涵盖机械、汽车、纺织、化工、轻工、冶金、建筑、建材、电力、医药等几十个行业。

我们的优势

强大的数据资源:中宏经略依托国家发展改革委和国家信息中心系统丰富的数据资源,建成了独具特色和覆盖全面的产业监测体系。经十年构建完成完整的产业经济数据库系统(含30类大行业,1000多类子行业,5000多细分产品),我们的优势来自于持续多年对细分产业市场的监测与跟踪以及全面的实地调研能力。

行业覆盖范围广:入选行业普遍具有市场前景好、行业竞争激烈和企业重组频繁等特征。我们在对行业进行综合分析的同时,还对其中重要的细分行业或产品进行单独分析。其信息量大,实用性强是任何同类产品难以企及的。

内容全面、数据直观:报告以本最新数据的实证描述为基础,全面、深入、细致地分析各行业的市场供求、进出口形势、投资状况、发展趋势和政策取向以及主要企业的运营状况,提出富有见地的判断和投资建议;在形式上,报告以丰富的数据和图表为主,突出文章的可读性和可视性。报告附加了与行业相关的数据、政策法规目录、主要企业信息及行业的大事记等,为业界人士提供了一幅生动的行业全景图。

深入的洞察力和预见力:我们不仅研究国内市场,对国际市场也一直在进行职业的观察和分析,因此我们更能洞察这些行业今后的发展方向、行业竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。我们有多位专家的智慧宝库为您提供决策的洞察这些行业今后的发展方向、行业竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。

有创造力和建设意义的对策建议:我们不仅研究国内市场,对国际市场也一直在进行职业的观察和分析,因此我们更能洞察这些行业今后的发展方向、行业

7

竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。我们行业专家的智慧宝库为您提供决策的洞察这些行业今后的发展方向、行业竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。

▄ 最新目录推荐

1、智慧能源系列

《2017-2021年中国智慧能源前景预测及投资咨询报告》 《2017-2021年中国智能电网产业前景预测及投资咨询报告》 《2017-2020年中国微电网前景预测及投资咨询报告》 《2017-2020年中国小水电行业前景预测及投资咨询报告》 《2017-2020年中国新能源产业发展预测及投资咨询报告》 《2017-2020年中国太阳能电池行业发展预测及投资咨询报告》 《2017-2020年中国氢能行业发展预测及投资咨询报告》 《2017-2020年中国波浪发电行业发展预测及投资咨询报告 《2017-2020年中国潮汐发电行业发展预测及投资咨询报告》 《2017-2020年中国太阳能光伏发电产业发展预测及投资咨询报告》 《2017-2020年中国燃料乙醇行业发展预测及投资咨询报告》 《2017-2020年中国太阳能利用产业发展预测及投资咨询报告》 《2017-2020年中国天然气发电行业发展预测及投资咨询报告》 《2017-2020年中国风力发电行业发展预测及投资咨询报告》

2、“互联网+”系列研究报告

《2017-2021年中国互联网+广告行业运营咨询及投资建议报告》 《2017-2021年中国互联网+物流行业运营咨询及投资建议报告》 《2017-2021年中国互联网+医疗行业运营咨询及投资建议报告》 《2017-2021年中国互联网+教育行业运营咨询及投资建议报告》

3、智能制造系列研究报告

《2017-2021年中国工业4.0前景预测及投资咨询报告》 《2017-2021年中国工业互联网行业前景预测及投资咨询报告》

8

《2017-2021年中国智能装备制造行业前景预测及投资咨询报告》 《2017-2021年中国高端装备制造业发展前景预测及投资咨询报告》

《2017-2021年中国工业机器人行业前景预测及投资咨询报告》 《2017-2021年中国服务机器人行业前景预测及投资咨询报告》

4、文化创意产业研究报告

《2017-2020年中国动漫产业发展预测及投资咨询报告》 《2017-2020年中国电视购物市场发展预测及投资咨询报告》 《2017-2020年中国电视剧产业发展预测及投资咨询报告》 《2017-2020年中国电视媒体行业发展预测及投资咨询报告》 《2017-2020年中国电影院线行业前景预测及投资咨询报告》 《2017-2020年中国电子竞技产业前景预测及投资咨询报告》 《2017-2020年中国电子商务市场发展预测及投资咨询报告》 《2017-2020年中国动画产业发展预测及投资咨询报告》

5、智能汽车系列研究报告

《2017-2021年中国智慧汽车行业市场前景预测及投资咨询报告》 《2017-2021年中国无人驾驶汽车行业市场前景预测及投资咨询报告》 《2017-2021年中国智慧停车市场前景预测及投资咨询报告》 《2017-2021年中国新能源汽车市场推广前景及发展战略研究报告》 《2017-2021年中国车联网产业运行动态及投融资战略咨询报告》

6、大健康产业系列报告

《2017-2020年中国大健康产业深度调研及投资前景预测报告》 《2017-2020年中国第三方医学诊断行业深度调研及投资前景预测报告》 《2017-2020年中国基因工程药物产业发展预测及投资咨询报告》 《2017-2020年中国基因检测行业发展预测及投资咨询报告》 《2017-2020年中国健康服务产业深度调研及投资前景预测报告》 《2017-2020年中国健康体检行业深度调研及投资前景预测报告》 《2017-2020年中国精准医疗行业深度调研及投资前景预测报告》 《2017-2020年中国康复医疗产业深度调研及投资战略研究报告》

9

7、房地产转型系列研究报告

《2017-2021年房地产+众创空间跨界投资模式及市场前景研究报告》 《2017-2021年中国养老地产市场前景预测及投资咨询报告》 《2017-2021年中国医疗地产市场前景预测及投资咨询报告》 《2017-2021年中国物流地产市场前景预测及投资咨询报告》 《2017-2021年中国养老地产前景预测及投资咨询报告告》

8、城市规划系列研究报告

《2017-2021年中国城市规划行业前景调查及战略研究报告》 《2017-2021年中国智慧城市市场前景预测及投资咨询报告》

《2017-2021年中国城市综合体开发模式深度调研及开发战略分析报告》 《2017-2021年中国城市园林绿化行业发展前景预测及投资咨询报告》

9、现代服务业系列报告

《2017-2021年中国民营医院运营前景预测及投资分析报告》 《2017-2020年中国婚庆产业发展预测及投资咨询报告》

《2017-2021年中国文化创意产业市场调查及投融资战略研究报告》 《2017-2021年中国旅游行业发展前景调查及投融资战略研究报告》 《2017-2021年中国体育服务行业深度调查与前景预测研究报告》 《2017-2021年中国会展行业前景预测及投资咨询报告》 《2017-2021年中国冷链物流市场前景预测及投资咨询报告》 《2017-2021年中国在线教育行业前景预测及投资咨询报告》 《2017-2021年中国整形美容市场发展预测及投资咨询报告》 《2017-2021年中国职业教育市场前景预测及投资咨询报告》 《2017-2021年中国职业中介服务市场前景预测及投资咨询报告》

第4篇:氨基树脂生产技术

一、 概述

以含有氨基官能团的化合物与醛类(主要是甲醛)经缩聚反应制得的热固性树脂称为氨基树脂,这种树脂在模塑料、粘结材料、层压材料、纸张处理剂等方面有广泛的应用。用于涂料的氨基树脂须再以醇类改性,使它能溶于有机溶剂,并与主要成膜树脂有良好的混溶性和反应性。 氨基化合物主要是尿素,三聚氰胺和苯代三聚氰胺。在涂料中,由氨基树脂单独加热固化所得的涂膜硬而脆,且附着力差,因此它常与基体树脂如醇酸树脂、聚脂树脂,环氧树脂等配合,组成氨基树脂漆。

氨基树脂漆中氨基树脂作为交联剂,它提高了基体树脂的硬度、光泽、耐化学性以及烘干速度,而基体树脂则克服了氨基树脂的脆性,改善了附着力。该漆在一定的温度经过短时间烘烤后,即形成强韧的三维结构涂层。

与醇酸树脂相比,氨基树脂漆的特点是:清漆色泽浅、光泽高、硬度高、有良好的电绝缘性;色漆外观丰满,色彩鲜艳,附着力优良,耐老化性好,具有良好的抗性;干燥时间短,施工方便,有利于涂漆的连续化操作。

尤其值得一提的是三聚氰胺甲醛树脂,它与不干性醇酸树脂,热固性丙烯酸树脂、聚酯树脂配合,可制得保光保色性极佳的高级白色或浅色烘漆。这类涂料目前在车辆、家用电器、轻工产品、机床等方面都得到了广泛的应用。

二、原料

1、氨基化合物

(1)尿素 又称脲或碳酰胺。无色晶体,大量存在于人类和哺乳动物的尿中,密度是1.335,熔点132.7℃。加热温度超过熔点时即分解。溶于水,乙醇和苯,水溶液呈中性反应。用作肥料、动物饲料、炸药、稳定剂和脲醛树脂等的原料。可由氨和CO2在高温、高压下作用制得。 (2)三聚氰胺 即蜜胺,又称氰尿酰胺。白色晶体,难溶于水,乙二醇,甘油,略溶于乙醇,不溶苯等有机溶剂。用于制备合成树脂和塑料等。可由双氰胺法和尿素法制得。

(3)苯代三聚氰胺 俗称苯鸟粪胺,是以-C6H5取代三聚氰胺分子上一个氨基的化合物。它的主要用途是涂料,塑料与三聚氰胺并用制层压板或密胺餐具,另外,在织物处理剂,纸张处理剂,胶粘剂,耐热润滑剂的增稠剂等方面也有应用。以它制得的氨基树脂,改善了三聚氰胺树脂的脆性,又不影响其耐候性。

工业上苯代三聚氰胺由苯甲腈和双氰胺在碱性催化剂存在下,以丁醇为溶剂制得。 表1-1为尿素,三聚氰胺,苯代三聚氰胺性能指标。 表1-1 原料性能指标

项目 尿素 三聚氰胺 苯代三聚氰胺 外观 白色结晶 白色结晶 白色结晶粉末 含氮量(以干基计),% ≥ 46.3 37.0~38.07 熔点,℃ 224~228 缩二脲含量,% ≤ 0.5 含量(升华法),% ≥ 99.5 水分含量,% ≤ 0.5 0.2 0.5 铁(Fe2O3)含量。% ≤ 0.002 游离氨(NH3) 含量,% ≤ 0.01 水不溶物含量,% ≤ 0.02 甲醛溶解度① (80℃/10min) 全溶 色泽(铂钴标准比色液) ≤ 30 游离碱,% ≤ 0.02 0.05 灰分,% ≤ 0.05 0.05 ①1份三聚氰胺与2.5份37%甲醛混合。

2、甲醛 又名蚁醛,常温为无色,有强烈刺激气味的气体,对人的眼鼻等有刺激作用。易溶于水和乙醇,水溶液浓度最高可达55﹪,通常是40﹪,称为甲醛水,俗称福尔马林,具有防腐功能的带刺激性气味的无色液体。通常加入8﹪--12﹪甲醇,防止聚合。有强还原作用,特别在碱性溶液中,能燃烧,蒸气与空气形成爆炸性混合物,爆炸极限为7﹪-73﹪(体积)。

甲醛是重要有机原料之一,广泛用作制取聚甲醛树脂,酚醛树脂、脲醛树脂、三聚氰胺树脂、维尼纶纤维等的原料,也是炸药、医药、农药和染料等的原料。 表1-2为醛类原料的性能指标。 表1-2 醛类原料的性能指标

指标名称 37%甲醛水溶液 (福尔马林) 多聚甲醛 50%甲醛水溶液 甲醛的丁醇溶液 甲醛的甲醇溶液

外观 无色透明液体,在低温时能自聚呈微浑 白至微黄色粉末有刺激味 无色透明液体 无色透明液体 无色透明液体

甲醛含量,g/100g 37±0.5 93~95 50.0~50.4 39.5~40.5 55 甲醇含量,g/100g ≤ 1230~35 甲酸含量,g/100ml ≤ 0.04- 铁含量,g/100ml ≤ 0.0005 0.005灼烧残渣含量,g/100ml ≤ 0.005 0.1熔程,℃--沸 点,℃ 96贮存温度,℃ 15.6~32.2

3、醇类

(1)甲醇 无色透明易燃易挥发的极性液体,纯品略带乙醇气味,粗品刺鼻难闻。有毒,饮后能致目盲。能与水、乙醇、苯、酮类和大多数其它有机溶剂混溶。蒸气与空气形成爆炸性混合物,爆炸极限6.0﹪—36.5﹪(体积)。

它是基本有机原料之一,主要用于制造甲醛、甲胺等多种有机产物,也是农药和医药的原料,合成对苯二甲酸二甲酯,甲基丙烯酸甲酯和丙烯酸甲酯的原料之一。还是重要的溶剂,亦可掺入汽油作替代燃料使用。

(2)乙醇 无色透明,易燃易挥发液体。有酒的气味和刺激性辛辣味。溶于水、甲醇、乙醚和氯仿。能溶解许多有机化合物和若干无机化合物,具有吸湿性,能与水形成共沸混合物。蒸气与空气形成爆炸性混合物,爆炸极限3.3﹪—19. 0﹪(体积)。

乙醇是重要的基础化工原料之一。以它为原料的化工产品达二百余种。广泛应用于基本有机原料、农药、以及医药、橡胶、塑料、人造纤维、洗涤剂等有机化工产品的生产,又是一种重要的有机溶剂,大量用于油漆,染料、医药、油脂和军工等工业生产。

(3)异丙醇 无色透明可燃性液体,有似乙醇的气味,与水、乙醇、氯仿、乙醚混溶。在许多情况下可代替乙醇使用,蒸气与空气形成爆炸性混合物,爆炸极限3.8—10.2﹪(体积).可用于制取丙酮、二异丙醚、乙酸异丙酯等,是有机合成的重要原料,还是常用的化学溶剂,还可作抗冻剂和汽油添加剂。

(4)正丁醇 无色液体,有酒的气味 ,溶于水,能与乙醇和乙醚混溶,蒸气与空气形成爆炸性混合物,爆炸极限3.7%-10.2%(体积),主要用于制备邻苯二甲酸,脂肪族二元酸及磷酸的正丁酯类增塑剂,广泛用于各种塑料和橡胶制品中,是有机合成中制丁醛、丁酸、丁胺等的原料,是油脂、药物(如抗生素)和香料的萃取剂,醇酸树脂涂料的添加剂等。又可用作有机染料和印刷油墨的溶剂,脱蜡剂。

(5)异丁醇 无色透明液体,有特殊气味,溶于水、乙醇和乙醚。其蒸气与空气形成爆炸性混合物,爆炸极限1.7-10.6%(体积)。用于制增塑剂,防老剂,果子精油,人造麝香和药物,并用作溶剂。存在于杂醇油中,是有机合成的原料之一。 表1-3为醇类原料性能指标。 表1-3 醇类原料性能指标

指标名称 甲醇 工业 无水乙醇 乙醇 异丙醇 正丁醇 异丁醇 辛醇

外观 无色透明液体 无色透明液体 无色透明液体 无色透明液体 无色透明液体 无色透明液体 无色透明液体

相对密度(d20) 0.791~0.792 ≤0.792 0.784~0.788 0.809~0.813 0.802~0.807 0.817~0.823 馏 蒸馏范围(101.3247kPa 绝对压力),℃ 64.0~65.5 77~85 81.5~83 117.2~118.2 95 90 程 馏出体积,% ≥ 98.8 95 99.5 95 0.01

游离酸(以乙酸计)含量,% ≤ 0.003

0.003 0.003

酸度(50ml试样,以0.01mol/L NaOH 计),ml ≤

1.8 1.8

乙醇含量(以容积计),% ≥

99 95

水分含量,% ≤ 0.08 1 0.2

丙酮含量,% ≤

不挥发物含量,% ≤

0.005 0.0025 0.005

游离碱(以NH3计)含量,%≤ 0.001

4、其他

(1)碳酸镁:弱碱性,是常用的碱性催化剂,微溶于甲醛,在甲醛溶液中大部分呈悬浮状态,它可抑制甲醛中的游离酸,促进羟甲基化反应,是一种很好的羟甲基化反应催化剂。过量的碳酸镁对杂质有吸附作用,在树脂过滤时有助滤作用。

(2)200号油漆溶剂油 主要为脂肪族烃类,其中含有少量芳烃,。芳烃含量不同,测得的树脂容忍度不同,芳烃含量高,测得值也高。因此,应使用芳烃含量恒定的200号油漆溶剂油。 (3)苯酐:又称邻苯二甲酸酐,白色针状晶体,易升华,稍溶于冷水,易溶于热水并水解为邻苯二甲酸。溶于乙醇、苯和吡啶,微溶于乙醚。是一种有机弱酸,是常用的酸性催化剂,使醚化反应平稳地进行。

(4)二甲苯:为对二甲苯、邻二甲苯、间二甲苯及乙苯的混合物,无色透明液体,溶于乙醇和乙醚,不溶于水。具有中等毒性,经皮肤吸收后,对健康的影响远比苯小。溶解能力强,挥发性适中,是目前涂料工业中应用面最广,用量最大的一种溶剂,在涂料用氨基树脂的合成中起脱水剂的作用。

三、制造原理

1、在氨基树脂整个生产过程中,主要发生了三个化学反应: (1)加成反应(羟甲基化反应)

氨基化合物和醛类(主要是甲醛)的加成反应可在碱或酸的催化下进行。其反应速率与PH值、温度、反应物的比例以及反应时间有关。一般来说,当PH=7时,羟甲基化反应较慢,pH>7,反应加快,在pH=8~9时,生成的羟甲基衍生物较稳定。

(2)缩聚反应

羟甲基衍生物在酸性催化剂存在下,可与氨基化合物的酰胺基或羟甲基缩合,生成亚甲基键。 含羟甲基越多的羟甲基衍生物,它们分子间的缩聚反应越慢。反之,羟甲基少的,分子中活性氢原子多,分子间的缩聚反应越快。

(3)醚化反应

羟甲基衍生物低聚物具有亲水性,不溶于有机溶剂,因此不能用于涂料。因此,必须经过醇类醚化改性,醚化后的树脂中具有一定数量的烷氧基,使原有分子的极性降低,并获得在有机溶剂中的溶解性,并作为涂料交联剂使用。

如果以甲醇醚化,树脂具有水溶性,具有快固性,可用于水性涂料中作交联剂;亦可与溶剂型醇酸树脂并用。用乙醇醚化的树脂可溶于乙醇,它的固化速度慢于甲醚化产物。以丁醇醚化的树脂在有机溶剂有较好的溶解性。以辛醇醚化时,因其本身极性小,和羟甲基(–CH2OH)反应缓慢,所以需先以低级醇(甲醇或丁醇)醚化,然后再与辛醇经醚交换反应,才能制得辛醚化树脂。由此可见,单元醇的分子链越长,醚化物可溶解性越好,但固化速度更慢。

丁醇醚化的树脂在溶解性、混溶性、固化性、涂膜性能和成本等方面都较理想,又因原料易得,生产工艺简便,所以与溶剂型涂料相配合的交联剂常采用丁醇醚化的氨基树脂。醚化反应是在弱酸性条件下,在过量丁醇中进行的,过量的丁醇有利于醚化反应进行,未反应的丁醇可作为溶剂。必须指出的是,在弱酸性条件下,醚化反应和缩聚反应是同时进行的,以脲醛树脂的丁醚化为例:

在此,特别指出的是,在生产制备单体型高烷基氨基树脂时,要避免缩聚和降低树脂中游离态醛类含量。

2、合成工艺

氨基树脂的生产过程可分为三个阶段: (1) 反应阶段

①一步法:树脂在反应过程中不区分碱性和酸性两个阶段,而是将各种原料投入后,在微酸性介质中同时进行羟甲基反应,醚化反应和缩聚反应。本法工艺简单,但必须严格控制pH值,使三种反应平衡地进行,达到规定的反应程度。

②二步法:物料先在微碱性介质中主要进行羟甲基化反应,反应到一定程度后,再转入微酸性介质中进行缩聚和醚化反应。由于在碱性阶段形成的羟甲基化合物较稳定,转入醚化反阶段后也较平稳,所以生产过程较易控制。 (2) 脱水阶段

①蒸馏法 这是利用蒸馏手段将反应体系中水分全部蒸出的方法。一般加入少量苯类溶剂进行三元共沸蒸馏。甲苯或二甲苯都可采用,纯苯由于毒性较大,已不采用。苯类的用量约为醇量的10%。常压法在常压回流脱水,通过分水器分出水分,醇类返回反应体系,由于水分不断及时地排出。使醚化反应和缩聚反应向右进行。该方法醇损耗少,树脂收率高。减压法脱水温度低,树脂在蒸馏阶段质量变化小,终点易控制,但醇损耗较大。

②分水法 是在蒸馏脱水前先将反应体系中部分水分离出去的方法。甲醛溶液中约含63%的水,缩聚和醚化反应时又有一部分反应水生成。全部水采用蒸馏法脱出,耗能大,工时长,而且反应中若有亲水性小分子物残留在树脂中,影响树脂抗水性和贮存稳定性。以二步法为例,当树脂在碱性反应阶段,形成的羟甲基衍生物是亲水性的,能溶于热水,溶液透明,树脂转入酸性反应阶段,随着缩聚和醚化反应的进行,树脂极性逐渐减少,由亲水性转变憎水性,这时溶液呈浑浊,若此时使溶液静止,溶液即分为二层,上层为树脂的醇溶液,下层为水层。分水法即分去下层水,然后再蒸出残余的水,此方法耗用热量少,若控制一定的缩聚程度,调整好树脂层和水层之间极性差距,可使树脂中的亲水性小分子更多地分离掉,有利于提高树脂内在质量,但醇类损耗较蒸馏法大。

在实际生产中,在脱水阶段通过测定树脂粘度控制缩聚程度,从测定树脂对200号油漆溶剂油的容忍度来控制醚化程度。测定容忍度应在规定的不挥发分含量及规定的溶剂中进行,否则得出的数值将是不同的。测定方法为称3g试样于100ml烧内,在25℃搅拌下以200号油漆溶剂油进行滴定,至试样溶液显示乳浊在15秒钟内不消失为终点。1g试样可容忍200号油漆溶剂油的克数即为树脂的容忍度数值。容忍度也可以用100g试样能容忍的溶剂的克数表示。 当容忍度达到终点后,脱去过多的醇,调整粘度至规定范围,然后进入最后一个阶段:后处理阶段。

(3) 后处理阶段

①水洗 有些树脂为了提高质量。可增加水洗工序 ,以除去亲水性物质。树脂中的小分子量产物,没有醚化好的羟甲基衍生物低聚物,原料中的杂质所形成的低分子量树脂等,都具有一定的亲水性,这种树脂在贮存中往往产生针状或絮状析出物,过滤也不能彻底滤除,滤后不久又会析出,若树脂放在敞口容器中,析出速度加快,可利用这点作为树脂抗水性的加速检验方法。水洗后的树脂,贮存稳定性和抗水性明显提高,但增加一道水洗工序,不仅增加了工时,而且水洗时部份醇类溶解在热水中随水分出,使醇类单耗上升。

水洗方法是在树脂中加入20%-30%的醇,再加入与树脂等量的水,三者一起加热到回流;静止分去水层后,减压回流脱水,水脱尽后再将树脂调整到规定的粘度范围;冷却过滤后,即可得到透明而稳定的树脂。

②过滤 成品必须过滤除去树脂中的杂质,如未反应的原料,未醚化的羟甲基衍生物低聚物,残余的催化剂等。助滤剂可采用硅藻土、碳酸镁等物质,过滤温度以60-70℃为宜。

3、影响产品质量的因素 (1)甲醛质量的影响

甲醛具有轻微的酸性,对金属有一定的腐蚀性,因此,如果甲醛中含有铁离子,则由它合成的树脂易呈黄相;铁含量高时,会促使缩聚反应加快,不利于工艺控制。

这种甲醛在使用前应进行预处理。预处理的方法之一是将甲醛依次通过阳、阴离子交换树脂;另一方法是在甲醛中加入适量碳酸镁,搅拌升温至60℃,保温半小时,静止后使用上层甲醛溶液。

(2) 甲醛用量的影响

甲醛用量增加,参加反应的甲醛增加,有利于醚化反应的进行,形成的烷氧基数量也相应增加。 (3) 醇类用量的影响

反应条件相同,随着醇类用量增加,烷氧基数也增加,分子间的缩聚反应减少,即亚甲基数量下降。

(4) pH值对反应的影响 ①羟甲基化阶段

在pH>7时,随反应温度和pH值的升高,羟甲基化反应速度加快。 ②醚化阶段pH值对树脂组成的影响

pH值对甲醛的结合速度和结合数量影响不大。当pH值偏高,羟甲基之间的缩聚反应缓慢,醚化反应进展也缓慢;pH值低时,亦有利于醚化反应和缩聚反应的进行,相比之下,缩聚反应快于醚化反应。

(5)碱性催化剂的影响

常用碱性催化剂主要有:碳酸镁和氢氧化钠等。由于以NaOH为催化剂时,反应阶段需增加水洗工序,因此,通常以碳酸镁为催化剂。

碱性催化剂用量以能中和甲醛中的甲酸,使PH值达到弱碱性为度,有效地促进羟甲基化反应和甲醛转化的速度。 (6)酸性催化剂的影响

在微酸性条件下醚化和缩聚是两个竞争的反应,缩聚快于醚化,树脂粘度高,不挥发分低,与中长油度的醇酸树脂的混溶性差,树脂稳定性亦差;醚化快于缩聚,树脂的粘度低,与短油醇酸树脂的混溶性差,制成的涂膜干性慢,硬度低,所以必须控制这两个反应均衡地进行,并使醚化略快于缩聚,达到既有一定的缩聚度,使树脂具有优良的抗性,又有一定的烷氧基含量,使它与基体树脂有良好的混溶性。

通常用有机弱酸(如苯酐)作醚化催化剂,能使醚化反应平稳地进行,对缩聚反应起的作用较小。它的用量要控制好,以pH=4.5~6.0为宜,用量过少时,容忍度进展缓慢,工时延长;用量多,则影响涂料的贮存稳定性。 (7)原料中杂质的影响

三聚氰胺中可能存在的含氮杂质多为水解物的脱氨物。杂质的存在将影响树脂的透明度,加快缩聚反应速率,使制成的树脂耐热性和耐水性下降。 (8)容忍度对涂膜性能的影响 容忍度间接表示了醚化程度,反映了树脂的极性,若反应超过了规定的容忍度,将影响树脂与不干性油醇酸树脂的混容性,影响涂膜的光泽和硬度。因此,当达到所需的容忍度后,应调整粘度,迅速终止反应。

(9)不同组成的树脂对贮存稳定性的影响。

参加反应的甲醛摩尔数越大,树脂的贮存稳定性越好;烷氧基数越大,贮存稳定性越好。 (10)溶剂对树脂贮存稳定性的影响。

经醚化的树脂在贮存中是处于动态平衡的,烷氧基易脱落,烷氧基也可以从相应的醇类溶剂中得到补充(如丁氧基可以从丁醇中得到补充)。如果烷氧基脱落后得不到补充,就破坏了动态平衡,随着贮存期延长,树脂本身粘度逐渐上升

四、以三聚氰胺树脂为例,对其质量问题进行分析以及处理

(一)、树脂和苯的混容性不良

根据技术指标,1份三聚氰胺树脂,应该溶解在4份苯中清澈透明。如果浑浊,甚至分层,其发生的原因可能有下列两种情况。

1、树脂中有水

树脂到达终点时,没有将水全部除尽,或反应完毕的树脂,在过滤包装过程中,混入了水份。水在苯中析出,就生成浑浊。

2、树脂醚化不够

丁氧基含量太少,与苯不能无限混容,轻则浑浊,重则分层。这种树脂不稳定,在储存过程中易变质,粘度增高,并使漆膜失光。

处理方法:补加少量丁醇,常压或减压加热回流脱出水,至取样达到在苯内溶解透明,再调整粘度到合格范围。

(二)、树脂和不干性蓖麻油醇酸树脂混容性不良

或能混容漆膜干燥后有白雾、光泽差、甚至皱皮无光。原因可能是:

1、缩聚反应快于醚化反应

树脂分子量增长太大,羟基减少太多所致,常见于分水法工艺因在水溶液中,有利于缩聚反应的进行。

2、醚化过度

树脂内含非极性丁氧基因太多,常由于生产过程中,保持醚化时间过长,或酸性催化剂用量太多,反应速度过快,来不及控制终点所引起。混容性不良,是一步一步形成的,但也大致可划分为三个阶段。

(1)、两种树脂能混容,但漆膜烘干后表面有一层白雾。这是混容性不良的最轻程度的表现。有时将配制好的清漆放置一天,情况可以改善,这是由于经过一段较长时间的储放后,混合物分子之间得到充分的扩散的结果。

(2)、能混容,但漆膜干燥后皱皮无光。出现这种情况是两种树脂基本上已不能混容,但两种树脂都溶解在丁醇中,成为暂时的稳定体系,在干燥过程中,丁醇挥发逸出,两种树脂就不能混容了,彼此间相互排斥,以致漆膜皱皮无光。

(3)、不能混容,混容性是和两种树脂的极性(分子结构)有密切关系的。彼此极性相近或含有相同的基因较多,彼此就能相互混容,反之就相互排斥,便会引起混容性不良。

(三)、树脂在储存过程中有杂质析出

树脂过滤后应清澈透明,但有些树脂在储存几天后,即开始变浑,有析出物浮在树脂中,有些像云雾一样,有些像针头一样,越来越多,密密麻麻,用以制漆,细度和抗水性都差,可能由于下列原因引起.

1、采用分水法工艺生产在分水时,分水没有分清.

2、采用分水法工艺生产,树脂缩聚过低,在分水时,亲水性杂质没有随水分离,仍旧留在树脂中。

不论上述哪一种原因,都是由于树脂中存在亲水性小分子量树脂,在储存过程中,吸收了空气中的潮气,或由于丁氧基的脱落,而不溶丁醇发浑析出。高分子物是多分散性的,三聚氰胺树脂也如此,在树脂中存在着一些没有缩聚和醚化好小分子量树脂,它们的极性大,稳定性差,容易从树脂中分离析出。另外,三聚氰胺中存在着一些含氰杂质。例如:一羟基三聚氰胺,二羟基三聚氰胺等。它们含有羟基,极性大,活性氰原子小,官能团少。因而缩聚度小。它们也能和甲醛,丁醇反应生成树脂,但形成的是亲水性的小分子量树脂,容易在储存过程中析出。 树脂内含有亲水性小分子量树脂,在敞口容器中,空气相对湿度大的时候,能加速析出速度,可利用这个原则作为一个快速检验方法。

已发生浑浊析出的树脂,单凭过滤是不能彻底解决问题的。过滤之后,能透明一时,但不久又要浑浊有析出物,因为过滤仅能消除已析出部分,不能消除未析出的部分,处理方法可以用热水将树脂洗涤1-2次,水的用量约相当于树脂的重量,另外尚须补加树脂重量20~30%的丁醇,将树脂稀释。三者一起加热到回流,静置分去水层,减压脱尽残留水分,再将树脂调整到粘度合格范围,冷却,过滤。即可得到清澈透明而稳定树脂。

(四)、干燥慢、硬度差

在同样配比、烘烤时间和烘烤温度下,漆膜不能完全干透,硬度低,引起的原因,主要是醚化过度,树脂组成丁氧基含量太高,羟甲基含量相对减少。丁氧基在固化过程中,虽然也可以和醇酸树脂起醚交换反应,逸出丁醇;但比羟甲基和羟基之间的缩聚固化速度要慢。没有反应的丁氧基,留在树脂内,起到内增塑作用,也使硬度下降。处理办法可加少量(约0.5%)的酸性烷基磷酸酯(例如磷酸二氢丁酯),或其他有机酸类(如苯甲酸、苯二甲酸酐、对甲苯磺酸等)促进固化速度。如和干性醇酸树脂合用,可加少量钴催干剂,帮助固化。延长固化时间,提高固化温度,也有利于固化完全,硬度提高。

(五)、粘度高、树脂含量低

一般树脂到达终点后,都在反应釜内调整粘度到合格范围。如果在同样粘度的情况下,树脂含量偏低,主要是由于树脂缩聚过度,分子量增大所致。如果延长树脂在碱性阶段反应时间,或延长分水法工艺的树脂在水溶液中反应时间以及配方中减少丁醇或甲醛用量,使酸性催化剂用量多等,均有利于缩聚反应,使分子量增大。另外甲醛中含铁量高,也能促使粘度升高。处理方法,可适当补加丁醇在微酸性下,再进行醚化反应。甲醛含铁量高应将甲醛预先处理后再用。

(六)、抗水性不良、漆膜发白、起泡、剥落

可能是由于树脂内存有亲水性小分子量树脂或钠离子等,也可能是漆膜烘干不够。处理方法,可适当延长漆膜烘烤时间或提高烘烤温度,使漆膜固化完全。由于亲水性物质所引起的问题,可用热水洗涤除去。

(七)、储存稳定性差

树脂在储存过程中粘度上升,混容性变差,甚至胶凝,发生的原因主要是: (1)、树脂在生产中缩聚过度,醚化不足

(2)溶剂部分丁醇含量不足,树脂分子在储存过程中是处于动态平衡状态中;丁氧基可以脱落,但同时在溶剂丁醇中得到补充。如果丁醇含量不足,为其他溶剂取代,则丁氧基脱落后就得不到补充,破坏了动态平衡作用,树脂本身继续缩聚,而使粘度上升。

(3)、配方中苯二甲酸酐用量太多,在室温下加速了树脂在储存过程中的继续缩聚反应。 处理方法:可补加少量丁醇、将树脂稀释。

五、单元操作

(一)反应釜

1、结构

反应釜由釜盖、筒体与筒底组成,在釜盖上安装传动和密封装置,以连接搅拌装置,设有人孔、视镜、温度计孔、取样装置和各种接管、阀门等,釜内、釜外装配传热用的盘管,釜底有出料阀和分水装置。

2、装料系数

反应釜的装料容积与全容积之比,称为装料系数,根据物料性质和反应情况,反应釜应有不同的装料系数,如在反应过程中呈现多泡沫或沸腾状态时装料系数只能达到0.65,泡沫不多、旋涡不大时可达0.7~0.75,一般不超过0.8,也就是说,总容量为12m3的反应釜,其装料量通常为8m3左右。

3、反应釜的传热

一般用热油对反应釜加热,釜体外部用的是平滑夹套或螺旋盘管夹套,釜内用浸入式热交换盘管(也叫蛇管),为了增加传热效果,有的设备增加了传热挡板。

釜内装料一定要超过釜外夹套及釜内蛇管的高度,以免“干烧”造成物料出现过热及结焦现象。

4、搅拌

搅拌的作用有两个,一个是使各参与反应的物料得到充分混合、分散、溶解,加速反应速度和脱水的速度,另一个加快传热速度,并避免靠近加热面的物料过热。提高生产效率和产品质量。

5、分水装置

安装在釜底的分水装置与分水器不同,主要由视镜,开关阀门和接管组成。它的用途是将反应釜内绝大部分的水和杂质排走,从而提高树脂的质量,减少能量的损耗。

6、分水器

也称为油水分离器,它的作用是经冷凝器冷凝下来的溶剂与水的混合物液体进行分离,上部是溶剂(比重小于水)要回收,经U型回流管返回反应釜,下部的水及时放掉。 分水器操作虽然比较简单,但要注意以下几点:

(1)当釜内处于反应阶段时,要打开连通阀,防止釜内有压力时无法回流。

(2)在用真空投料或出料时必须关闭回流阀和放空阀,以免将分水器中的溶剂和水抽入反应釜内。

(3)排水要及时、准确,既要避免排水不及时造成分水器未起到分水作用,又要避免将溶剂当成水排出造成浪费和污染。

7、导热油循环泵

热油系统的导热油要进行强制循环,由油泵提供动力,树脂生产车间使用的是RY型风冷式热油泵,与水冷式相比较,由于不用水,就避免了冷却水漏入导热油系统,另外它使用的是石墨轴承,不存在轴封泄漏问题,噪音也小。

对同时要求具备加热和冷却功能的热油系统,需要分别设置热油泵和冷油泵。

(二)过滤

树脂液中杂质,除原料和制造过程中带入的机械杂质外,还可能有树脂合成过程中形成的不溶的胶状颗粒,及后处理过程中析出的不溶解物质。这些杂质如不去掉将影响到涂料的性能。 过滤是利用过滤介质从流体中分离固体颗粒或胶粒状杂质的过程,常用滤纸、滤布、金属丝网等多孔材料作为过滤介质,使流体通过,固体颗粒则留在过滤介质上,随着过滤的进行,固体颗粒形成的滤饼不断增厚,过滤速度降低,可适当增加过滤压力以保持必要的过滤速度。 过滤按机理可分为表面过滤和深层过滤,表面过滤是指滤布、滤网等为过滤介质,固体颗粒停留并堆积在表面,滤饼起到了有效的帮助过滤的作用。深层过滤的过滤介质是由固体颗粒(助滤剂)堆积的过滤层,过滤作用不仅发生在表面层,而且发生在介质的全部空隙体内,表面过滤不适合用于软质杂质和纤维状杂质的过滤。

助滤剂(常用的硅藻土)的颗粒应均匀、质硬、不可压缩,通常在多孔的过滤介质表面预敷一层助滤层,也可将一定比例的助滤剂均匀混合在滤浆中,然后进行过滤,这两种方法常一起使用。

(1)水平板式过滤机

密闭的水平板式压滤机,可减少在过滤过程中的溶剂挥发,过滤质量好,滤液清彻透明,细度可达15 m以下,生产能力大,过滤面积10m3 的过滤机每小时可过滤树脂(50%)10t左右。 操作要点:

①助滤剂与滤浆混合及预敷

将滤浆用泵送入混合罐中,加入助滤剂总量的一半后搅拌,使滤浆与助滤剂均匀混合。常用的助滤剂是硅藻土,其总用量约为过滤树脂量的1/1000左右,可根据操作经验适当调整。 混合后,用泵将混有助滤剂的滤浆送入过滤机并返回混合罐,使之在过滤机与混合罐之间进行循环操作(俗称小循环),其目的是使助滤剂逐渐预敷在滤纸上。在小循环进行一段时间后,不断取样检验细度和澄清度,检验合格后,即可开始正式过滤,滤液不再返回混合罐。小循环过程大约需要15分钟。 ②过滤 将余下的一半助滤剂加入稀释罐,使其与滤浆均匀混合后用泵送入过滤机进行过滤。在过滤过程中,滤浆温度应保持在一定范围内,一般保持60-70℃,以降低树脂液的粘度,加快过滤速度。 ③吹扫和洗涤

过滤完毕后,用压缩空气将过滤机和管路中剩下的树脂液压回稀释罐。然后在稀释罐中放入适量溶剂,用泵循环清洗整个过滤系统,尽可能回收滤饼中夹带的树脂。最后再用压缩空气将过滤机和管路中的洗涤剂全部吹进稀释罐。 ④清除滤饼

松开过滤机顶盖四周的螺栓,移开顶盖,拆除固定多层滤板的中心压紧螺母,吊出多层滤板,再拆除压紧滤板的拉杆螺栓,撤掉滤饼,清洗干净,重新组装好滤板,拧紧拉杆螺栓,吊回过滤机壳体内,上好中心压紧螺母,最后装好顶盖,以备下次使用。 (2)袋式过滤器

过滤器系由一细长筒体内装有一个活动的金属网袋,内套以尼龙丝绢、无纺布或多孔纤维织物制作的滤袋。袋口嵌有金属圈,便于与金属网袋口压紧。带铰链的盖为平盖,盖与进口管之间、盖与金属网袋及滤袋之间,都有耐溶性的橡胶密封圈进行密封。压紧盖时,可同时使密封面达到密封,因而在清理滤渣、更换滤袋时十分方便。

滤袋有不同的材质可供选择。滤袋的公称孔径范围为1~800 m,对涂料过滤来说,常用规格为

5、

10、

15、

25、50 m等几种。

过滤器的材质有不锈钢和碳钢两种。为了便于用户使用,制造厂常将过滤器与配套的泵用管路连接好,装在移动式推车上,除单台过滤机外,还有双联过滤机,可一台使用,另一台进行清渣。使用时应注意以下几点。 ①使用前检查滤袋规格及有无破损,然后检查各密封圈是否完好,仔细压紧器盖即可开始过滤。 ②过滤中要注意过滤压力的变化。刚开泵时,压力约为0.05MPa,随后压力逐渐升高,一般当压力达到0.4MPa,即停机检查。打开器盖检查滤袋积渣情况,更换滤袋,继续过滤(脏滤袋子清洗后可重复使用)。过滤器的压力可通过旁路阀调节。

③过滤器在每次使用后必须随时清洗,保持整洁,以备下次使用。

这种过滤器的优点是适用的粘度范围很大。可过滤溶剂,也可过滤粘高达50Pa?s的物料。选用不同的滤袋,过滤细度的范围也很大;结构简单、紧凑、体积小;密闭操作;操作方便。缺点是滤袋价格较高,虽然清洗后尚可使用,但清洗也较麻烦。且清洗后过滤能力下降。因而过滤的费用较大;其次,滤袋过滤后的细度随过渡压力的变化有波动,因滤袋是“软”的,当压力稍大时,杂质有可能从滤袋的孔中挤出去。

六、应用

氨基树脂固化时变硬和脆,一般不能单独作涂料使用,常与含有羟基、羧基、酰氨基等柔软性好的其他树脂(醇酸、聚酯、环氧和丙烯酸树脂)进行交联固化,制得的涂料用途广泛,可用于木制家具清漆,工业漆,卷材涂料,汽车面漆等。

第5篇:树脂基复合材料低成本技术

姓名:

班号:

树脂基复合材料低成本技术

摘要:树脂基复合材料因其比强度高、比模量大而广泛的应用于航空航天等领域。然而其高昂的价格仍然是限制树脂基复合材料广泛应用的一大障碍。目前,已经有多国学者针对树脂基复合材料低成本化进行了研究,并取得了部分积极成果。本文主要介绍了几种低成本制造技术,如自动铺放技术、低温成型预浸料技术、电子束固化技术、液体成型技术以及树脂模渗透成型(RFI)技术。 关键词: 树脂基

复合材料

低成本技术

前言

与传统金属材料相比,复合材料具有密度低、比强度和比模量高、可设计性强、抗疲劳性能好、耐腐蚀性能好和结构尺寸稳定性好等优点,在航空航天领域获得了广泛的应用。从20世纪70 年代开始,复合材料就首先在军用飞机上少量使用,到了80 年代已在民用飞机上进行了试用。应用基本是从非承力结构到次承力结构最后到主承力结构,从部位来说是从尾翼到机翼最后到机身。随着技术的不断成熟,复合材料在飞机上的用量越来越多,减重效果也越来越明显[1]。

长期以来,限制复合材料在飞机上扩大应用的原因主要有2个:一是技术成熟度没有金属高;二是复合材料成本太高,复合材料构件的成本远远高于铝合金构件。要想扩大复合材料在航空上的应用,就必须降低复合材料的成本。本文旨在介绍几种复合材料低成本制造技术的发展现状,如自动铺放技术、低温成型预浸料技术、电子束固化技术、液体成型技术以及树脂模渗透成型(RFI)技术。

一、自动铺放技术

用于航空航天器的先进复合材料构件主要采用热压罐成型技术制造。自动铺放是替代预浸料人工铺叠,提高质量和生产效率的重要手段。根据预浸料形态,自动铺放可分为自动铺带

[2-3]

与自动铺丝

[4-5]

两类:自动铺带(Tape laying)采用有隔离衬纸单向预浸带(25-300 mm),多轴机械臂(龙门或卧式)完成铺放位置定位,铺带头自动完成预浸带输送剪裁、加热铺叠与辊压,整个过程采用数控技术自动完成(图1a所示);自动铺丝(Fiber placement)采用多束(最多可达32根)预浸纱/分切的预浸窄带(3-25 mm),分别独立输送、切断,由铺丝头将数根预浸纱在压辊下集束成为一条宽度可变的预浸带(宽度通过控制预浸纱根数调整)后铺放

- 1姓名:

班号:

数字化设计和自动化制造,已经成为发达国家飞机复合材料大型构件的主要成型方法:新一代大型飞机B78

7、A350的所有翼面采用自动铺带,而所有机身构件采用自动铺丝。复合材料的大量应用推动了自动铺放技术的快速发展,各类新技术层出不穷[6]。

二、低温成型预浸料技术

低温成型预浸料技术(Low Temperature Moulding Prepreg Technology)是一种低成本复合材料生产技术。先进复合材料公司早在70年代就开始研制开发这种技术,经过80年代和90年代的进一步开发,已经成为一种有效的低成本复合材料生产技术[7]。

用低温压制预浸料技术来生产复合材料结构件有许多特点,在原材料、工艺、生产技术、模具、适用性和成本方面有下列特色: (1)不采用热压罐固化;

(2)低温(通常在60℃左右)固化; (3)低压或真空袋固化; (4)采用无支撑后固化; (5)采用廉价材料制造的模具; (6)采用特种树脂体系; (7)预浸料存放寿命较短; (8)可以制造整体大构件; (9)适用于单件或小批量生产; (10)成本可降低50%~70%。

低温成型预浸料技术生产复合材料构件必须采用特殊的原材料——专用的树脂体系。一般树脂体系由三部分组成:基础树脂或其混合物、固化剂或其混合物和增韧剂或其他附加剂。对极大部份复合材料构件而言都采用环氧树脂体系。在过去20多年期间研究发展的环氧树脂体系,其固化剂都致力于延长存放寿命和较高固化温度,亦即树脂体系的反应性很低,预浸料的稳定性很好,较高固化温度是为了获得良好的机械性能,虽然这样的看法并不正确。为了得到可在低温下固化的树脂体系,而且可以采用无支撑后固化,先进复合材料公司研制发展了专用的LTM预浸料和树脂体系,包括: LTM10系列、LTM20系列、LTM30体系、

- 3姓名:

班号:

渍模塑成型工艺(See-mann Composites Resin Infusion Manufacturing Process,SCRIMP)、树脂膜渗透成型工艺(Resin Film Infusion,RFI)和结构反应注射模塑成型(Structural Reaction Injection Molding,SRIM)是最常见的先进LCM工艺技术。这类工艺的共同特点是将纤维预成型体放入模腔内,再将一种或多种液态树脂(通常为热固性树脂)在压力作用下注入闭合模中,液态热固性树脂浸渍纤维预成型体待树脂固化脱模后得到产品。这种作用压力可通过模腔内形成真空(真空浸渍)、重力,或者由压力泵或压力容器来提供[11-13]。与其他的纤维复合材料制造技术相比,LCM技术具有诸多优势:可生产的构件范围广,可一步浸渗成型带有夹芯、加筋、预埋件等的大型构件,可按结构要求定向铺放纤维,且具有高性能低成本制造优势。与传统的模压成型和金属成型工艺相比,LCM模具质量轻、成本低、投资小。另外,LCM为闭模成型工艺,能满足日趋严格的苯乙烯挥发控制法规的要求。

LCM工艺技术最早起源于20世纪40年代的Macro法,Macro法相当简单,对模腔抽真空以驱动浸渍过程,美国海军承包商用这种方法开发出了大型玻璃钢增强塑料船体。在20世纪50年代称为RTM工艺,该工艺可以生产双面光滑的产品,树脂的注射压力适中,比手糊工艺优越,所以得到了发展。20世纪50年代至70年代,RTM的应用很少。到了20世纪80年代,随着飞行器的承力构件及次承力构件、国防应用、汽车结构件以及高性能体育用品等的开发,RTM工艺取得了显著的进展,并且在此基础上开发了VARTM、SCRIMP、RFI、SRIM等这些先进的LCM工艺技术。

LCM工艺技术是先进复合材料低成本制备技术的主要发展方向[14]。据报道,欧美等先进工业国家在该领域开展了大量的研究工作,其研究开发耗资巨大。我国“863”计划在“九五”期间在RTM成型技术取得重要研究进展的基础上,部署了应用LCM技术制备车用大型结构件以降低高品质复合材料制造成本的研究计划。

五、树脂模渗透成型(RFI)技术

树脂膜渗透(RFI-resin film infusion)工艺是一种树脂膜熔渗和纤维预制体相结合的树脂浸渍技术。其工艺过程[15]是将预催化树脂膜或树脂块放人模腔内,然后在其上覆以缝合或三维编织等方法制成的纤维预制体等增强材料,再用真空袋封闭模腔,抽真空并加热模具使模腔内的树脂膜或树脂块融化,并在真空

- 5姓名:

班号:

[1] Guy Hellard. Airbus Structure Policy[C]/AMD Airbus Materials Dialogue 2007. Bremen, 2007. [2] Hu Cuiling(胡翠玲), Xiao Jun(肖 军), Li Yong(李 勇), etal. 复合材料自动铺带技术研究(I)平面铺带CAD/CAM软件开发[J]. Aerospace Materials & Technology(宇航材料工艺), 2007(1): 47-50. [4] Qian Jun(钱 钧), Xiao Jun(肖 军), LiYong(李 勇). 构架式卫星接头自动铺丝的建模研究[J]. Fiber Composites(纤维复合材料), 2002(2): 3-5. [5] Qian Jun(钱 钧), Xiao Jun(肖 军), ZhaoDongbiao(赵东标),etal. 复合材料构架式卫星接头自动铺丝成型仿真研究[J]. Journal of Astronautics(宇航学报), 2004, 25(6): 694-701. [6] Bruce M. Automating Composites Fabrication to Meet Increased Throughput Required by Industries Ranging from Aerospace to Wind Energy, Automation Speeds Composite Production [J]. Manufacturing Engineering. 2008, 140(4). [7] 陈祥宝. 先进复合材料低成本技术[M] . 北京:化学工业出版社, 2004: 20. [8] U.V.Lauppi,Radiat. Phys.Chem. 1990.30, 35. [9] Radiation Curing in Polymer Science & Technology,Volume, 1993. 301-339. [10] Batten, R.J, Davidson, R.S.&Wilkinson, S.A.J. Photochem.Photobiol. A.1991,(58): 123. [11] C D拉德, A C朗, K N肯德尔等. 复合材料液体模塑成型技术[M]. 北京:化学工业出版社,2004,5. [12] 黄家康, 岳红军, 董拥祺. 复合材料成型技术[M]. 北京:化学工业出版社,1999,1. [13] 刘雄亚, 谢怀勤. 复合材料工艺及设备[M]. 武汉:武汉工业大学出版社,1994,10. [14] 段华军, 马会茹, 王钧. RTM工艺国内外研究现状[J]. 玻璃钢/复合材料,2000,5(9):46-48. [15] 王东, 梁国正. 用于RFI工艺的高性能树脂膜的研究[J] . 复合材料学报,2001 ,18 (1) :38. [16] Pierre Cellea, et al. Numerical modelling of liquid infusion into fibrous media undergoing compaction[J]. Eur J Mech-A/Solids,2008,27 (4) :647.

- 7 -

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com。举报文章