陶瓷材料

2022-03-27 版权声明 我要投稿

第一篇:陶瓷材料

纳米陶瓷材料综述

Summary of nano-ceramic material

摘要:

本文是一片比较全面的纳米陶瓷材料的综述文章。主要内容涵盖了陶瓷的发展,纳米陶瓷的发展,纳米陶瓷的结构与性能(力学性能、电学性能、超塑性等)、纳米陶瓷的应用(防护材料、耐高温材料、生物材料、压电材料、信息材料等)、纳米陶瓷的制备方法,包括纳米粉的制备,成型及烧结。此外还有纳米材料的发展展望。

关键词:纳米陶瓷 结构与性能 应用 制备方法 展望

Abstract:

This paper is a comprehensive review article of the nano-ceramic material. The main content covers the development of the ceramic, the development of nano-ceramic nano-ceramic structure and properties (mechanical properties, electrical properties, superplasticity, etc.), the application of nano-ceramic (protective materials, high temperature materials, bio-materials, piezoelectric materials, information materials, etc.), nano-ceramic preparation methods, including nano-powders, molding and sintering. In addition to the development of nanomaterials Outlook. Keywords: nano-ceramic structure and performance preparation method Prospects

引言:著名的诺贝尔奖获得者Feynman在1959年就曾预言:“如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量异于寻常的特性,就会看到材料性能产生丰富的变化。”

1 英国著名科学家莱恩Cahn在Nature杂志上撰文说:“纳米陶瓷是解决陶瓷脆性的战略途径。”

纳米陶瓷的研究,不仅对先进陶瓷的制备和表征有新的发展和创新,而且对现有的陶瓷理论也将发生重大变革,甚至可形成新的理论体系。

纳米陶瓷被认为是陶瓷研究发展的第二个台阶。从微米级的先进陶瓷到纳米级的纳米陶瓷是当前陶瓷研究的趋势之一。

小尺寸效应、表面和界面效应、量子尺寸效应和宏观量子隧道效应,导致了纳米陶瓷呈现出与微米陶瓷不同的独持性能。由此,人们追求的陶瓷增韧和超塑性,以及奇特的功能等问题,有可能在纳米陶瓷中解决。

1、陶瓷的发展历史

陶瓷是人类最早利用自然界提供的原料制造而成的材料。从陶器发展到瓷器,是陶瓷发展过程中的一次重大飞跃。这种传统的瓷器,从结构上来看,是由玻璃相结合在一起的、由许多微小的晶粒构成的物体。

从传统陶瓷到先进陶瓷,是陶瓷发展过程中的第二次重大飞跃。两者的区别在于,在原材料、制备工艺、显微结构等方面存在相当的差别或侧重。传统陶瓷多数采用天然矿物原料,或经过处理的天然原料;而先进陶瓷则多数采用合成的化学原料,有时甚至是经特殊工艺合成的化学原料。

从先进陶瓷发展到纳米陶瓷是陶瓷发展过程中的第三次飞跃。纳米陶瓷将给人们提供更新更好的材料。

2、纳米材料纳米陶瓷简介: 纳米(nanometer)是一个长度单位,简写为nm。1 nm=10(-9) m=10 埃。 把组成相或晶粒结构的尺寸控制在1-100纳米范围的具有特殊功能的材料称为纳米材料。纳米陶瓷是指在陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都处于纳米水平的一类陶瓷材料。 纳米陶瓷是20世纪80年代中期发展起来的先进材料。

陶瓷材料作为材料的三大支柱之一 ,在日常生活及工业生产中起着举足轻重的作用。陶瓷又可分为结构陶瓷和功能陶瓷,结构陶瓷具有耐高温、耐磨损、耐腐蚀以及质量轻、导热性能好等优点;功能陶瓷在力学、电学、热学、磁光学和其它方面具有一些特殊的功能,使陶瓷在各个方面得到了广泛应用[1]。但是 ,由于传统陶瓷

2 材料质地较脆 ,韧性、强度较差 ,因而使其应用受到了较大的限制。随着纳米技术的广泛应用 ,纳米陶瓷随之产生 ,希望以此来克服陶瓷材料的脆性 ,使陶瓷具有象金属一样的柔韧性和可加工性。目前,虽然纳米陶瓷还有许多关键技术需要解决,但其优良的保温和高温力学性能,使其在切削刀具、轴承、汽车发动机部件等许多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻环境下起着其他材料不可替代的作用。

3、纳米陶瓷的发展

自20世纪70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料。纳米材料已有近30多年的发展历史,其发展历程,大致可以分为以下三个阶段:

第一阶段(1990年以前),主要是指实验室的工作研究,具体包括: ①探索用各种手段制备各种各样的纳米粉末;②合成块体(包括薄膜)纳米材料;③研究评估表征的方法;④探索纳米材料不同于常规材料的特殊性能。

第二阶段(1990—1994年),人们关注的热点是如何利用纳米材料奇特的物理、化学和力学性能,设计纳米复合材科。

第三阶段(1994年到现在),纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注。纳米陶瓷是纳米材料的重要组成部分,纳米陶瓷的发展基本上和与纳米材料同步进行的。

4、纳米陶瓷的结构与性能

纳米材料是由极细晶粒组成,特征维度尺寸在纳米数量级(1~100 nm)的固体材料。也有人称纳米材料是晶粒度为纳米级的多晶材料。陶瓷是由晶粒和晶界组成的一种多晶烧结体,由于工艺上的关系,很难避免其中存在气孔和微小裂纹。决定陶瓷材料性能的主要因素是:化学组成、物相和显微结构。

4.1、力学性能

人们认为纳米陶瓷是解决陶瓷韧性和提高强度的战略途径,因而其力学性能的研究就十分重要。与普通陶瓷相比,纳米陶瓷的基本特征是晶粒尺寸非常小,晶界占有相当大的比例,并且纯度高,可使陶瓷材料的力学性能大为提高。过去对材料力学性能建立的位错理论、加工硬化理论、晶界理论是否适用于纳米结构材料,一直是人们十分关注的问题。不少纳米陶瓷的硬度和强度比普通陶瓷高 3 4~5倍或更高。

4.2、超塑性

纳米陶瓷晶粒细化,晶界数量大幅度增加,扩散性高,可提高陶瓷材料的韧性和产生超塑性。因此,人们追求的陶瓷增韧和超塑性问题可望由纳米陶瓷来解决。纳米陶瓷具有较小的晶粒及快速的扩散途径,所以晶粒尺寸小于50nm的纳米陶瓷有望具有室温超塑性,从而根本上克服陶瓷材料的脆性。纳米陶瓷超塑性有重大的应用价值。利用这一特性可进行陶瓷的超塑性成型和超塑性连接。如日本用于发动机活塞环的超塑性弯曲成型制活塞环。陶瓷超塑性的出现将使陶瓷的成型方法发生变革,并使复杂形状部件的成型成为可能。

另外,陶瓷超塑性的出现将变革现有的烧结工艺,使成型和烧结有可能一次完成,为开发新型结构陶瓷开辟了新途径。

4.3、电学性质

纳米材料中,由于界面的体积分数较大,使平移周期性在一定范围内遭到严重破坏,颗粒尺寸愈小,电子平均自由程愈短。纳米材料偏离理想周期场,必将引起电学性能的变化。

4.3.1电阻

纳米材料的电阻高于常规材料。主要原因是纳米材料中存在大量的晶界,几乎使大量的电子运动局限在较小颗粒范围。晶界原子排列越混乱,晶界厚度越大,对电子的散射能力就越强,界面这种高能垒使电阻升高。

4.3.2、介电性

纳米材料的介电常数和介电损耗与颗粒尺寸有很强的依赖关系;纳米材料的电场频率对介电行为有极强的影响,并显示出比常规粗晶材料强的介电性。

4.3.3、压电效应

我国科技工作者在纳米非晶氮化硅块体上观察到强的压电效应,这主要是由于未经退火和烧结的纳米非晶氮化硅界面中存在大量的悬键(如在Si一Si

3、Si—SiN3等中的Si悬键,N—NSi2中的氮悬键等)以及N—H、Si—H、Si—O和Si—OH等键。

4.3.4、光学性质

4 纳米材料的红外吸收研究近年来比较活跃,主要集中在纳米氧化物、氮化物和纳米导体材料上。通常发光效应很低的Si、Ge半导体材料,当晶粒尺寸减小到<5nm时,可观察到很强的可见光发射。

Al2O3 、TiO2 、SnO2 、CdS 、CuCl2 、ZnO 、Bi2O3 、Fe2O3 、CaSO4等,当它的晶粒尺寸减小到纳米量级时,也同样观察到常规材料中根本没有的发光现象。根本不发光的纯Al2O3和纯Fe2O3纳米材料复合在一起,所获得的细晶材料在蓝绿光波段出现了一个较宽的光致发光带。此外,纳米材料还有非线性光学效应、光伏特性和磁致发光效应等。总之,纳米材料的光学性质的研究还处于初始阶段,许多问题值得深入研究。

此外,纳米材料还具有优异的热学、磁学、化学(催化、耐腐蚀)等性能。纳米材料基本物理性质的研究将进一步揭示纳米材料的本质,为开发新材料打下基础。纳米陶瓷可能具有的低温超塑性、延展性和极高的断裂韧性,将使其成为兼具陶瓷和金属的优良特性(如高强度、高硬度、高韧性、耐高温、耐腐蚀、易加工等)的新结构和功能材料,在航空、航天、机械、电子信息等众多领域具有无限广阔的应用前景。

5、纳米陶瓷的应用

以上纳米陶瓷性能的特点决定了纳米陶瓷具有广泛的应用领域:

5.1、硬性防护和软性保护材料

普通陶瓷在用作防护材料时,由于其韧性差,受到弹丸撞击后容易在撞击区出现显微破坏、跨晶、界面破坏、裂纹扩展等一系列破坏过程,从而降低了陶瓷材料的抗弹性能。纳米陶瓷具有高韧性的性能,提高了陶瓷材料的抗冲击性能,可有效提高主战坦克复合装甲的抗弹能力,增强速射武器陶瓷衬管的抗腐蚀性和抗冲击性;由防弹陶瓷外层和碳纳米管复合材料作衬底,可制成坚硬如钢的防弹背心。在未来的战争中,若能把纳米陶瓷用于车辆装甲防护,会具有更好的抗弹、抗爆震、抗击穿能力,提供更为有力的保护[3]。纳米Y2O3和ZrO2在较低温度烧结的陶瓷具有很高的韧性和强度,被用于轴承和刀具等耐磨器件[4]。

5.2、耐高温材料

纳米陶瓷粉末涂料在高温环境下具有优异的隔热保温效果,不脱落、不燃烧, 5 耐水、防潮,无毒、对环境无污染,对提高航空发动机的涡轮前温度,进而提高发动机的推重比和降低燃料消耗具有重要作用,适用于冶金、化工工业、电厂的热力锅炉及焦化煤气等热力设备和热力管网等高温设备的防腐、炉外降温[8],并有望成为舰艇、军用涡轮发动机高温部件的理想材料,以提高发动机效率,可靠性与工作寿命。在汽车工业也有着广阔前景,如用纳米陶瓷作为气缸内衬材料,因耐高温可提高燃料燃烧温度,使燃料的热效率提高;涂覆于汽车玻璃表面可起到防污和防雾、隔热作用[9]。

5.3、生物材料、临床应用材料

表1 纳米复相套磁材料的力学性能[10]

随着纳米材料研究的深入,纳米生物陶瓷材料的优势将逐步显现,其强度、韧性、硬度以及生物相容性都有显著提高。例如当羟基磷灰石粉末中添加10%~70%的ZrO2粉末时,材料经1300~1350℃热压烧结,其强度和韧性随烧结温度的提高而增加。纳米SiCn增强羟基磷灰石复合材料比纯羟基磷灰石陶瓷的抗弯强度提高1.6倍、断裂韧性提高2倍、抗压强度提高1.4倍,与生物硬组织的性能相当。从表1可看出纳米陶瓷材料的力学性能。

Erbe等用纳米技术制备出纳米磷酸钙,它不仅可以作为骨髓细胞的细胞骨架,还可以加速细胞的形成。生物功能陶瓷能够模仿人体某些特殊生理行为,可以用来构成牙齿和骨骼等某些人体部位,甚至可望部分或整体地修复或替换人体的某种组织器官。

5.4、以陶瓷粉末为吸收剂的吸收材料

传统的汽车尾气净化催化材料是在陶瓷载体表面涂一层Al2O3粉体材料作为分散层,再在分散层表面涂一层催化剂材料作为活性层。将分散层和活性层的材料制备技术开发成纳米表面材料技术,可明显改善汽车尾气催化剂的性能,提高了汽车尾气净化器的寿命[13]。

5.5、 压电材料

压电陶瓷广泛用于电子技术、激光技术、通汛、生物、医学、导航、自动控

6 制、精密加工、传感技术、计量检测、超声和水声、引燃引爆等军用、商用及民用领域。纳米陶瓷晶体结构上没有对称中心,具有压电效应。通过精选材料组成体系和添加物改性,可以获得高能和低温烧结兼备的压电纳米陶瓷材料。通过控制纳米晶粒的生长可获得量子限域效应,以及性能奇异的铁电体,以提高压电热解材料机电转换和热释性能。

5.6、信息材料

当陶瓷中的晶粒尺寸减小一个数量级,晶粒的表面积及晶界的体积亦以相应的倍数增加。纳米功能陶瓷除了可降低产品的成本,满足电子元件小型化的需要外,还可减少连接的距离,将会提高对环境的稳定性,减少噪音并降低产品对噪音的敏感性瑚[15],大大提高产品的质量。

5.7、清洁材料

“纳米易洁陶瓷”系采用特殊的涂覆技术。将纳米液态聚合硅均布于陶瓷表面,经高温处理后得到具有纳米量级膜层的陶瓷。聚合硅成膜后能大大降低陶瓷的表面张力,使液体在陶瓷表面呈半球状,不易挂沾,易于清洁。纳米陶瓷具有明显的易洁特性,在使用中便于清洗节水,也会减少因使用化学清洁剂而造成的环境污染。同时纳米陶瓷材料还具有一定的抗菌性[16]。所以其在墙地砖及卫生洁具的应用有着十分广阔的前景和重要的环保意义。

6、纳米陶瓷的制备

纳米陶瓷的制备从基本的工艺上看,同普通陶瓷的制备相类似,即将合成的纳米粉体成型,然后烧结。

6.1、 纳米粉的制备

与微米陶瓷相比,原料粉末粒度变小将引起纳米粉体的团聚、成型素坯的开裂以及烧结过程中的晶粒长大,从而影响纳米陶瓷的结构和性能。 解决纳米粉体的团聚、素坯的开裂以及烧结过程中的晶粒长大等问题己成为制备或提高纳米陶瓷质量的关键。

目前已用气相法、液相法和高能球磨法等制备了大量的各式各样的纳米粉体。 在纳米粉体的制备领域里出现了一些新的方法:

6.1.1、爆炸丝法

即利用金属丝在高压电容器的瞬间放电作用下,爆炸形成纳米粉体。采用该法已制备出Al2O

3、TiO2粉体、粉体的尺寸一般为20~30nm,呈球形。

6.1.2、化学气相凝聚法。

7 是将CVD的化学反应过程与惰性气体冷凝法 (IGC)的冷凝过程结合起来的方法。利用此法,已成功地合成了ZrO

2、TiO2等多种纳米粒子。

6.1.3、微波合成法

采用该法可在较低温度下和极短时间内,得到50~80nm的AlN。

6.1.4、超声化学法

是利用超声空化原理加速和控制化学反应。

现在利用此法,合成出了SiO2纳米材料。

6.1.5、激光蒸发-- 凝聚法

采用激光蒸发金属靶材料,合成了纳米尺度(10 ~ 50 nm)、组分可控的金属氧化物、碳化物和氮化物颗粒。

6.1.6、太阳炉蒸发--凝聚法

是在2kW的太阳反射炉中以溶液为前驱物,采用蒸发--凝聚工艺制备纳米级的--Fe2O

3、YxO2-y,SnO

2、In2O

3、ZnO和ZnO + Bi2O3。

另外,还有气相燃烧合成技术、超声等离子体沉积法、爆炸法等方法。

然而在湿化学法中制备纳米粉体的过程中存在的最大问题是粉末的团聚。 团聚体的存在无论对烧结过程还是对制品的性能都非常有害。 纳米粉体的团聚将导致坯体堆积密度低、形态不均匀,并将引入大量的缺陷和气孔,严重影响烧结体的致密度、强度、韧性、可靠性以及其他性能。 ①选择合适的沉淀条件;

②沉淀前或干燥过程中的特殊处理,如阳离子脱除、有机溶剂洗涤、干燥时的湿度控制、水热处理等; ③最佳燃烧条件的选择。

团聚体形成后,其消除方法主要有:①沉积或沉降; ② 超声波处理;③加入分散剂;④高的生成压力。

6.2纳米陶瓷的成型

成型就是将粉体转变成具有一定形状、体积和强度的坯体

成型追寻的目标:在形状和大小达到要求的前提下,素坯密度大,素坯密度分布均匀是理想坯体的重要指标

纳米粉体极细的颗粒和巨大的表面积,使其表现出不同于常规粗颗粒的成型情况。因此,用传统的陶瓷成型方法来成型,必然会出现一些问题。

例如需要过多的黏结剂、压块产生分层和回弹、湿法成型所需介质过多、双电层改变、流变状态变化、素坯密度低、坯体易干裂等。

由于纳米微粒的比表面积非常大,因此给陶瓷素坯成型带来极大的困难,不仅是素坯密度得不到提高、而且在模压成型或热压烧结装样时,还经常出现粉体在模具里装不下的情况。

解决上面问题的办法通常有两条:

6.2.1、用造粒的方法来减小粉体的比表面积;

8 一个常用的造粒方法是将纳米粉体加压成块(施加压力的大小是控制造粒的关键),然后再碾细、过筛。这个方法增加了粉体的颗粒度以便于成型,而同时并没有改变晶粒尺寸。

6.2.2、用湿法成型。 6.2.2.

1、凝胶注模成型

指液固转换过程没有体积收缩,能精确达到设计的尺寸。

凝胶注模成型的优点是能获得高密度、高强度、均匀性的坯体,可制备净尺寸成型复杂形状的陶瓷部件。

6.2.2.2、注浆成型

干压成型只能制备形状简单的部件,具有较大的局限性。

方敏等研究了纳米ZrO2粉末的注浆成型,虽然克服了干法成型的缺点、但生坯密度和强度较低。

6.2.2.3、直接凝固注模成型

利用生物酶催化反应来控制陶瓷浆料的pH值和电解质浓度,使其双电层排斥能最小时,依靠范德华力而原位凝固。

6.3、 纳米陶瓷的烧结

纳米陶瓷烧结的质量好坏将直接影响到纳米陶瓷的显微结构,从而影响其性能。在陶瓷工艺中,纳米粉体会对烧结过程产生巨大的影响,而且会出现一些新问题。由于纳米陶瓷粉体具有巨大的比表面积、使得作为粉体烧结驱动力的表面能剧增,烧结过程中的物质反应接触面增加,扩散速率大大增加,扩散路径大大缩短,成核中心增多,反应距离缩小等变化。

上面这些变化,必然使烧结活化能降低;烧结反应速率加快,引起整个烧结动力学的变化,烧结温度大幅度地降低。纳米陶瓷烧结的关键技术。为了获得晶粒尺寸小于100 nm的陶瓷,纳米陶瓷烧结的关键是控制晶粒长大。可以通过下面两种方法来解决: 一是降低烧结温度; 二是缩短烧结时间。

它们的目的都是为了抑制烧结过程中的晶粒长大,减小烧结体的平均晶粒尺寸。

主要的烧结方法如下:

① 惰性气体蒸发--凝聚原位加压制备法;② 真空(加压)烧结;③快速微波烧④ 放电等离子体烧结;⑤ 高温等静压烧结;⑥ 热压烧结;⑦ 超高压低温烧结⑧ 爆炸烧结; ⑨ 常压(加入添加剂的)烧结;⑩ 有机前驱物法等。 下面着重介绍第一种方法。

这个装置主要由三部分组成: 第一部分为纳米粉体的制备;

9 第二部分为纳米粉体的收集; 第三部分为粉体的压制成型。 该法的工艺过程为:

①用涡轮分子泵抽真空至l0 ~ 5 Pa,排除装置中的污染源;

②加热蒸发金属或化合物,通入惰性气体(氦气),将蒸发气带至液氮冷却壁冷凝成纳米粉末,此时真空下降至几百Pa; ③在超真空下,由聚四氟乙烯刮刀从冷阱上刮下,经漏斗直接落入低压压实装置;

④在低压压实装置中,粉体被轻度压成压块后,送到高压原位压实装置,进一步压实;

⑤对陶瓷进一步烧结,使其致密化。

7、研究展望:

纵观纳米陶瓷的发展历史,对高纯度、高均匀性和化学组成精确的纳米陶瓷粉体的制备和应用开发研究是纳米技术研究的一个长久课题,如何高效率、低成本地获取优质纳米陶瓷粉体,仍然是当今各国科学家和企业界研究的重点[17~18]。未来纳米陶瓷发展的方向主要有以下几个方面:

(1)纳米陶瓷粉体新的制备方法和工艺条件的研究与开发;开发高效率、低成本的制备技术;

(2)纳米粉体形成纳米陶瓷的反应机理研究;

(3)智能化敏感陶瓷元件计算机用光纤陶瓷材料、计算机硬盘和高稳定性陶瓷电容器

(4)研究纳米粉体对环境的污染机理,做好应用过程中的环境保护;

(5)加速纳米粉体的工业化生产和应用进程。在21世纪,纳米陶瓷粉体将飞速发展,在各领域的应用将全面展开,并将产生一批新技术、新产品;在电子、通信等高技术领域的广泛应用,将成为经济发展的新的增长点。

参考文献:

1 施锦行.纳米陶瓷的制备及其特性.中国陶瓷,1997,33(3):36~38 2 王世敏.纳米材料制备技术.化学工业出版社,2002 3 江炎兰,梁小蕊 . 纳米陶瓷材料的性能及其应用 . 兵器材料科学与工程,2008.31(5):91~94 4 阮霞.纳米材料制成金属陶瓷刀具 . 中华建筑报.2004-02-18 5 钱博章 . 重防腐纳米陶瓷涂料耐磨耐蚀. 中国涂料,2007 , 22(12) : 7 6 奉向东.纳米材料:IT突破的催化荆——透视纳米材料在IT中的应用 .中国计算机报,2004-06-21 7 司文.纳米灯你见过吗 . 西安日报,2008-11-16 8 赵雪.我国新纳米陶瓷涂料又创新品种 . 科技日报.2007-01-12 9 李爱兰,曹腊梅.航空发动机高温材料的研究现状.材料导报,2003.17(2):26~28 10 于金伟 . 纳米陶瓷刀具材料的力学性能研究.煤矿机械,2007,28(5):48 11 吴一福.纳米技术在口腔科的应用 . 中国医药报,2004-08-14 12 林平 . 纳米材料可杀灭癌细胞.科学时报,2001-01-14 13 张玉龙,李长德.纳米技术与纳米塑料.北京:中国轻工业出版社,2002

10 14 毛黎,聂翠蓉.纳米压电材料有望替代低能耗电池.科技日报.2008-12-04 15 毛黎,聂翠蓉.纳米压电材料有望使未来手机不再充电.科技日报,2008-12-4

16、陆佩文 主编《无机材料科学基础》,武汉工业大学出版社,1996年8月;

17、郑昌琼、冉均国 主编《新型无机材料》,科学出版社,2003年1月;

18、张立德 编著《纳米材料》,化学工业出版社,2001年4月;

19、刘吉平、郝向阳 编著《纳米科学与技术》,科学出版社,2002年8月。

20、

Fujishima,et al.Electrochemical photocatalysis of wat at a semiconductor electrode . Nature . 1972,37(1):238~242

21、 Veitch LCetal An assessment of the DARPA ffoordable Polymer matrix composite program.In 29th niernational SAMPE Technical Conference,1997 :220

22、 Lequitte M,Autissier D.Abstracts of Second International Conference Nanostructured Materials Stuttgart[J].Germany,Oct 1994:316.

第二篇:陶瓷材料论文

透明陶瓷的研究现状与发展展望

摘要:透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。

综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。

关键词:透明 陶瓷 透光性 制备工艺 应用

前言:自1962年R.L.Coble首次报导成功地制备了透明氧化铝陶瓷材料以来,为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用〔1〕。近38年来,世界上许多国家,尤其是美国、日本、英国、俄罗斯、法国等对透明陶瓷材料作了大量的研究工作,先后开发出了Al2O

3、Y2O

3、MgO、CaO、TiO

2、ThO

2、ZrO2等氧化物透明陶瓷以及AlN、ZnS、ZnSe、MgF

2、CaF2等非氧化物透明陶瓷.

透明陶瓷的分类

透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。

1氧化物透明陶瓷

对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。到目前为止,已经先后研发出了多种材料:Be()、ScZ()

3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。)仁’0,”】、铝镁尖晶石(Mg()·A一2()。)〔’2,’3]和透明铁电陶瓷pLZ子川等。其中AiZ姚、M

四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。

2非氧化物透明陶瓷

对非氧化物透明陶瓷的研究是从20世纪80年代开始的。非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。但经过各国研究人员的共同努力和深人研究,现已经成功地制备出了多种透明度很高的非氧化物透明陶瓷,其中最典型的是AIN、GaAS、MgFZ、ZnS、CaFZ等透明陶瓷。

与氧化物透明陶瓷相比,大多数的非氧化物透明陶瓷不仅室温强度高,而且高温力学性能好,此外,还具有优良的抗急冷急热冲击性能。这些都使得对非氧化物透明陶瓷的研究势在必行。

透明陶瓷的制备工艺

透明陶瓷的制备过程包括制粉、成型、烧结及机械加工的过程。为了达到陶瓷的透光性,必须具备以下条件〔4〕:(1)致密度高;(2)晶界没有杂质及玻璃相,或晶界的光学性质与微晶体之间差别很小;(3)晶粒较小而且均匀,其中没有空隙;(4)晶体对入射光的选择吸收很小; (5)无光学各向异性,晶体的结构最好是立方晶系;(6)表面光洁度高。因此,对制备过程中的每一步,都必须精确调控,以制备出良好的透明陶瓷材料。

2.1 粉料制备

透明陶瓷的原料粉有四个要求〔5〕:(1)具有较高的纯度和分散性;(2)具有较高的烧结活性;(3)颗粒比较均匀并呈球形;(4)不能凝聚,随时间的推移也不会出现新相。传统的粉料制备方法主要有固相反应法、化学沉淀法、溶胶—凝胶法以及不发生化学反应的蒸发—凝聚法(PVD)和气相化学反应法。除此之外,新的陶瓷制粉工艺也不断的涌现出来,如激光等离子体法、喷雾干燥法和自蔓延法等。

制备粉料的方式对陶瓷的透光性有很大的影响。金属氧化物球磨方法制备粉料,粉料的细度不能得到保证,固相反应时,粉料的活性低,颗粒粗,即使采用热压法烧结,也不易形成高密度的陶瓷,且陶瓷的化学组成和均匀性差。而化学工艺制备粉料的显著特点是能获得纯度、均匀、细颗粒的超微粉,合成温度显著下降,这种粉料制备的陶瓷,其致密度可达理论密度的99.9%或更高。一般的化学方法,包括沉淀法、溶胶—凝胶法等制备出的原料粉具有高的分散度,从而保证其良好的烧结活性。这是因为高的分散度的颗粒具有较大的表面能,而表面能是烧结的动力,同时用化学方法制备陶瓷原料粉能较好的引入各类添加剂。例如,人工晶体研究所的黄存新等就是采用金属醇盐法合成尖晶石超细粉末。他们将金属铝和镁分别与异丙醇、乙醇反应生成醇盐化合物,再将其混合、水解、干燥、高温煅烧,即得到性能良好的尖晶石粉料以制备透明铝酸镁陶瓷。

激光气相法是利用当光与物质发生相互作用时,物质的原子或分子将吸收某些特定波长的光子而处于激发态,这些激发态的原子或分子进行重新组合,从而发生化学反应的原理,采用合适的光照射反应物分子提供活化能,使其活化。提供能量的方式很多,但在通常的方法中所提供能量的能谱分布很宽,除了采用特种催化剂外,是没有很好的选择性的。由此而导致的化学反应过程往往包含着某些不需要的副反应,从而影响产物的纯度。由于激光单色性好,谱线很窄,光强极高,用激光辐射为反应系统提供能量,可大大改善反应的选择性,提高生成物纯度。在陶瓷粉末的激光合成技术中,所采用的激光器是CO2,其辐射是在红外波段内,例如蔺恩惠等人就是采用脉冲CO2激光作辐射光源,以TiCl4以及O2作反应物,利用脉冲红外激光诱发的自由基反应成功地合成了TiO2纳米粉。其工艺简单,成本较低,产品的质量较高,是很有发展前途的方法之一。 自蔓延高温合成法(SHS)是指对于放热反应的反应物,经外热源点火而使反应启动,利用其放出的热量,使反应自行维持,并形成燃烧波向下传播。其反应物可以是粉末、液体或气体。由于反应的速度极快,产物经过温度骤变的过程,处于亚稳态,粉末的烧结活性高,反应中的高温使易挥发的杂质挥发,从而得到较纯净的产物。其装置图如图1。

SHS法制备粉料优于传统的方法,其优点在于:(1)纯度高,SHS法经过一个高温过程,许多杂质尤其是有机物在高温下挥发,而粉料表面的氧化膜也被还原;(2)活性大,SHS法反应迅速,合成过程中温度梯度大,产品中有可能出现缺陷集中相和亚稳相,产物的活性大大提高,易于进一步烧结致密化。例如上海硅酸盐研究所的张宝林、庄汉锐等人就是以铝粉、高压氮气

为原料,将铝粉、氮化铝粉稀释剂以及氯化铵和氟化氨的混合物置于有机球磨桶中,以氮化铝球为球磨弹子,干混,然后在高压容器中,氮气压力下,以钛粉为引火剂,用通电钨线圈点火,使铝粉与氮气发生燃烧,用SHS法反应生成高氮含量、低氧含量的氮化铝粉〔8〕。 2.2 成型技术

透明陶瓷成型可以采用各种方法,如泥浆浇注、热塑泥浆压铸、挤压成型、干压成型以及等静压成型等。

干压成型是将粉料加少量结合剂,经过造粒然后将造粒后的粉料置于钢模中,在压力机上加压形成一定形状的坯体。干压成型的实质是在外力作用下,借助内摩擦力牢固的把各颗粒联系起来,保持一定的形状。实践证明,坯体的性能与加压方式、加压速度和保压时间有较大的联系。干压成型具有工艺简单、操作方便、周期短、效率高、便于实行自动化生产等优点,而且制出的坯体密度大,尺寸精确,收缩小,机械强度高,电性能好。但干压成型也有不少缺点,如模具磨损大,加工复杂,成本高,加压时压力分布不均匀,导致密度不均匀和收缩不均匀,以致产生开裂、分层等现象。

等静压成型是利用液体介质不可压缩性和均匀传递压力性的一种成型方法,它将配好的坯料装入塑料或橡胶做成的弹性模具内,置于高压容器中,密封后,打入高压液体介质,压力传递至弹性模具对坯体加压。等静压成型有如下特点:(1)可以生产形状复杂、大件及细长的制品,而且成型质量高;(2)成型压力高,而且压力作用效果好;(3)坯体密度高而且均匀,烧成收缩小,不易变形;(4)模具制作方便,寿命长,成本较低;(5)可以少用或不用粘接剂〔9〕。 2.3 烧结方法

透明陶瓷的烧结方法多种多样,最常用的是常压烧结,这种方法生产成本低,是最普通的烧结方法。除此之外,人们还采用不少特种烧结方法,如热压烧结、气氛烧结、微波烧结及SPS放电等离子烧结技术。

热压烧结是在加热粉体的同时进行加压,因此烧结主要取决于塑性流动,而不是扩散。对于同一种材料而言,压力烧结与常压烧结相比,烧结温度低得多,而且烧结体中气孔率也低;另外由于在较低的温度下烧结,就抑制了晶粒的成长,所得的烧结体致密,且具有较高的强度。热压烧结的缺点是加热、冷却时间长,而且必须进行后加工,生产效率低,只能生产形状不太复杂的制品。

气氛烧结是透明陶瓷常用的一种烧结工艺。为了使烧结体具有优异的透光性,必须使烧结体中气孔率尽量降低(直至零)。但在空气中烧结时,很难消除烧结后期晶粒之间存在的孤立气孔,相反,在真空或氢气中烧结时,气孔内的气体被置换而很快地进行扩散,气孔就易被消除。除了Al2O3透明陶瓷外,MgO、BeO、Y2O3等透明陶瓷均可以采用气氛烧结。

微波烧结是利用在微波电磁场中材料的介电损耗使陶瓷及其复合材料整体加热至烧结温度而实现致密化的快速烧结的新技术。微波烧结的速度快、时间短,从而避免了烧结过程中陶瓷晶粒的异常长大,最终可获得高强度和高致密度的透明陶瓷。微波烧结工艺中的关键是如何保证烧结试样的温度均匀性和防止局部区域热断裂现象,这可以从改进电场的均匀性和改善材料的介电、导热性能等方面考虑。放电等离子烧结是90年代发展并成熟的一种烧结技术,其装置示意如图2

图2 SPS设备装置图

SPS装置设备非常类似于热压烧结炉,所不同的是这一过程给一个承压导电模具加上可控脉冲电流,脉冲电流通过模具,也通过样品本身,并有一部分贯穿样品与模具间隙。通过样品及间隙的部分电流激活晶粒表面,击穿孔隙内残余气体,局部放电,甚至产生等离子体,促进晶粒间的局部结合,通过模具的部分电流加热模具,给样品提供一个外在加热源。所以,在SPS过程中样品同时被内外加热,加热可以很迅速。又因为仅仅模具和样品导通后得到加热,截断后它们即实现快速冷却,冷却速度可达300℃/min以上〔11-12〕。

作为一种烧结新技术,SPS在透明陶瓷的制备领域内还没有深入的研究,笔者所在的实验室从日本进口了一台SPS设备,本人正致力于有关SPS在透明陶瓷制备中的应用研究。利用SPS技术进行透明陶瓷的烧结,其优点在于SPS烧结技术的快速升温特性,有利于控制晶粒的异常长大,同时模具所给予的压力又促使陶瓷致密化;但是其缺点在于升温快,保温时间也比较短,这样使得气孔的完全排除比较困难,因为气孔在烧结过程中的移动速度比较慢,同时,也有可能导致晶粒的发育不完善,影响其透光性能。有关SPS进行透明陶瓷的烧结,还有待进一步的研究。

透明陶瓷的应用

1照明灯具

透明陶瓷有广泛的用途,最早是用于高压金属放电上。高压钠灯是其中最具代表性的。钠蒸气在放电时会产生l000℃以上的高温,而且具有很强的腐蚀性,玻璃灯管在这种条件下是无法正常工作的。目前,国内通过大量的研究和进口国外先进设备,在高压钠灯的生产已日趋成熟,每年国内生产厂家都要生产几千万只高压钠灯,市场需求为每年近3千万只,而且每年还以10%一15%的速度增长。 2激光材料 在激光透明陶瓷的研究中,最具有典型意义的是Nd,YAG材料服一州。Nd,YAG陶瓷激光器的整体性能已明显优于用其它方法制备的高品质的单晶.因此.多品透明Nd,YA(;陶瓷有望成为新一代的固体激光材料。 3红外窗口材料

红外夜视仪、导弹及激光制导等新一代光电设备有时是在十分严峻的条件下1一作的.如:高温高仄、强烈的摩擦以及雨水的强烈冲刷和浸蚀。为了保证系统能够正常运转以及能够准确无误地接受来自各个方位的有效信息.必须在外部使用红外窗口材料。透明陶瓷以其自身优异的综合性能在该领域有着广阔的应用前影。

4无机闪烁体

无机闪烁体在辐射探测中起着作常关键的作用,广泛应用于影像核医学、核物理、高能物理、石油勘探、安全检查等领域。目前应用最多的无机闪烁体是无机闪烁体韶.体,但是对于一些潜在的无机闪烁材料,传统的晶体性长技术难以实现,而透明陶瓷的制备技术 5电光陶瓷

电光陶瓷是一种光学性质随外加电场而改变的陶瓷。在此基础上配合其它相应的设备可以构成护目镜片和用作图像存储器。 6保护膜

目前,市场上的高档精饰件表面处理可谓多种多样,但是其性能均不够稳定。若采用镀透明陶瓷膜的方法‘川,不但成型后透光性好、光亮、耐磨性好.而且延长r使用寿命。该种透明陶瓷保护膜还可以应用于半导体器件、电器元件等的表面保护材料。此外,透明陶瓷还可以用作立体观察镜、测量电压的光电压计、全息存储器、以及用于吸收电磁波等方面门川。可见,透明陶瓷在日常生活和高科技中发挥着越来越重要的作用。

总结与展望

经过几十年的研究,透明陶瓷已取得了可喜的成果,其材料开发从过去的氧化铝透明陶瓷、氧化镁透明陶瓷、氧化钇透明陶瓷等材料扩展到透明PLZT电光陶瓷、钇铝石榴石透明陶瓷、铝镁酸透明陶瓷、氮化铝透明陶瓷以及氮氧化铝透明陶瓷等材料。这些透明陶瓷的发展拓宽了陶瓷的应用范围,但仍需进行更深入的研究,以进一步完善透明陶瓷的性能。笔者认为,未来透明陶瓷的研究发展有以下几个趋势: (1)由于透明陶瓷不仅具有透光性,而且具有特种陶瓷自身的属性,随着其应用范围的进一步拓展,人们必然会提出越来越高的性能要求,这就要求我们必须不断的去研究新型的透明陶瓷材料以满足人们的需求。

(2)原有的生产工艺使透明陶瓷的制备受到很大的局限,随着人们对透明陶瓷材料的需求,研究和探索各种新的制备工艺,以扩大透明陶瓷的种类已成为一个重要的课题。

(3)透明陶瓷集透光性与其自身材料的特性于一身的优异性引起了人们极大的兴趣,研究其新的应用领域也就成了一个新兴的课题。从最初的窗口材料到透明薄膜、集成电路基片、高温耐腐蚀材料,透明陶瓷的应用范围在不断的扩大,对其新功能的研究也在不断的发展。

(4)随着人们对透明陶瓷的需求量增加,工业化生产的问题就摆在了我们的面前。现有的实验室制备透明陶瓷的方法已经比较成熟,但如何把科技成果转化为生产力,如何实现工业化生产这个问题还值得我们去进一步研究,寻找一整套稳定的生产工艺以实现投资少而产出高的问题需要我们去解决。

纵观透明陶瓷的发展历程以及世界各国的发展现状和应用状况可以看出,虽然在该领域已经取得了长足的进展,但到目前为止仍有许多尚待解决的问题,在各国科研工作者的共同努力下,这些问题将逐渐得到攻克,透明陶瓷也将得到更加广泛的应用。

参考文献:

1 Sheppard LM.Ceram Bull,1990.69(11):1801 2 Ichinose N.New Ceramic,1992(5):95 3 李世普.特种陶瓷工艺学.武汉:武汉工业大学出版社,1990 4 范恩荣.电瓷避雷针,1998.164(4):45 5 黄存新.人工晶体学报,1996.25(2):108 6 蔺恩惠,李新勇等.西北师范大学学报,1995.131(1):8 7 江国键,庄汉锐等.无机材料学报,1998.13(4):568 8 杨金龙,黄 勇等.硅酸盐学报,1997.25(5):514 9 Jiping Cheng et al.Flocus on Electronics,2000(9):71 10 高 濂,宫本大树.无机材料学报,1997.12(2):129 11Mamoru Omori.Mater Sci Eng.A,2000(287):183 12赵 密,郭英奎等.哈尔滨理工大学学报,2000.5(2):121 13LitvinenkoVFetal.Sov.Powder.Metall.Met.Ceram.Soc,1983.22(6):490 14 Jiping Cheng et al.Flocus on Electronics,2000(9):71 15 Sheppard LM.Ceram Bull,1990.69(11):1801 16 KingeryWetal.Introduetiontoeeramies.Zndedu.NewYork:WIleyInterseienee,1976.634

第三篇:陶瓷材料的应用与前景

作者:李倩 单位:辽宁工程技术大学

一、陶瓷材料发展历史及其概念的内涵

陶瓷是人类生活和生产中不可缺少的一种材料。陶瓷产品的应用范围遍及国民经济各个领域。它的发展经历了从简单列复杂、从粗糙到精细、从无油到施釉、从低温到高温的过程。随着生产力的发展和技术水平的提高.各个历史阶段赋予陶瓷的涵义和范围也随之发生变化。

原来的陶瓷就是指陶器和瓷器的通称。也就是通过成型和高温烧结所得到的成型烧结体。传统的陶瓷材料主要是指硅铝酸盐。刚开始的时候人们对硅铝酸盐的选择要求不高,纯度不大,颗粒的粒度也不均一,成型压强不高。这时得到陶瓷称为传统陶瓷。后来发展到纯度高,粒度小且均一,成型压强高,进行烧结得到的烧结体叫做精细陶瓷。

接下来的阶段,人们研究构成陶瓷的陶瓷材料的基础,使陶瓷的概念发生了很大的变化。陶瓷内部的力学性能是与构成陶瓷的材料的化学键结构有关,在形成晶体时能够形成比较强的三维网状结构的化学物质都可以作为陶瓷的材料。这重要包括比较强的离子键的离子化合物,能够形成原子晶体的单质和化合物,以及形成金属晶体的物质。他们都可以作为陶瓷材料。其次人们借鉴三维成键的特点发展了纤维增强复合材料。更进一步拓宽了陶瓷材料的范围。因此陶瓷材料发展成了可以借助三维成键的材料的通称。

陶瓷的概念就发展成为可以借助三维成键的材料,通过成型和高温烧结所得到的烧结体。(这个概念把玻璃也纳入了陶瓷的范围)

现代陶瓷材料具有高新技术内涵。与传统材料相比.主要具有以下三个特点:

(1)以现代科技发展的要求为背景.是现代科技发展的产物,为高新技术产品。 (2)制造工艺复杂,需要现代科技成果的指导.因而为技术知识密集型产品。 (3)具有优异的威特殊的性能,能满足商新技术产业的要求。

二、陶瓷材料的分类

研究陶瓷的结构和性能的理论也得到了展开:陶瓷材料,内部微结构(微晶晶面作用,多孔多相分布情况)对力学性能的影响得到了发展。材料(光,电,热,磁)性能和成形关系,以及粒度分布,胶着界面的关系也得到发展,陶瓷应当成为承载一定性能物质存在形态。

这里应该和量子力学,纳米技术,表面化学等学科关联起来。陶瓷学科成为一个综合学科。

陶瓷材料中已崛起了精细陶瓷,它以抗高温、超强度、多功能等优良性能在新材料世界独领风骚。精细陶瓷是指以精制的高纯度人工合成的无机化合物为原料,采用精密控制工艺烧结的高性能陶瓷,因此又称先进陶瓷或新型陶瓷。

随着生产与科学技术的发展.陶瓷材料及产品种类日益增多.为了便于掌握各种材例或产品的特征,通常以不同的角度加以分类。

1.按化学成分分类

(1)氧化物陶瓷。氧化物陶瓷种类繁多,在陶瓷家族中占有非常重要的地位。最常用的氧化物陶瓷是用Al2O

3、SiO

2、MgO、ZrO

3、CeO2,CaO.Cr2O3及莫莱石(3Al2O3.2SiO4)和尖晶石(MgAl2O3)等。陶瓷中的Al2O3和SiO2相当于金属材料中的钢铁和铝合金一样被广泛应用,表11.1中列出了一些氧化物陶瓷.硅酸盐亦属氧化物系列。如ZrsiO4。Call已等,还有复合氧化物如BaT吗、CgyiO;等。 (2)碳化物陶瓷。碳化物陶瓷~般具有比氧化物更高的熔点。最常用的是SIC、SC,凤C.TIC等。碳化物陶瓷在制备过程中应有气氛保护。

(3)氨化物陶瓷。氯化物中应用最广泛的是a几,它具有优良的综合力学性能和耐高温性能。另外,TZN、BN、AI问筹氮化物陶瓷的应用也日趋广泛。最近刚刚出现的C3N4,可望其性能超过Si3O4。

(4)四化物陶瓷。硼化物陶瓷的应用并不很广泛,主要是作为深加剂或第二相加入其它陶瓷基体中,以达到改善性能的目的。常用的有Ti已、Zr&等。

2.按性能和用途分类

(1)结构陶瓷。结构陶瓷作为结构材料用来制造结构零部件.主要使用其力学性能。加强度、韧性、硬度、模量、耐磨性、耐高温性能(高温强度、抗热震性、耐烧蚀性)等。上面讲到的核化学成分分类的四种陶瓷大多数均为结构陶瓷。如 AjZQ石.3N

4、Z戏都是力学性能优越的代表性结构陶瓷材料。

(2)功能陶瓷。功能陶瓷作为功能材料用来制造功能器件,主要使用其物理性队如电磁性能、热性能、光性能、生物性能等。例如铁氧体.铁电陶瓷主要使用其电磁性能.用来制造电磁元件,介电陶瓷用来制造电容器,压电陶瓷用来制作位移或压力传感器.固体电解质陶瓷利用其离子传身特性可以制作氧探测器.生物陶瓷用来制造人工骨骼和人工牙齿等。超导材料和光导纤维也属于功能陶瓷的范畴。

值得提出的是,上述分类也是相对的.而不是绝对的,结构陶瓷和功能陶瓷有时并无严格界限,对于某些陶瓷材林二者兼而有之。加压电陶瓷。虽然可将它划分为功能陶瓷之列,但对其力学性能,如杭区强度、韧性、硬度、弹性模量亦有一定的要求。首先必须有足够的强度,在承受E力时不致破坏,才能实现共压电特性。另外如高温结构陶瓷或航天器防热部

件用抗热震耐烧依陶瓷,虽属结构陶瓷之列.但抗热展性不但决定于它本身的强度、韧性、模量,而且导热系数、热膨胀系数也与力学性能一样,对抗热震性有着十分重要的影响。耐腐蚀性是化工陶瓷(如耐酸泵)的重要性能,但要求必须具有~定的力学性能,才能满足承我要求。超导材料就是因为脂性大,做成导线困难.因而目前尚不能进入实际应用阶段。综上所述,不论是结构陶瓷还是功能陶瓷,力学性能是陶瓷材料的最基本性能.只不过是不同用途对力学性能要求的高低不同而已。

本章讨论的对象主要是结构陶瓷。

三、陶瓷材料的特点

1.陶瓷材料的性能特点

众所周知,金属材料(纯金日或合金)的化学健大都是金属但,是由金属正高于和充满其间的电子云所组成,金属键没有方向性.因此金属有很好的塑性变形性能。而作为无视非金属化合物的陶瓷来讲,其化学定是高于健和共价键。这种化学性有很强的方向性和很高的结合能。因此,陶瓷材料很难产生塑性变形.脆性大,裂纹敏感性强。这就是陶瓷材料的致命弱点。但也正是由于它具有这种化学健类型,使结构陶瓷具有一系列比金属材料优异的特殊性能。

①②高高硬焰度点,。

决决

定定

了了

它它

具具

有有

优杰

异出

的的

耐耐

磨热

性性

; ;

③高化学稳定性.决定了它具有良好的耐蚀性。

尽管陶瓷材料有如此优异的特殊性能.但由于其致命的缺点——脆性,因而限制了其特性的发挥和实际应用。因此,陶瓷的韧化使成为世界瞩目的陶瓷材料研究领域的核心课题(详见陶瓷的韧化一节)。

2.现代(先进)陶瓷与传统陶瓷的比较

现代陶瓷与传统陶瓷相比.从原料组成、制备工艺、组织结构及性能均有显著的区别。

四、陶瓷材料的应用与前景

氮化硅、碳化硅等新型陶瓷还可用来制造发动机的叶片、切削刀具、机械密封件、轴承、火箭喷嘴、炉子管道等,具有非常广泛的用途。

利用陶瓷对声、光、电、磁、热等物理性能所具有的特殊功能而制造的陶瓷材料称为功能陶瓷。功能陶瓷种类繁多,用途各异。例如,根据陶瓷电学性质的差异可制成导电陶瓷、半导体陶瓷、介电陶瓷、绝缘陶瓷等电子材料,用于制作电容器、电阻器、电子工业中的高温高频器件,变压器等形形色色的电子零件。利用陶瓷的光学性能可制造固体激光材料、光导纤维、光储存材料及各种陶瓷传感器。此外,陶瓷还用作压电材料、磁性材料、基底材

料等。总之,新剂陶瓷材料几乎遍及现代科技的每一个领域,应用前景十分广阔。

参考文献:

1.Bi0.5(Na0.96-xKxLi0.04)0.5TiO3(x=0.05,0.10)系无铅压电陶瓷的制备及性能研究 全部作者:张帅

第一作者单位:中国矿业大学材料科学与工程学院 关键词:钛酸铋钠;无铅;压电性能

摘要:本文的工作是采用传统固相合成法对Bi0.5(Na0.96-xKxLi0.04)0.5TiO3(x=0.05,x=0.10)系统进行了制备,并利用D8 Advance X射线衍射仪、JSM6380LV型扫描电镜对所制备的陶瓷进行了结构分析、形貌分析,利用介电、铁电测量方法对所制备的压电陶瓷的电学性能进行了...[查看全部] 论文摘要:本文的工作是采用传统固相合成法对Bi0.5(Na0.96-xKxLi0.04)0.5TiO3(x=0.05,x=0.10)系统进行了制备,并利用D8 Advance X射线衍射仪、JSM6380LV型扫描电镜对所制备的陶瓷进行了结构分析、形貌分析,利用介电、铁电测量方法对所制备的压电陶瓷的电学性能进行了初步的研究。研究结果表明,Bi0.5(Na0.96-xKxLi0.04)0.5TiO3压电陶瓷是纯的钙钛矿结构;扫描电镜结果表明,K+可以促进晶粒细化;随着K+含量的增加压电常数d

33、介电损耗tan?呈增大趋势,而相对介电常数?r、Qm随K+含量的增加呈下降趋势。[返回] 发布时间 :2010.09.10 11:49:31 学科:材料科学

2.LiTaO3/Al2O3陶瓷复合材料的韧化机理 全部作者: 第一作者单位:

关键词:LiTaO3/Al2O3;断裂行为;增韧机理;电畴结构

摘要:LiTaO3/Al2O3 陶瓷复合材料具有广阔的发展和应用前景。本文通过对其第二相LiTaO3断裂行为及增韧机理进行了探讨, 对LiTaO3/Al2O3 陶瓷复合材料不同制备工艺的韧化分析。结果表明 LiTaO3压电陶瓷颗粒能够与Al2O3 陶瓷基体稳定共存,并能较好的起到增韧作用。...[查看全部] 论文摘要:LiTaO3/Al2O3 陶瓷复合材料具有广阔的发展和应用前景。本文通过对其第二相LiTaO3断裂行为及增韧机理进行了探讨, 对LiTaO3/Al2O3 陶瓷复合材料不同制备工艺的韧化分析。结果表明 LiTaO3压电陶瓷颗粒能够与Al2O3 陶瓷基体稳定共存,并能较好的起到增韧作用。获得最佳性能的合适的制备工艺是目前的研究趋势。[返回] 发布时间 :2010.09.08 11:13:1 同行评议: 修改意见如下:

1、文中应讨论不同LiTaO3 / Al2O3混合比例对复合微观结构、材料力学、电畴结构的影响,这点对工程应用和复合陶瓷的理论研究也非常重要。

2、注意修改文中表达错误:如将压电陶瓷作为第二相加人结构陶瓷,达到强韧化目的等文字表达...[查看全部] 同行评议: 修改意见如下:

1、文中应讨论不同LiTaO3 / Al2O3混合比例对复合微观结构、材料力学、电畴结构的影响,这点对工程应用和复合陶瓷的理论研究也非常重要。

2、注意修改文中表达错误:如将压电陶瓷作为第二相加人结构陶瓷,达到强韧化目的等文字表达错误。

3、对实验结果的分析最好能有图片和测量曲线等证据加以支持和说明,这才是科学研究的价值所在。

4、英文摘要要重写。[返回] 学科:物理学

3.Si3N4-SiC纳米复合陶瓷材料的研究

全部作者:董利民;张宝清;田杰谟;郑京;Dong Limin,Zhang Baoqing,Tian Jiemo,Zheng Jing 关键词:Si3N4;SiC;纳米复合陶瓷

摘要:用粒度为50~70nm的纳米级SiC粉体与微米级的Si3N4粉体复合来制备Si3N4-SiC纳米复合陶瓷材料,对纳米SiC含量不同的Si3N4-SiC纳米复合陶瓷材料的微观组织结构与

性能的关系进行了研究。结果表明:纳米S...[查看全部] 论文摘要:用粒度为50~70nm的纳米级SiC粉体与微米级的Si3N4粉体复合来制备Si3N4-SiC纳米复合陶瓷材料,对纳米SiC含量不同的Si3N4-SiC纳米复合陶瓷材料的微观组织结构与性能的关系进行了研究。结果表明:纳米SiC质量分数为10%时,经热压烧结法制备的Si3N4-SiC纳米复合陶瓷材料的抗弯强度为844MPa,断裂韧性为9.7MPa?m1/2。微观组织结构的研究还表明,纳米SiC的不同含量影响着基体Si3N4的晶粒形貌,从而决定了复合材料的性能。探讨了纳米级SiC在基体中的形态、分布及其对基体强化增韧的新机制。[返回] 收录情况: 清华大学学报 1996年第6期 期刊链接:清华大学学报 4.陶瓷复合挺柱的研制

全部作者:孟嗣宗,齐龙浩,金之垣,莫伟;Meng Sizong,Qi Longhao,Jin Zhiyuant,Mo Wei 关键词:柴油机;陶瓷;挺柱

摘要:本文介绍柴油机的Si3N4陶瓷复合挺柱的研制工作,包括挺柱的设计、陶瓷与金属的连接技术及磨损试验的结果。试验结果表明,采用陶瓷复合挺柱后,不仅挺柱本身的磨损量大为下降,与其配对的凸轮的磨损也下降了三分之二。[查看全部] 论文摘要:本文介绍柴油机的Si3N4陶瓷复合挺柱的研制工作,包括挺柱的设计、陶瓷与金属的连接技术及磨损试验的结果。试验结果表明,采用陶瓷复合挺柱后,不仅挺柱本身的磨损量大为下降,与其配对的凸轮的磨损也下降了三分之二。[返回] 收录情况: 清华大学学报 1995年第2期 期刊链接:清华大学学报 学科:暂无

5.电子封装材料的研究现状及趋势

全部作者:汤涛,张旭,许仲梓;TANG Tao, ZHANG Xu, XU Zhong-zi 关键词:封装材料; 陶瓷基; 塑料基; 金属基

摘要:电子信息产业高速发展,电子产品趋于小型化、便携化、多功能化。电子封装材料也随之迅速发展,已成为一种高新产业。介绍了电子封装材料的概念、作用和分类,分析总结了近年来国内外电子封装材料的生产研究现状,比较了陶瓷基、塑料基和金...[查看全部] 论文摘要:电子信息产业高速发展,电子产品趋于小型化、便携化、多功能化。电子封装材料也随之迅速发展,已成为一种高新产业。介绍了电子封装材料的概念、作用和分类,分析总结了近年来国内外电子封装材料的生产研究现状,比较了陶瓷基、塑料基和金属基封装材料的特点,最后展望了电子封装材料的发展趋势。[返回] 收录情况: 南京工业大学学报(自然科学版) 2010年第7期 期刊链接:南京工业大学学报(自然科学版) 学科:暂无

6.溶胶-凝胶法制备二氧化硅无机膜的工艺研究

全部作者:李小霞,江云波,张克铮;LI Xiao-xia,JIANG Yun-bo,ZHANG Ke-zheng 关键词:溶胶-凝胶法;SiO2;制备;无机膜

摘要:以正硅酸乙酯为原料,乙醇为溶剂,盐酸为催化剂,N,N-二甲基酰胺为模板剂,采用溶胶-凝胶工艺在Al2O3基体上制备SiO2无机膜。考察了涂膜方式、溶胶的醇硅物质的量比及停放时间对膜性能的影响。结果表明,采用浓稀结合的方式涂膜可提高制膜效率及膜的性...[查看全部]

论文摘要:以正硅酸乙酯为原料,乙醇为溶剂,盐酸为催化剂,N,N-二甲基酰胺为模板剂,采用溶胶-凝胶工艺在Al2O3基体上制备SiO2无机膜。考察了涂膜方式、溶胶的醇硅物质的量比及停放时间对膜性能的影响。结果

表明,采用浓稀结合的方式涂膜可提高制膜效率及膜的性能;较大的醇硅物质的量比虽然可以获得较好的膜,但制膜周期较长;溶胶停放时间过长,会使膜的性能下降。[返回] 收录情况: 石油化工高等学校学报 2010年第6期 期刊链接:石油化工高等学校 7.压电陶瓷发电能力测试系统的研制

全部作者:程光明,庞建志,唐可洪,杨志刚,曾平,阚君武;CHENG Guang-ming,PANG Jian-zhi,TANG Ke-hong,YANG Zhi-gang,ZENG Ping,KAN Jun-wu 关键词:机械设计;压电陶瓷;压电发电;霍尔位移传感器;电荷放大器

摘要:为了进行压电陶瓷材料发电性能测试与研究,设计并制作了一套压电陶瓷发电能力的测试系统。根据压电陶瓷发电性能指标以及影响因素,设计了采用霍尔位移传感器和电荷放大器对压电陶瓷振幅和电荷量进行测量的系统。设计制作了数据采集软件,可以...[查看全部] 论文摘要:为了进行压电陶瓷材料发电性能测试与研究,设计并制作了一套压电陶瓷发电能力的测试系统。根据压电陶瓷发电性能指标以及影响因素,设计了采用霍尔位移传感器和电荷放大器对压电陶瓷振幅和电荷量进行测量的系统。设计制作了数据采集软件,可以对测试数据进行处理和显示。该测试系统为研究压电陶瓷尺寸参数、外界激励的频率和振幅对压电陶瓷发电能力的影响提供了测试分析平台。[返回] 收录情况: 吉林大学学报(工学版) 2007年第3期 期刊链接:吉林大学学报(工学版) 学科:暂无

8.压电陶瓷能量转换系统

全部作者:闫世伟,杨志刚,阚君武,程光明,曾平;Yan Shi-wei,YANG Zhi-gang,Kan Jun-wu,CHENG Guang-ming,ZENG Ping 关键词:机械设计;压电陶瓷;压电发电装置;能量储存;驱动

摘要:为实现利用压电材料收集人体能量,将其转化成电能在某些特殊应用领域替代电池或自动为电池充电的目的,设计了一个能量转换系统,该系统由压电发电装置和存储与控制电路组成。通过试验的方法研究了压电振子在结构参数、支撑方式等多种因素影响...[查看全部] 论文摘要:为实现利用压电材料收集人体能量,将其转化成电能在某些特殊应用领域替代电池或自动为电池充电的目的,设计了一个能量转换系统,该系统由压电发电装置和存储与控制电路组成。通过试验的方法研究了压电振子在结构参数、支撑方式等多种因素影响下的发电特性,根据试验取得的优化参数和工作方案设计了压电发电装置,并尝试利用其为无线遥控器供电。经过试验测试,压电发电装置在外接100kn负载时最大输出功率为58.2mW,连接存储与控制电路时可满足无线遥控器(以开关无线遥控器为例)的使用要求,信号传输距离达到10m以上。[返回] 收录情况: 西北林学院学报 2008年第3期 期刊链接:西北林学院学报 学科:暂无

9.Co3O4纳米颗粒的溶胶凝胶法制备及磁性

全部作者:韩立安1,常 琳1,牟国栋2,孟泉水1,朱金山1;HAN Li-an1,CHANG Lin1,MOU Guo-dong2,MENG Quan-shui1,ZHU Jin-shan1 关键词:溶胶凝胶;纳米颗粒;Co3O4;磁性

摘要:采用PVA水溶液溶胶凝胶成功制备了粒径为25 nm的Co3O4纳米颗粒,用热重-差热仪、X射线衍射仪、超导量子干涉仪对样品进行了表征。结果表明:当加热温度低于500℃时,产物中含有CoO杂相;500℃以上时,产物为纯相Co3O4纳米颗粒。Co3O4纳米颗粒(25 nm)为立方尖晶石...[查看全部] 论文摘要:采用PVA水溶液溶胶凝胶成功制备了粒径为25 nm的Co3O4纳米颗粒,用热重-差热仪、X射线衍射仪、超导量子干涉仪对样品进行了表征。结果表明:当加热温度低于500℃时,产物中含有CoO杂相;500℃

以上时,产物为纯相Co3O4纳米颗粒。Co3O4纳米颗粒(25 nm)为立方尖晶石结构,晶胞参数a =0.807 66 nm.颗粒形貌基本为球形,颗粒大小分布较均匀。Co3O4纳米颗粒(25 nm)呈现反铁磁向顺磁转变,其奈耳温度TN约为40 K。[返回] 收录情况: 西安科技大学学报 2008年第9期 期刊链接:西安科技大学学报 学科:暂无

10.新型环境净化材料-纳米TiOt2的性能及应用 全部作者:李晓静;LI Xiao-jing 关键词:环境材料; 纳米TiO2; 超亲水性; 光催化降解

摘要:介绍了光催化材料纳米Tio2的光化学特性、光催化活性以及超亲水性。综述纳米TiO2薄膜及纳米TiO:粉末的制备方法、光催化降解性能及其影响因素。提高纳米TiO2光催化降解能力的途径。对纳米TiO2进行改性处理。利用纳米TiO2光催化降解有机污染物及超亲...[查看全部] 论文摘要:介绍了光催化材料纳米Tio2的光化学特性、光催化活性以及超亲水性。综述纳米TiO2薄膜及纳米TiO:粉末的制备方法、光催化降解性能及其影响因素。提高纳米TiO2光催化降解能力的途径。对纳米TiO2进行改性处理。利用纳米TiO2光催化降解有机污染物及超亲水性制成纳米TiO2薄膜玻璃。同时介绍了纳米TiO2在环境净化方面的应用,如作为-种环保催化剂净化空气,净化被污染水体,光催化杀菌,以及制成纳米TiO2改性涂料应用于建筑行业。[返回] 收录情况: 辽宁工程技术大学学报(自然科学版) 2002年第12期 期刊链接:辽宁工程技术大学学报(自然科学版)

学科:暂无

11.多孔陶瓷材料应用及制备的研究进展

回顾了多孔陶瓷材料传统的应用领域和制备方法,总结和归纳了多孔陶瓷材料新的应用领域和新的制备方法,指出了当前多孔陶瓷材料的研究热点和今后所要解决的问题 作 者:

韩永生 李建保 魏强民 作者单位:

新型陶瓷与精细工艺国家重点实验室,清华大学材料系,北京,100084 刊 名:

材料导报 ISTIC PKU 英文刊名: MATERIALS REVIEW 年,卷(期): 2002 16(3) 分类号: TQ174 关键词:

多孔陶瓷 泡沫陶瓷 气孔 机标分类号: TQ1 TQ0 机标关键词:

多孔陶瓷材料材料应用制备方法 12.新型陶瓷材料的开发及应用

概要论述了新型陶瓷材料应用及发展,探讨了传统陶瓷材料向现代功能陶瓷材料转变的过程的同时,还重点讨论了新型陶瓷材料在现代机械工业,特别是在动力机械、热能传递、加工工具及轴承等运动部件上的实际应用及发展趋势. 作 者: 薛进 张九渊 作者单位:

浙江工业大学,化工材料学院,浙江,杭州,310032 刊 名: 机电工程 ISTIC 英文刊名:

MECHANICAL & ELECTRICAL ENGINEERING MAGAZINE 年,卷(期): 2004 21(12) 分类号: TH145.1+1 关键词: 材料 陶瓷 机标分类号: TQ1 TS1 机标关键词:

功能陶瓷材料开发应用及发展运动部件实际应用热能传递加工工具机械工业发展趋势动力机

14. 新型陶瓷材料的开发及应用

概要论述了新型陶瓷材料应用及发展,探讨了传统陶瓷材料向现代功能陶瓷材料转变的过程的同时,还重点讨论了新型陶瓷材料在现代机械工业,特别是在动力机械、热能传递、加工工具及轴承等运动部件上的实际应用及发展趋势. 作 者: 薛进 张九渊 作者单位:

浙江工业大学,化工材料学院,浙江,杭州,310032 刊 名: 机电工程 ISTIC 英文刊名:

MECHANICAL & ELECTRICAL ENGINEERING MAGAZINE 年,卷(期): 2004 21(12) 分类号: TH145.1+1 关键词: 材料 陶瓷 机标分类号: TQ1 TS1

机标关键词:

功能陶瓷材料开发应用及发展运动部件实际应用热能传递加工工具机械工业发展趋势动力机 15.结构陶瓷材料加工技术的新进展

综述了近年国内外结构陶瓷材料加工技术的发展和最新研究成果,主要包括激光、电火花、等离子、超声波、微波等特种加工技术、复合加工技术,以及在传统磨削技术基础上发展起来的界面热化学反应加工、高速(超高速)磨削技术、在线电解修锐磨削技术等,旨在为促进我国的结构陶瓷材料优质、高效、低成本加工技术的发展提供借鉴作用. 作 者:

杨俊飞 田欣利 吴志远 佘安英 YANG Jun-fei TIAN Xin-li WU Zhi-yuan SHE An-ying 作者单位:

装甲兵工程学院,装备再制造技术国防科技重点实验室,北京,100072 刊 名:

兵工学报 ISTIC EI PKU 英文刊名:

ACTA ARMAMENTARII 年,卷(期): 2008 29(10) 分类号: O346.4 TB32 关键词:

材料合成与加工工艺 结构陶瓷材料 加工技术 作用机理 加工效率 机标分类号: TB3 TQ1 机标关键词:

结构陶瓷材料特种加工技术磨削技术研究成果技术基础反应加工电解修锐热化学电火花等离子超声波超高速微波界面激光国内成本 基金项目: 国家自然科学基金

信息检索及利用论文写作

班级:材料08-4 学号:0808010411 姓名:李倩 教师评语:

第四篇:五好家庭材料-五好家庭材料 五好文明家庭申报材料

五好文明家庭申报材料

**同志有一个崇尚文明,积极进取,和睦和谐,相敬相爱的家庭。夫妻结婚20年以来相敬如宾,非常恩爱,孝敬老人,善待邻里,在家中能挑重担,任劳任怨;并且敬业爱岗事业有成,老人安享幸福晚年,独生儿子聪明可爱,是一个和睦的四口之家,深受单位,邻里和社会的好评,赢得了周围人的赞美。

一、 遵纪守法,爱岗敬业,敬职敬责

**同志是**电业局的一名职工,中共党员,先后在高压运行管理所担任过

办公室主任、教育培训中心主任助理、工会办主任。她一贯坚持党的各项原则,严格遵纪守法,忠诚社会主义事业,参加工作二十多年来,不论在哪个工作岗位,她都勤勤恳恳、任劳任怨、努力工作,干一行、爱一行、专一行。五好家庭材料具有强烈的奉献精神和优良的思想品质、职业道德,在本职岗位上作出了优异的成绩。五好家庭材料她先后多次被评为**电业局双文明先进个人、**电业局优秀党员、电力芙蓉明星、**省电力公司工会先进工作者、20xx年被评为“**省电力文明家庭”等。**同志的爱人**在**省**水电站工作,在工作岗位上兢兢业业地耕耘了二十五年,他工作扎实认真,勤勤恳恳,为人平易近人,孝敬父母,在生活中有很多小点子,是个善良快乐的一家之主。他们克服两地分居的困难,从未因为夫妻两地而影响工作和小孩的培养和孝顺父母。

二、以德育人,重视子女教育

在生活中,**深刻地认识到,父母

亲对子女负有抚养和教育的责任,无论是老一辈还是父母亲,都要把对下一代的爱建立在科学和理性的基础上,把对子女的爱的感情同培养他们的人生观、道德观及其科学文化知识教育结合起来,讲究方法、讲究技巧。健康的家庭需要一个健康的环境才能得以健康的发展和延续,**与爱人始终把对孩子的教育放在第一位,为此经常与孩子沟通交流,送去好的教育机构学习锻炼自己,不断加深母女之情,教育孩子学会做人,学会做事并健康快乐长大成人。20xx年,她的儿子光荣考入了三峡大学。

三、 尊老爱幼,孝敬父母,家庭和睦

“老吾老以及人之老,幼吾幼以及人之幼”,这是中华民族的传统美德。**和爱人和眭相处,互相尊重体贴。他们敬老爱幼,在精神生活上给老人家体贴和安慰,积极创造条件让他们享受到晚年之福的乐趣。**的父亲三年前不幸去世,婆婆身体不好,经常住院。为了照

顾母亲,她将婆婆接到自己家中,尽心尽力赡养婆婆。在家庭经济关系中他们双方都能设身处地为对方着想,处理得非常好。在这个家庭里,他们作为子女尊重长辈,长辈关心爱护子女,共同建造了一个温馨、和谐、向上的文明家庭。对于孝敬老人、教育孩子,她与爱人一起商量,互相配合,二人互敬互爱互商互谅,成为人人羡慕的模范夫妻。儿子正在成长期,为了使儿子能够更加健康快乐成长,夫妇一方面洁身自爱,努力提高自身素质和品位,另一方面率先垂范,为儿子做出榜样。 生活俭朴。**与爱人物质生活追求淡泊,不慕新潮,不摆阔气,从不浪费,提倡节约,精打细算,用之有度。严于律己。为了以言行影响儿子,为儿子创造良好的成长氛围,夫妻俩在家讨论家务事,总是以公序良俗和法律法规为标准,努力做到”非礼勿视,非礼勿听,非礼不行”。他们从不搞封建迷信,不作违法乱纪的事情。敬老尊长。自从婆婆同**一家人共同生活以

来。夫妻两人对老人十分尊敬和孝顺。不仅在生活上予以照顾,家中大小事也征询她意见,使她觉得受尊重,在家里有地位,因而心情开朗。

四、夫妻互相尊重,工作上互相支持,生活上互相照顾

和睦的家庭能给每一个家庭成员带来温暖,带来快乐,带来健康,带来智慧,带来前进的力量,特别是能为孩子更快乐更好地成长提供良好的环境。在他们的家庭生活中,他们努力建造一个和睦的家庭,创造一种温馨、互敬互爱的家庭氛围。要建造一个和睦的家庭,最重要的是必须处理好夫妻关系。因为在家庭关系中,夫妻关系是最基本的关系,夫妻关系在家庭中起着核心的作用,是家庭幸福、在处理家庭的大事时,夫妻平等对待,互相通气,共同磋商决定,只要是合理的建议,求大同,存小异,做到办每件大事双方都心情舒畅。勤俭持家,他们在共同料理家庭的事情时

第五篇:陶瓷材料3D打印技术研究进展

王秀峰 王旭东

(陕西科技大学机电工程学院,西安 710021)

摘要

本文综述了近年来陶瓷3D打印技术的进展,分别从陶瓷的打印技术、和陶瓷原料方面论述了3D打印技术,对陶瓷3D打印技术前景做了展望。 关键词

3D打印 陶瓷材料

1 引言

3D打印技术是制造领域正在迅速发展的意向新兴技术,被称为“具有工业革命意义的制造技术”。运用该技术进行生产的主要流程是:应用计算机软件设计出立体的加工样式,然后通过特定的成型设备(俗称“3D打印机”),用液化、粉末化、丝化的固体材料逐层“打印”出产品。3D打印技术是:“增材制造”的主要实现形式。“增材制造”的理念区别于传统的“去除型”制造。传统数控制造一般是在原材料基础上,使用切割、磨削、腐蚀、熔融等办法,去除多余材料,得到零部件,再以拼接、焊接等方法组合成最终产品。而“增材制造”与之不同,无需原胚和模具,就能直接根据计算机图形数据,通过增加材料的方法生成任何形状的物体,简化产品的制造程序,缩短产生的研制周期,提高效率并降低成本。

陶瓷材料具有优良高温性能、高强度、高硬度、低密度、好的化学稳定性,使用其在航天航空、汽车、生物等行业得到广泛应用。而陶瓷难以成型的特点又限制了它的使用,尤其是复杂陶瓷制件的成型均借助于复杂模具来实现。复杂模具需要较高的加工成本和较长的开发周期,而且,模具加工完毕后,就无法对其进行修改,这种状况越来越不适应产品的改进即更新换代。采用快速成型技术制备陶瓷制件可以克服上述缺点。快速成型也叫自由实体造型,是20世纪60年代中期兴起的高兴技术。

快速成型技术的本质是采用积分法制造三维实体,在成型过程中,先用三维造型软件在计算机生成部件的三维实体模型,而后用分层软件对其进行分层处理,即将三维模型分成一系列的层,将每一层的信息传送到成型机,通过材料的逐层添加得到三维实体制件。

跟传统模型制作相比,3D 打印具有传统模具制作所不具备的优势:

1.制作精度高。经过20年的发展,3D 打印的精度有了大幅度的提高。目前市面上的3D打印成型的精度基本上都可以控制在0.3 mm 以下;

2. 制作周期短。传统模型制作往往需要经过模具的设计、模具的制作、制作模型、修整等工序,制作的周期长。而3D打印则去除了模具的制作过程,使得模型的生产时间大大缩短,一般几个小时甚至几十分钟就可以完成一个模型的打印;

3. 可以实现个性化制作。3D打印对于打印的模型数量毫无限制,不管一个还是多个都可以以相同的成本制作出来,这个优势为3D打印开拓新的市场奠定了坚实的基础;

4. 制作材料的多样性。一个3D 打印系统往往可以实现不同材料的打印,而这种材料的多样性可以满足不同领域的需要。比如金属、石料、高分子材料都可以应用于3D 打印。

5. 制作成本相对低。虽然现在3D 打印系统和3D 打印材料比较贵,但如果用来制作个性化产品,其制作成本相对就比较低了。加上现在新的材料不断出现,其成本下降将是未来的一种趋势。有人说在今后的十年左右,3D 打印将会走进普通百姓家里。

2 陶瓷3D打印的主要技术分类

3D打印用的陶瓷粉末是陶瓷粉末和某一种粘结剂粉末所组成的混合物。由于粘结剂粉末的熔点较低,激光烧结时只是将粘结剂粉末熔化而使陶瓷粉末粘结在一起。在激光烧结之后,需要将陶瓷制品放入到温控炉中,在较高的温度下进行后处理。陶瓷粉末和粘结剂粉末的配比会影响到陶瓷零部件的性能。粘结剂分量越多,烧结比较容易,但在后处理过程中零件收缩比较大,会影响零件的尺寸精度,粘结剂分量少,则不易烧结成型。颗粒的表面形貌及原始尺寸对陶瓷材料烧结性能非常重要,陶瓷颗粒越小,表面越接近球形,陶瓷层的烧结质量越好。

陶瓷粉末在激光直接快速烧结时,液相表面张力大,在快速凝固过程中会产生较大的热应力,从而形成较多的微裂纹。目前,陶瓷直接快速成型工艺尚未成熟,国内外正处于研究阶段,还没有实现商品化。 目前,比较成熟的快速成型方法有如下几种:分层实体制造(简称LOM);熔化沉积造型(简称FDM);形状沉积成型(简称SDM);立体光刻(简称SLA);选区激光烧结(简称SLS);喷墨打印法(简称IJM)。

2.1分层实体制造(LOM)

分层实体制造采用背面涂有热熔胶的薄膜材料为原料,用激光将薄膜依次切成零件的各层形状叠加起来成为实体件,层与层间的粘结依靠加热和加压来实现。LOM最初使用的材料是纸,做出的部件相当于木模,可用于产品设计和铸造行业。美国Lone Peak公司、Western Reserve和Dayton大学等已经用LOM方法制备陶瓷件,采用的原料为陶瓷膜,陶瓷膜是用传统的流延法制备的。采用LOM法制备的陶瓷材料有Al2O3,Si3N4,AlNSiC,ZrO2等。

LOM法制备的陶瓷件一般是用平面陶瓷膜相叠加而成的,现在已开发出以曲面陶瓷膜相叠加的成型工艺,这一工艺是根据制备曲面陶瓷/纤维复合材料的需要生产的,Klostnman等人采用曲面LOM法制备了SiC/SiC纤维复合材料,与平面LOM工艺相比,曲面LOM工艺可保证曲面上纤维的连续性,而达到最佳的力学性能。另外,曲面LOM工艺制备的陶瓷件还有无阶梯效应、表面光洁度高、加工速度快、省料的等优点。

2.2熔化沉积造型(FDM)

熔化沉积造型法以热塑性丝状为原料,丝通过可在X-Y方向上移动的液化器熔化后喷嘴喷出,根据所涉及部件的每一层形状,逐条线、逐个层的堆积出部件。FDM使用的原材料有聚丙烯、ABS铸造石蜡等。

采用FDM工艺制备陶瓷件叫FDC。这种工艺是将陶瓷粉末和有机粘结剂相混合,用挤出机或毛细血管流变仪做成丝后用FDM设备做出陶瓷件生胚,通过粘结剂的去除和陶瓷生胚的烧结,得到较高密度的陶瓷件。适用于FDC工艺的丝状材料必须具备一定的热性能和机械性能,黏度、粘结性能、弹性模量、强度是衡量丝状材料的四个要素。基于这样的限制条件,Rutgers大学的陶瓷研究中心开放出称为RU系列的有机粘结剂。这种粘结剂由四中组元组成:高分子、调节剂、弹性体、蜡。

Agarwala等人用FDC制备了Si3N4陶瓷件,所用的陶瓷粉为GS-44氮化硅,体积分数为55%。由于RU粘结剂是由四中具有不同热解温度的组元组成,生胚中粘结剂的去除分为两步进行。第一步从室温加热到450℃,在此阶段大部分粘结剂被去除。第二步是将生胚放入氧化铝坩埚加热至500℃,粘结剂中剩余的碳被去除掉。不同阶段的加热速度和保温时间根据零件的尺寸和形状来确定。经过这两步处理后,陶瓷生胚变成多空状,对生胚进行气压烧结处理,生胚中所含的氧化物熔化并为多孔生胚的致密化提供液相。此外,Bandyopadhyny等人用FDC工艺制备出3-3连通的PZT/高分子压电复合材料。

2.3形状沉积成型(SDM)

SEM是由Stanford大学和Carnegie Mellon大学开发的,它是一种材料添加和去除相结合的反复过程。成型过程中,每一层材料首先沉积成近成型形状,在下一层材料添加前,采用传统的CNC技术将其加工成净成型形状。

采用SDM和Gel-casting相结合的方法可以制备陶瓷件,这种工艺叫Mold-SDM。即先用SDM做出模型,然后浇注陶瓷浆料,将模型融化掉,取出陶瓷生胚,经烧结处理后就得到最终的陶瓷件。用Mold-SDM制备陶瓷有以下优点:SDM能做出复杂几何形状的模型;Mold-SDM制备的陶瓷是整体件,因此陶瓷件不存在层与层间的边界和缺陷;模型的表面由机加工方法获得,具有很好的光洁度,因此制备的陶瓷件也具有较高的表面光洁度。

目前已采用Mold-SDM制备出Si3N4,Al2O3材质的涡轮、手柄、中心孔、喷嘴等样品。其中,Si3N4样品的最大弯曲强度为800MPa。

2.4喷墨打印法

喷墨打印法主要分为三维打印和喷墨沉积法。

三维打印是由MIT开发出来的,首先将粉末铺在工作台上,通过喷嘴把粘结剂喷到选定的区域,将粉末粘结在一起,形成一个层,而后,工作台下降,填粉后重复上述过程直至做出整个部件。所用的粘结剂有硅胶、高分子粘结剂等。三维打印法可以方便地控制部件的成分和显微结构。

喷墨沉积法是由Brunel大学的Evans和Edirisingle研制出来的,它是将含有纳米陶瓷粉的悬浮液直接由喷嘴喷出以沉积成陶瓷件。该工艺的关键是配置出分散均匀的陶瓷悬浮液,目前,使用的陶瓷材料有ZrO2,TiO2,Al2O3等。

2.5立体光刻(SLA)

SLA是最早的一种快速成型技术,它以能在紫外光下固化的液相树脂为原料,通过紫外光逐层固化液相树脂制出整个部件。SLA制备陶瓷件有以下两种方式,包括直接法和间接法。

直接法是以在紫外线下固化的液相树脂为粘结剂,调制出含有50%体积分数的液相树脂悬浮液,应用到SLA装置上,就能制备出陶瓷生坯,经粘结剂去除及烧结等后处理过程,得到最终的陶瓷件。在该工艺中,紫外光能固化的厚度一般为200-300纳米,它与陶瓷体积分数和陶瓷与树脂难熔指数差值的平方成反比,因此只有与树脂难熔指数差值较小的陶瓷材料适合于直接SLA法。目前,已采用该方法制备出Si3N4,Al2O3的结构陶瓷件及羟基磷灰石的生物陶瓷件。

间接法是先用SLA做出模型,而后浇入陶瓷浆制得陶瓷件。该工艺适合于与树脂难熔指数差值较大的陶瓷材料,Brady等用间接SLA法制备了PZT材料的压电陶瓷。

2.6选取激光烧结(SLS)

SLS以堆积在工作平台上的粉末为原料,高能CO2激光器从粉末上扫描,将选定区域内的粉末烧结以做出部件的每一个层。对于塑料件,激光完全烧结高分子粉末,得到最终成型件。陶瓷的烧结温度很高,很难用激光直接烧结,可以将难熔的陶瓷粒子包覆上高分子粘结剂,应用在SLS设备上,激光熔化粘结剂以烧结各个层,从而制出陶瓷生坯,通过粘结剂去除及烧结等后处理过程,就得到最终的陶瓷件。SLS是最先用来制备陶瓷件的快速成型工艺,选用的陶瓷材料有SiC、Al2O3。

3 陶瓷3D打印主要材料 3.1硅酸铝陶瓷

硅酸铝是一种硅酸盐,其化学式为Al2SiO5,密度为2.8到2.9克/立方厘米。具有广泛的用途:1.用于玻璃、陶器、颜料及油漆的填料;2.是涂料中的钛白粉和优质高岭土的理想替代品,与颜料配合广泛用于油漆、皮革、印染、油墨、造纸、塑料、橡胶等方面;3.用来制作耐高温防火隔音隔热棉、板、管、缝毡、防火隔热布、耐高温纸、耐火保温绳、带、防火保温针刺毯(有甩丝、喷吹)、砖,无机防火装饰板。无机防火卷帘等;4.用作胶黏剂和密封剂的填充剂,能够提高硬度、白度、耐磨性、耐候性、贮存稳定性。

但是传统的制造工艺,生产效率低,复杂制件难以成型,限制了其在其它领域内的广泛使用,利用3D打印技术,将硅酸铝陶瓷粉体用于3D打印陶瓷产品。3D打印的该陶瓷制品不透水、耐热(可达600°C)、可回收、无毒,但其强度不高,可作为理想的炊具、餐具(杯、碗、盘子、蛋杯和杯垫)和烛台、瓷砖、花瓶、艺术品等家居装饰材料。英国布里斯托的西英格兰大学(UWE)的研究人员开发出了一种改进型的3D打印陶瓷技术,该技术可用于定制陶瓷餐具,比如漂亮的茶杯和复杂的装饰物。根据CAD数据可直接进行打印、烧制、上釉和装饰,消除了先前陶瓷产品原型没法过火或测试釉质的问题。

3.2 Ti3SiC22陶瓷

在1972年,Nickl等人采用化学气相沉积(CVD)法制备单晶时,发现了特别软的碳化物Ti3SiC2。其硬度表现为各向异性,垂直于基面的硬度是平行于基面硬度的三倍。近年来,Ti3SiC2三元层状碳化物因其兼具陶瓷和金属的优异性能而成为研究热点。与超合金相比,Ti3SiC2具有优异的高温性能和疲劳损伤性能。在Ti3SiC2晶胞中,共棱的Ti6C八面体被紧密堆积的Si原子层所分隔,其中Ti与C之间为典型的强共价键,而Si原子层平面与Ti之间为类似于石墨层间的弱结合。Ti3SiC2熔点高达3000℃,在1700℃以下真空及惰性气氛中不分解。Ti3SiC2结构中存在的层间弱结合力价键使其具有平行于基面的开裂能力,在断裂时表现出R曲线行为,韧性可达16MPa·m1/2. Ti3SiC2陶瓷的制备方法通常有自蔓延高温反应法、等离子放电烧结法、反应热压法等。以上工艺都需要采用成型模具,这些模具的制造成本高且周期长,如果部件形状太复杂,则可操作性差。这些因素制约了Ti3SiC2陶瓷的应用,而三维打印成型工艺可克服以上工艺的不足。

W.Sun等人的研究表明,采用三维打印制备的Ti3SiC2陶瓷件孔隙率高达50%~60%,而三维打印结合冷等静压和烧结工艺可制备出致密的Ti3SiC2陶瓷,致密度可达99%。制备过程为:先采用反应热压法将Ti、石墨和SiC反应生成Ti3SiC2,然后研磨成Ti3SiC2粉体;Ti3SiC2粉体与水溶基粘结剂混合干燥后球磨过筛,Ti3SiC2粉体颗粒表面被粘结剂包覆,过筛后的颗粒直径为40um;在三维打印过程中,水基溶液喷射在包覆粘结剂的Ti3SiC2,颗粒粉体上,Ti3SiC2颗粒被粘结成具有特定形状的颗粒预制体;在冷等静压过程中Ti3SiC2颗粒预制体被致密化;烧结过程中,致密化的Ti3SiC2颗粒预制体被烧结成致密的陶瓷。

以上复合工艺具有显著的优点,在制备新型陶瓷部件方面极具潜力。但是这种工艺的线收缩率较大,高达27%~32%。因此,如何克服三维打印工艺制备材料孔隙率大以及后处理工艺线收缩率大的不足成为研究的重点。

3.3 Ti3SiC2增韧TiAl3-A1203复合材料

TiAl3金属间化合物具有低密度(3.3g/cm3)、高弹性模量(157GPa)、高熔点(1350~1400℃)和良好的抗氧化性能等优点,有望用于航空、航天工业热结构领域。但是,TiAl3的室温断裂韧性低(2MPa·m1/2)、难于成型的特点限制了其应用。A1203具有高硬度(18GPa)和高模量(杨氏模量386GPa,剪切模量175GPa),具有作为弥散相增强增韧的功能。而A1203增韧TiAl3复合材料(TiAl3-A1203)具有密度低、硬度高,抗腐蚀,抗磨损以及良好的高温抗氧化性能。

熔体渗透法是将低熔点金属熔化渗入多孔陶瓷中制备陶瓷一金属以及陶瓷基复合材料的通用工艺。将熔体铝渗入多孔氧化钛陶瓷中可反应合成TiAl3-A1203复合材料。

目前,多孔陶瓷制备方法主要有冷压成型结合高温预烧结,熔体渗透工艺包括挤压铸造和气压渗透工艺。采用由30v01.%TiO2-70v01.%A1203组成的多孔陶瓷进行挤压铸造或气压渗透Al,所制备的TiAl3-A1203复合材料具有相互穿插的网络结构,各相结合致密、取向随机分布,其抗弯强度为543MPa、断裂韧性8.6MPa· m1/

2、硬度5.7GPa,如果在渗透过程中仅靠毛细管力使渗透过程自发进行,则称之为无压反应熔体渗透工艺(简称反应熔俸渗透)。渗透速度取决于熔体在多孔陶瓷表面的润湿性,一般随着渗透温度的升高润湿性有所改善。

采用粉体混合.成型,烧结工艺制备陶瓷或陶瓷基复合材料时,材料体积收缩高达20%;而反应熔体渗透法成本低,可实现构件的近尺寸制备以及多孔体的致密化。最近,Yin等人采用三维打印工艺制备氧化钛多孔陶瓷,并采用无压反应熔体法渗透铝,合成了TiAl3-A1203复合材料,建立了近尺寸制备复杂形状TiAl3-A1203复合材料部件的工艺基础。

A1203和TiAl3都是脆性材料,复合材料的断裂韧性很难进一步提高,并且抗热震性能差,这成为制约TiAl3-A1203复合材料广泛应用的瓶颈。

4 总结与展望

3D打印在医学、航天科技、考古文物、制作业、建筑等行业得到广泛应用。未来,3D打印技术的发展将体现出精密化、智能化、通用化以及便捷化等主要趋势,可以在多方面进行改善:可提升3D打印的速度效率很精度,提高成品的表面质量、力学和物理性能;可开发更为多样的3D打印材料。如智能材料、功能梯度材料、纳米材料、陶瓷材料等;打印机的体积可以更加小型化、桌面化、成本更加低廉、操作更加简便等。

对于陶瓷材料来说,其3D打印技术的加工难度较大,存在很多尚未解决的难题,表面粗糙度过大,力学性能不理想,孔隙率过大,制件精度低等问题一直存在。一种3D陶瓷打印技术难以适应多种材料,往往需要针对于某一种特性的陶瓷性能,研制出一种对应的3D打印技术,成本较高。但是,随着技术的不断提高,理论不断完善,陶瓷的3D打印技术已有重大的进展,也是目前研究的热点和重点。在不久的将来,肯定能获得重大的突破,同时也是极富挑战的课题。

参考文献

[1]李小丽,马剑雄,李萍,陈琪,周伟民. 3D打印技术及应用趋势[J]. 自动化仪表,2014,01:1-5. [2]王雪莹. 3D打印技术与产业的发展及前景分析[J]. 中国高新技术企业,2012,26:3-5. [3]杨恩泉. 3D打印技术对航空制造业发展的影响[J]. 航空科学技术,2013,01:13-17. [4]吴平. 3D打印技术及其未来发展趋势[J]. 印刷质量与标准化,2014,01:8-10. [5]杜宇雷,孙菲菲,原光,翟世先,翟海平. 3D打印材料的发展现状[J]. 徐州工程学院学报(自然科学版),2014,01:20-24. [6]曾昆. 3D打印的材料之殇[J]. 新材料产业,2014,10:39-41. [7]王忠宏,李扬帆,张曼茵. 中国3D打印产业的现状及发展思路[J]. 经济纵横,2013,01:90-93. [8]王月圆,杨萍. 3D打印技术及其发展趋势[J]. 印刷杂志,2013,04:10-12. [9]江洪,康学萍. 3D打印技术的发展分析[J]. 新材料产业,2013,10:30-35. [10]余冬梅,方奥,张建斌. 3D打印:技术和应用[J]. 金属世界,2013,06:6-11. [11]孙聚杰. 3D打印材料及研究热点[J]. 丝网印刷,2013,12:34-39. [12]刘海涛 光固化三维打印成形材料的研究与应用[J]2009 [13] 朱敏慧 三维打印让设计更便捷[J]-汽车与配件2010(27) [14]黄金. 张仁元. 李爱菊 无机盐/陶瓷基复合储能材料的制备技术[J]-新技术新工艺2004(7) [15]宋丽. 徐安平. 李娟 三维打印技术的发展现状与趋势[J]-2005 [16]朱敏慧 Objet三维打印技术提高汽车企业竞争力[期刊论文]-汽车与配件2010(44) [17]李龙彪. 宋迎东. 孙志刚. 许仁红 陶瓷基层合复合材料基体裂纹演化研究[会议论文]-2008

第六篇:发言材料-供职发言材料

任职就职表态发言稿

尊敬的各位领导、同事们:

大家上午好!

刚才会上宣布了党委关于我任职的决定,我首先衷心感谢党委的信任和关心,感谢各位领导的器重和厚爱,感谢干部职工对我的信任和支持,我坚决拥护党委的决定、服从党委的安排!

今天是一个崭新的起点,我将以新的姿态、新的境界,()尽快进入新的角色,以良好业绩,回报领导和同事们的重托与期望。在此,我作以下表态:

一、砥砺德行,修身为上。

就是要把培育自己的品质德行作

为立身之本,做一个堂堂正正的人、忠诚厚道的人、乐于助人的人。具体要做到”三个务”:一是务学,把学习作为人生修养的重要内容,向书本学习、向大家学习、向实践学习,通过多角度的学习进一步提高自身素质;二是务实,坚持实事求是的工作作风,一切从实际出发,察实情、讲实话、出实招、重实绩、办实事、求实效;三是务廉,严于律己,清正廉明,处处严格要求自己,自觉接受大家监督,做到慎独、慎初、慎微,做到自重、自省、自警、自励。

2、以人为本,修和为上。

就是按照科学发展观和建设和谐社会的要求,推进和谐蒙东能源循环经济处建设。一是要做到认真贯彻落实集团公司的路线、方针、政策,自觉服从党委领导,保证党委的决策不折不扣地贯彻执行。二是要做到自觉把分管工作放到集团工作大局中去思考、去把握,摆正姿态,顾全大局,努力营造推进循环经济处发展、工作和文化建设的”三种

良好氛围”。三是要做到维护干部职工的整体利益。坚持立党为公、执政为民,把维护好广大职工群众的根本利益作为一切工作的出发点和落脚点,为群众多办实事,多办好事。

三、以勤为本,修业为上。

就是要做到勤勉尽职,扎扎实实履行好工作职责。具体要做到”三个有”:一是有方,改进工作方式,善于从复杂的局面中寻找措施对策,遵循事物发展规律,结合实际解决问题;二是有效,大力弘扬真抓实干、雷厉风行的工作作风。对于上级交办的工作任务,认真贯彻落实,注重工作效果,不说空话,不唱高调,对组织负责,对群众负责;三是有为,珍惜组织给予的机会,以全新的姿态,全新的面貌,认真履行职责,做到高效尽职、有所作为。

以上就是我的表态发言,我将与经济循环处的全体职工一起,团结奋进,攻坚克难,共同开创企业新的篇章。

任职就职表态发言稿

尊敬的各位领导、各位同仁:

大家好!

非常感谢党组对我的信任,感谢学院领导对我的培养,感谢学院干部职工对我的支持。

这次任职,对我来说,意味着更多的责任与压力,我唯恐辜负了大家的期望。我将把今天作为一个新的起点,努力工作,勤奋进取,以新的姿态、新的境界,尽快适应新的岗位。在此,我作如下表态:

一、坚定信念。坚持用党的理论武装自己的头脑,思想上、行动上与党中央保持高度一致,认真贯彻党的教育方针,忠诚党的教育事业,强化政治意识、大局意识,责任意识,做到理想信念坚定。

二是加强学习。向书本学习,向实践学习,向领导学习,向干部职工学习,学习高等职业教育理论,研究教育教学规律,借鉴先进管理经验,更新理念,转变观念,做到谦虚谨慎,勤于思考。

三是当好助手。主动为学院改革发展出谋划策,协助书记、院长做好分管的工作,顾全大局,加强与班子其他同志的沟通,正确处理好个人与组织的关系,做好参谋,当好助手,做到上为领导分忧,下为职工解难。

四是认真履职。(Motivational model )在学习与继承前任的基础,深入进行调查研究,理清工作思路,把握工作重点,创新工作措施,对外加强联系,对内加强管理,让教学工作跟上教育发展的新形势、新要求,做到求真务实,脚踏实地,认真履职。

五是严格自律。自觉发扬艰苦奋斗优良作风,严格遵守《党员领导干部廉洁从政若干准则》的规定,廉洁自律,时刻保持清醒头脑,处处严格要求自己,主动接受领导和教职工的监督。做到老老实实做人,干干净净做事。

同时,我个人也有一些缺点和不足,希望领导和同志们多提醒、多批评,我一定加以改进和克服。今后,我将会

一如既往地以强烈的事业心与责任感,以勇于创新、乐于奉献的精神,以积极向上、实事求是的工作态度,以脚踏实地、求真务实的工作作风,恪尽职守,勤奋工作,决不辜负党组、院领导、干部职工对我的信任与期望。

上一篇:跳绳比赛活动总结下一篇:四季度工作计划