农田土壤污染与修复

2022-08-20 版权声明 我要投稿

第1篇:农田土壤污染与修复

规范农田土壤修复项目管理提升农田土壤修复内涵

摘要:实现土壤修复项目的规范管理,对于提升农田土壤修复内涵、提高土地资源利用效率具有重大影响。本文在阐述农田土壤修复内涵及必要性的同时,对土壤修复项目管理中的问题进行分析,并提出当前农田土壤修复质量提升策略。期望有利于土壤修复项目的规范管理,进而提升土地资源利用效率。

关键词:土地资源;农田土壤修复;管理

Key words:Land resources;Farmland soil remediation;Management

可持续发展理念下,实现农田资源的高效化、生態化利用极为关键。从资源利用过程来看,我国农田土地资源污染严重,利用效率偏低,这对农业发展和人们生活水平提升有较大影响,因此我国越来越重视污染农田的修复工作。但是我国的修复管理体系不完善,因此提高农田土壤修复质量管理水平已成为推动土地高效利用的关键所在。

1 农田土壤修复的内涵及必要性

1.1 农田土壤修复的内涵

农田土壤修复是土地资源整治和生态化利用的关键环节;其以污染土地为对象,通过物理、化学及生物技术的应用,使得农田土壤中的各种污染物被充分的转移、吸收、降解和转化[1]。从处理结果来看,农田土壤修复使得土壤中的污染物浓度降低到可接受水平,为农业产业发展提供了基础保证。现阶段,农田土壤修复包含两种技术形式:其一,在修复技术的利用下,实现土壤中有害物质浓度的不断降低。其二,污染物在土壤中会发生各种物理、化学反应,其使得污染物质的形态趋于稳定。环境工作者通过改变污染物存在形态或结合方式,使得污染物发生降解和转移,从而提升土地资源的修复质量和利用效率。

1.2 农田土壤修复的必要性

农田土壤修复是一项专业要求较高的实践过程,修复质量对于社会经济、生态发展具有重大影响。就农田土壤修复过程来看,其价值主要包括以下方面:其一,我国人均土地资源短缺,农田土壤污染严重使得我国用地紧张的问题更加突出,土地的高效利用可以一定程度的缓解这一状况。其二,各地均布局有“米袋子”“菜篮子”“水缸子”工程,要确保农产品安全,还应提升土壤环境质量。其三,农业产业是我国经济发展的重要组成,进行农田土壤修复,对于我国农业经济发展、国家粮食安全及国家生态安全具有重要意义。

2 农田土壤修复项目管理的问题

2.1 污染调查重视程度不够

我国农田土地面积较广,污染来源较多,这也使得土地污染的形式各有不同。要实现农田污染的有效治理,首先要重视前期的污染调查。然而从实践来看,我国农田土壤修复项目建设中明显存在着污染调查不足的状况。一方面,我国尚没有完备和细化的农田调查技术规范,这使得农田污染调查方案编制过程不够规范,农田污染调查的过程较为盲目,影响了整体调查水平。另一方面,污染调查实施中,农田地块面积较大、划分较为模糊、污染程度不同等因素导致调查需要布置较多取样点,而实践过程中取样点个数一般布置偏少,导致污染源调查结果不全面、不明确,不能为后期的修复治理提供有效支撑。此外农田土壤修复的资金多由政府财政进行承担,要实现不同污染程度土地的有效调查治理,就应在调查的基础上,进行土壤修复资金的合理投入和分配,现阶段,农田土壤修复的资金的预算投入不足,资金预算分配中前期调查费用投入占比较低。

2.2 修复技术选用不够规范

优先保护类、安全利用类、严格管控类是农田土地资源划分的三种主要类型[2]。农田修复项目管理中,这三种形式的土地受污染程度不同;其中安全利用是中度污染农田,严格管控是重度污染农田,故而其修复技术的选用也存在差异。从农田修复过程来看,我国农田土壤修复技术的选用明显不够规范。具体而言,一方面是我国目前土壤修复方面缺乏针对农田修复的技术指南和相应的规范;另一方面是农田土壤修复是农学与环境科学的交叉学科,在农田修复技术选取的过程中,对相关技术工作者和相应的评审专家的专业背景要求较高,现行的农田修复管理程序中未针对农田修复方向设立专家库,在技术评审环节对于农田土壤修复项目技术的选取方面针对性不够,继而影响农田修复技术选用的科学性。

2.3 修复效果评估未细化

修复效果评估是农田土壤修复管理的重要环节,确保修复效果评估的准确,能够为后期实践提供有效指导。我国近年来一直在实践中探索建立完整的土壤修复治理体系,整体上看土壤修复的全过程治理程序已基本形成,相关标准和规范都在逐步建立和更新。但从农田修复方面考虑,我国现行的污染农田修复效果评估以农业农村部发布的《耕地污染治理效果评价准则》为主,该准则对农田修复效果的评估主要基于农产品安全角度。但从环境角度考虑,农田地块作为一个较为完整的生态系统,相较于建设用地更为复杂,其修复效果要求也更高,不仅要考虑农产品安全,还应进一步细化考虑其生态功能的恢复和理化性质的恢复,这样才能确保污染农田恢复原有的环境效益、社会效益以及经济效益。

3 农田土壤修复质量提升策略

3.1 构建新型农田土壤修复管理模式

农田土壤修复管理模式对于我国农田土壤修复项目的建设具有重大影响。一方面,针对当前农田土壤修复管理制度、标准的缺失和滞后问题,农业农村主管部门和生态环境主管部门应相互协调沟通,对现行的耕地修复体系、标准及规范进一步整合和优化,确保污染耕地修复体系的科学性和实用性,从而为农田土壤修复项目管理提供指导。另一方面,作为一项专业化、系统化的实践工程,农田土壤修复应实现污染调查、利用方案和绩效评估的全面管理,并在管理过程中注重绩效评估体系的建设,实现土壤修复事前、事中与事后的全面监管,提升整体的修复质量。

3.2 实现农田土壤修复技术规范应用

农田土壤修复技术是实现土地质量恢复的关键所在。就目前而言,生物技术、物理技术和化学技术是农田土壤修复技术应用的三种主要形态。就生物技术而言,其在特定的微生物、植物根系分泌物、菌根和超富集植物的应用下,实现了污染物的有效降解、吸收、转化或固定。而物理修复技术包含了换土法、热处理法两种形态,在换土法应用中,土壤深翻、覆盖清洁土壤、换土法等方式,均能实现污染土壤与生态系统的高效隔离。热处理是针对重金属污染处理的一种常见方式,其在土壤加热中,将有机物和具有挥发性的重金属从土壤中解析出来。此外,化学修复技术应用中,化学剂添加极为关键,在这些反应试剂的应用下,土壤中的污染物会被进一步吸附、氧化还原、拮抗或沉淀,實现了污染物的有效固定、解毒、分离或提取。

3.3 严格监管农田土壤修复质量评估

农田土壤修复还应注重修复质量的规范评估。一方面,农业农村主管部门和生态环境主管部门整合、调整及优化现有的污染耕地治理体系,确保其评价指标的科学全面,从而为农田土壤修复质量评估提供有效依据。另一方面,应就具体的评价方式进行控制,实现污染调查、利用方案和修复质量的全过程评估,确保修复质量评估的规范。此外确保农田土壤修复质量评估的规范,还应对工作人员的专业性进行提升,从而为农田土壤修复项目的实施提供有效保证。

4 结论

农田土壤修复项目管理对土壤修复内涵提升具有重大影响。实践过程中,人们只有充分认识到农田土壤修复的必要性,并在其管理问题分析的同时;构建新型农田土壤修复管理模式,然后规范化的进行农田土壤修复技术和评估技术应用,才能确保土壤修复项目管理的规范,进而提升土地资源利用效率。

参考文献

[1]孙丽娟,秦秦,宋科.镉污染农田土壤修复技术及安全利用方法研究进展[J].生态环境学报,2018,v.27(07):193-202.

[2]徐伯钧.农田重金属污染土壤修复技术研究进展[J].农村经济与科技,2018,29(7):8-10.

收稿日期:2019-10-14

作者简介:杨浩(1990-),男,汉族,硕士学历,工程师,研究方向为土壤与地下水修复。

作者: 杨浩 冉宇 雍正

第2篇:农田土壤重金属污染黏土矿物钝化修复研究进展

摘要:随着我国工业化和城镇化的发展,农田土壤重金属污染日趋严重。钝化修复技术因其具有修复速率快、效果好、稳定性好、操作简单等优点较适应于大面积中轻度重金属污染农田修复治理。本文概述了农田土壤重金属污染钝化修复技术特点及国内外发展现状,阐述了农田土壤重金属污染钝化修复技术的发展历史。在此基础上就黏土矿物材料对农田土壤重金属污染钝化修复研究现状、农艺措施对农田土壤重金属污染黏土矿物材料钝化修复效应及稳定性影响、黏土矿物材料钝化修复对农田土壤环境质量影响等诸多方面进行了详细综述,并就黏土矿物材料在农田土壤重金属污染钝化修复中的应用及相关问题进行了展望。

关键词:黏土矿物;土壤;重金属;钝化;进展

农田土壤重金属污染主要来自于铅矿、铅锌矿等开采的废水和废渣排放,矿山开采废气中重金属的擴散、沉降,含重金属的工业废水排放与农田污水灌溉,含重金属农药、化肥与有机肥的大量施用,城市污水处理厂污泥排放和农用污染,以及含重金属的城市垃圾倾倒淋滤造成的农田土壤污染等。在过去几十年中,由于国家和地方政府对农田土壤重金属潜在污染的重视不够,导致目前我国农田土壤重金属污染呈现由点向面、由大中城市周边向远郊农村扩散的趋势,许多地区农田土壤重金属污染呈现出区域性和流域性污染发展态势,导致农田土壤环境质量恶化与农产品质量安全受重金属污染威胁十分严重,特别是在一些经济发达地区[1]。在南方酸性水稻区,如湖南、江西、湖北、四川、广西、云南、广东等地区,农田土壤重金属镉污染超标现象较为普遍,稻米镉超标明显。据有关文献不完全统计,我国耕地受到镉、铅、砷、铬、汞等重金属污染近2 000万公顷,约占总耕地面积的1/6,其中重金属镉污染耕地面积占近40%,主要涉及11个省25个地区[2]。2014年4月17日环境保护部和国土资源部发布全国土壤污染状况调查公报指出,全国土壤总的点位超标率为 16.1%,其中镉、汞、砷、铜、铅、铬、锌、镍8种无机污染物点位超标率分别为7.0%、1.6%、2.7%、2.1%、1.5%、1.1%、0.9%、4.8%[3]。面对农田重金属污染面广、量大,尚未成熟的大面积修复治理技术的现状,本文重点就黏土矿物材料在农田土壤重金属特别是镉污染钝化修复中的研究进展进行了较为详细的综述,以期为我国农田土壤重金属污染钝化修复技术的进一步发展提供新的思路。

1农田土壤重金属污染修复技术

农田土壤重金属污染修复对技术要求很高,在目前国内外研究中,大量土壤重金属污染修复成熟技术主要来自场地,如固化/稳定化技术、淋洗技术、电动修复技术、热解吸法等,这些修复技术成本均较高,同时在场地土壤重金属污染修复中,基本不考虑修复后土壤环境质量。而农田土壤重金属污染修复在保证修复效果的同时,必须保障修复前后土壤环境质量不会产生明显变化,不会影响农业正常生产。因此,场地重金属污染修复中大量成熟技术难以复制到农田土壤重金属污染修复中应用。目前,适用于农田土壤重金属污染修复的技术主要包括以下4种:(1)农艺调控技术,主要包括通过良好农田水分管理措施、良好肥料运筹、良好耕作及轮作措施,以及酸性土壤pH值调节措施等,降低土壤中重金属有效性,阻控重金属向农作物可食部位的迁移累积;(2)高效钝化修复技术,主要是通过向农田耕作表层土壤中添加环境友好型钝化材料,借助土壤重金属在钝化材料表面及内孔的吸附、络合、沉淀、置换等作用,降低土壤中重金属离子的活性,实现重金属离子在土壤中的钝化/固定化,阻控重金属离子在土壤中向农作物根系的运移,降低农作物可食部位对土壤重金属的吸收累积,实现农产品安全生产;(3)植物修复技术,主要是利用筛选出的富集及超富集植物对农田土壤中重金属的吸收提取,降低土壤中重金属含量的一种修复技术;此外,植物修复技术中还包括:植物稳定化技术,即利用植物根系分泌出的化学物质与土壤重金属发生反应,实现对土壤有害重金属的钝化/稳定化等;(4)植物叶面阻隔技术,主要是通过在农作物叶面喷施微量元素(简称叶面微肥或叶面调理剂),抑制或拮抗农作物对土壤重金属元素的吸收累积。

在上述4种农田土壤重金属污染修复技术中,农艺调控措施和植物叶面阻隔技术一般修复效率较低,特别是叶面阻隔技术,修复效果还存在不稳定、异地复制效果较差的缺点,目前有关植物叶面阻隔机理尚不完全清楚。农艺调控措施中,水分管理技术特别对南方酸性镉污染水稻田具有较好的调控效果,但长期淹水需要大量清洁水源,在干旱季节将会导致水源困难,对该技术的应用将产生不利影响;良好肥料运筹将受到农作物对肥料需求的限制,对能够造成土壤重金属活化的肥料控制又会受到农作物正常生长的肥料需求影响,所以如何在通过良好施肥措施控制土壤有害重金属活性的同时实现农作物的健康生长仍然需要开展大量研究工作;酸性土壤pH值调节目前主要使用石灰,石灰的大量长期使用会产生一系列负面影响,而且效果也普遍较低,操作极不便利。植物修复技术一般适应于重度重金属污染农田,且修复时间长,修复过程中影响农作物正常活动,大量修复补偿经费政府将难以承受,该项技术大面积推广应用存在困难。钝化修复技术具有修复速率快、效果好、稳定性强、价格适中、操作简单等优点,特别适用于大面积重金属污染农田土壤的修复治理,是目前国内研究最为活跃的农田土壤重金属污染修复技术。

2钝化修复技术的发展历史

农田土壤重金属污染钝化修复与场地重金属污染固化修复技术不同,根据美国国家环保署(EPA)的定义,固化技术主要指将污染物囊封入惰性基材中,或在污染物外面封装上低渗透性材料,通过减少污染物暴露的淋滤面积以达到控制污染物迁移的目的,也称为稳定化技术。两者最大的差别包括所使用的修复剂不同,修复目标物土壤的用处差异。其中农田土壤重金属污染所使用的钝化剂主要是一些环境友好型材料,包括:黏土矿物、生物炭、含磷材料、有机物料、硅钙类材料等,而场地污染修复所采用的固化材料主要包括:无机粘结物质,如水泥等;有机粘结剂,如沥青等热塑性材料;热硬化有机聚合物,如尿素、酚醛塑料和环氧化物等,玻璃化物质等。所以,场地重金属污染土壤固化修复后基本失去了农用价值。

农田土壤重金属钝化修复研究主要开始于20世纪50年代,其研究思路来源于科研人员采用吸附剂吸附去除水体中有害重金属离子。通过科研人员大量研究发现,土壤重金属污染的危害主要源于存在于土壤中具有活性的那部分重金属离子,而重金属离子一旦被钝化或固定,使其活性下降,亦即降低其在土壤中的迁移性,其对植物的毒性将极大地下降,随后研究人员逐渐将这些重金属离子吸附剂应用到土壤重金属污染的吸附固定中。80年代以后,大量钝化材料,如黏土矿物材料、沸石分子筛材料、磷酸盐、石灰、有机物料、人工合成的沸石、污泥、含铁氧化物材料等被大量应用于土壤重金属Pb、Cd、As等污染的钝化修复研究中[4-15]。

由于不同重金属元素化学性质差异较大,在同一钝化材料表面的吸附、离子交换、络合等作用存在着明显的差别,而在重金属土壤毒性评价中常常用重金属离子的迁移性能来评估重金属元素在土壤环境中的归趋和生物学毒性。不同重金属离子间存在着独特的移动性能,所以在实际农田土壤重金属污染钝化修复中,一般难以找到单一的钝化修复剂用来降低大部分有害重金屬离子的有效性,而对土壤中微量元素和大量元素不产生吸附固定作用。在已有研究的大量钝化剂中部分适合于几种重金属离子,但对各种有害重金属离子的钝化效果还要取决于所加入钝化剂的量。

对于重金属污染程度较轻的农田土壤,可以根据重金属在土壤中的存在特性,向土壤中施加各种钝化修复剂,如黏土矿物、生物质、有机堆肥、人工合成沸石、橄榄皮等[16-20],用以修复被重金属污染的土壤。当外源钝化剂添加到土壤中后,与重金属离子产生离子交换、吸附、表面络合和沉淀等一系列反应。各种钝化剂的钝化修复效果除了与添加的剂量有关外,还与所使用钝化剂的种类和添加的形式、钝化剂自身与重金属离子的物理化学性质等密切相关。例如,在实际研究过程中,由于低成本和高溶解性,常用Ca(H2PO4)2代替CaHPO4,以Ca(H2PO4)2和CaCO3进行混合,能明显降低重金属元素的可提取态浓度,有效地实现对重金属离子进行钝化。由于易溶解和反应,CaO是一种非常有效的钝化剂,尤其是在钝化固定重金属镉、铅和锌元素方面,它的添加会导致土壤pH值迅速升高,促使土壤中重金属镉、铅和锌等形成氢氧化物沉淀;同时,由于石灰具有较高的水溶性,它能更有效地渗入土壤孔隙中,比其它钝化剂具有更好的修复效果。如在土壤中添加石灰、红泥和高炉渣钝化修复镉、铅和锌污染,试验结果表明,3种钝化剂均可明显降低土壤中镉、铅和锌的有效态含量,红泥在降低生菜地上部重金属含量方面效果最好,与对照相比,生菜中镉、铅和锌含量降低分别达86%、58%和73%;红泥和石灰修复下,土壤呼吸强度、脲酶和脱氢酶活性明显增加[21]。

在土壤化学修复中,石灰是使用时间最久的钝化剂,但石灰在实际应用中由于飞飘,农民撒施极不方便,而且在实际应用中发现施石灰对酸性水稻田Cd污染稻米降Cd效果并不十分理想,其中一个原因可能是由于Ca2+与Cd2+有相近的离子半径,所以导致已吸附在土壤颗粒上的Cd2+可被Ca2+重新置换到土壤溶液中而再次有可能被植物所吸收,导致施石灰降低作物吸收Cd的效果并不明显。同时发现施石灰降低土壤pH值维持时间较短,一般仅有2~3个月时间,土壤pH值又会迅速上升,这样需要反复增施石灰以便保持效果,而长期大量施用石灰又会导致土壤钙化、板结,影响农作物正常生长。此外,硫磺及某些还原性有机化合物可以使重金属可溶性转变成为高度难溶性的硫化物沉淀,磷酸盐类物质如磷灰岩、羟基磷灰石等可与重金属铅等反应形成难溶磷酸铅,可促进铅等重金属的沉淀,减少土壤中的铅离子等的可溶态和可提取态含量,但这些研究大部分仍然以实验室模拟试验为主。如国外相关科研人员在实验室利用Pb(NO3)2与天然磷矿石混合开展土柱试验,发现天然磷矿石可固定39%~100%的铅(British Standards Institution,1988);Haidouti[22]采用盆栽试验,对含汞920 μg/kg的污染土壤添加天然沸石进行处理并种植黑麦草和紫花苜蓿,研究发现土壤添加不同含量的天然沸石后,黑麦草和紫花苜蓿地上部和根部中汞的含量明显降低,分别减少50%和80%以上。因此,科研人员认为,在重金属污染土壤中添加少量沉淀剂如磷酸盐等,可以降低植物对重金属的吸收作用。但应该注意到的是向土壤中添加熟石灰、碳酸钙、硅酸钙和硅酸镁钙等化学物质,均会给土壤理化性质和微生物生长环境带来不同程度地不利影响,导致土壤环境质量下降,对作物生长产生不利影响。因此,需要进一步筛选和研究对土壤环境友好的重金属污染钝化修复剂。

3黏土矿物材料对农田重金属污染钝化修复

3.1黏土矿物材料的特性

利用天然矿物治理土壤重金属污染的方法是建立在充分利用自然规律的基础之上的,体现了天然自净化作用的特色,不会给农田土壤带来二次污染,具有环境友好型特点。黏土矿物(clay minerals)是黏土岩和土壤的主要矿物组成,是一些含铝、镁等为主的含水硅酸盐矿物[23]。除坡缕石、海泡石具链层状结构外,其余均具层状结构,颗粒极细,一般小于0.01 mm,加水后具有不同程度的可塑性。自然界中一般还包括高岭土、蒙脱土、伊利石等。

海泡石是具有链式层状结构的纤维状富镁硅酸盐黏土矿物,由二层硅氧四面体片之间夹一层金属阳离子八面体组成,为2∶1型,其化学式为Mg8(H2O)4[Si6O15](OH)4·8H2O,其中SiO2含量一般在54%~60%之间,MgO含量大部分在21%~25%之间,并常伴有少数置换的阳离子。我国是世界上少数几个富产黏土矿物材料海泡石的国家之一,但开发利用却十分滞后,目前仍以出口原料为主。由于海泡石比表面面积较大,理论计算其内表面可达500 m2/g,仅次于活性炭,但其价格仅为活性炭的十几分之一,价格极其低廉,而且易于开采。因此,加强对海泡石的开发利用研究有着极其重要的意义。Onodera研究表明,用海泡石吸附水体中Cd2+、Pb2+、Zn2+、Cu2+,在5 min内即可达到平衡,说明海泡石对重金属不仅具有较强的吸附能力,而且吸附速率快。在水溶液pH值为5时,浓度分别为100 mg/L的Cd2+、Pb2+、Hg2+溶液,经改性海泡石吸附处理后,重金属去除率均达到98%以上。pH值是影响海泡石吸附重金属能力的重要因素,pH值<5的酸性水溶液将不利于海泡石对重金属离子的吸附作用,pH值≥5的弱酸性和弱碱性条件有利于海泡石对水溶液中重金属的吸附。研究表明,与其它吸附剂相比,由于海泡石独特的晶体结构,具有比表面积大、吸附性能好和离子交换能力强的特点,对重金属离子具有较强的吸附固定能力,加工处理工艺简单,特别适宜于我国农田土壤重金属污染钝化修复治理,具有修复费用较低、钝化效果高、环境友好等优点,具有广泛的应用前景。

3.2黏土矿物材料对农田土壤重金属钝化修复作用

黏土矿物钝化修复土壤重金属污染具有不同于其他修复技术的优点,如原位、廉价、易操作、见效快、不易改变土壤结构、不破坏土壤生态环境等,并且能增强土壤的自净能力[24]。国内外对黏土矿物钝化修复农田重金属污染开展了大量研究工作。研究表明,盆栽土壤经海泡石钝化修复后,pH值明显提高,有效态Cd含量则明显降低,与对照相比,在土壤重金属镉含量分别为1.25、2.50 mg/kg和5.00 mg/kg时,添加海泡石可使土壤Cd有效态含量分别降低11.0%~44.4%、7.3%~23.0%和4.1%~17.0%,海泡石钝化修复可以明显提高菠菜产量,在上述3种Cd浓度污染土壤下,海泡石钝化修复可使菠菜产量分别比对照增加2.76~5.11、0.68~1.40、1.48~7.12倍,在海泡石添加量为1%~10%时,菠菜地上部Cd含量分别比对照降低78.6%~300.4%、44.6%~169.0% 和18.1%~89.3%[25]。采用蛭石對重金属污染土壤修复表明,添加蛭石的土壤pH值由初始的4.17增加到5.99,土壤中Cu、Ni、Pb、Zn交换态和碳酸盐结合态含量明显降低,试验蔬菜莴苣和菠菜可食部位重金属含量降幅达60%以上[26]。王林等[27]通过盆栽试验研究表明,菜地土壤中添加海泡石、酸改性海泡石以及二者与磷酸盐复配使用均能显著降低土壤提取态Cd、Pb的含量,最大降低率可分别达23.3%和47.2%,其中钝化材料复配处理效果要优于钝化材料单一处理。菜地土壤添加海泡石和磷酸盐,可在一定程度上提高土壤pH值,增加土壤对重金属离子的物理化学吸附作用,以及生成矿物沉淀等,促进污染菜地土壤中的Cd、Pb由活性高的交换态向活性低的残渣态转化,显著降低Cd、Pb的生物有效性和迁移能力。

当前,我国南方酸性水稻田重金属Cd污染形势突出,土壤Cd污染约占重金属污染的40%,稻米Cd超标比较普遍,稻米安全生产面临较大挑战,迫切需要高效、稳定、价低、友好的钝化修复材料及其修复技术。国内外尽管在长达几十年的时间中开展了大量钝化修复技术研究,但由于欧美发达国家农田污染面积一般较小,大量土壤重金属污染修复技术研究主要以场地污染研究为主,国内有关农田重金属污染钝化修复技术虽然研究较多,但主要以实验室研究为主,田间小面积试验为辅,技术大面积复制的高效性、稳定性、长期钝化修复的环境友好性等尚不明确,现有技术的大面积推广应用仍然存在许多不确定性。因此,加强南方酸性水稻田重金属污染,特别是Cd污染的修复技术研究急迫而艰巨。在已经开展的钝化修复研究中,以黏土矿物材料研究较多。在大田试验研究中,海泡石分别与磷肥和生物炭复配用于农田重金属Cd污染钝化修复,当666.7m2海泡石添加量为1 000 kg 时,可使糙米中Cd含量降低46.5%,当1 000 kg海泡石与333.5 kg 磷肥联合使用时,糙米镉含量降幅高达72.9%。当1 000 kg 海泡石与333 kg 生物炭联合使用时,糙米中Cd的降幅可达63.6%,联合钝化效果几乎是海泡石与生物炭单一修复之和,表明海泡石和生物炭之间具有很好的兼容性[28]。黏土矿物材料对重金属离子的吸附作用是其重要特性之一,其吸附机理包括物理吸附、化学吸附和离子交换3种。重金属铅在农田土壤污染中,大部分被表层土壤所吸附固定,这是因为土壤中含有的伊利石、蒙脱土和高岭土对Pb2+的吸附作用要比对Ca2+的吸附作用力大2~3倍,因而导致铅在耕作层土壤中的迁移力较弱,土壤中的蒙脱土和高岭土对铬的吸附作用同样较强[29]。土壤对砷的吸附则以黏土矿物中铁铝的氢氧化物为主[30]。Kumpiene等[31]研究了采用斑脱土修复As污染土壤,添加10%的斑脱土即可使土壤中As的淋溶量减少50%。郝秀珍等[32]通过盆栽试验研究了添加天然蒙脱土和沸石对铜矿尾矿砂上黑麦草生长的影响,结果发现,尾矿砂中加入蒙脱土可以显著降低有效态锌含量,但对有效态铜的含量无明显影响。屠乃美等[33]通过田间试验研究了不同改良剂对铅镉污染稻田的改良效应,结果显示,对Pb、Cd污染的水稻田土壤,施加适量的海泡石和高岭土具有一定的改良效果,水稻的生长发育得到明显改善,产量获得了一定的提高,土壤和糙米中2种重金属的含量明显降低。在施用钙镁磷肥、石灰、海泡石和腐植酸的试验研究中,除腐植酸外,另外3种修复剂均可有效地降低土壤重金属Cd的有效态含量,降幅达26%~97%,稻米Cd降低率可达6%~49%,其中,海泡石效果最为显著,而腐植酸效果一般[34]。说明黏土矿物材料对农田土壤重金属污染具有较好的钝化修复效果。

3.3农艺措施对钝化修复效应及稳定性影响

在农田重金属污染钝化修复中,农艺措施、耕作制度及环境条件的变化等都有可能对土壤重金属钝化修复效应及稳定性产生一定的影响。王永昕等[35]在重金属Cd污染土壤黏土矿物材料海泡石钝化修复下,研究施用鸡粪对钝化修复效应的影响,结果表明,与对照相比,增施鸡粪可以显著降低小白菜地上部和根部Cd含量,降低幅度分别达26.9%~32.1%和7.7%~24.8%;在大田试验中,钝化修复下增施鸡粪小白菜地上部和根部Cd含量可分别降低7.5%和16.4%。不同钝化修复下菜地土壤有效态Cd含量均较对照呈现不同程度的降低。其中,海泡石钝化修复下,增施鸡粪效果最为明显,盆栽试验和大田试验下,土壤有效态Cd最大降幅分别为17.7%和10.3%。王朋超等[36]通过盆栽试验研究表明,在菜地重金属Cd污染钝化修复中,施加过磷酸钙和钙镁磷肥后,油菜地上部Cd含量与对照相比分别降低54.3%~86.7%和74.4%~79.6%,其中当过磷酸钙和钙镁磷肥施加量为中高剂量时,油菜地上部Cd含量降低至 0.18 mg/kg和0.10 mg/kg。说明施加磷肥有利于菜地Cd污染钝化修复作用。淹水处理可使重金属Cd污染酸性稻田土壤处于还原状态,土壤pH值升高,OH-含量增加;此外,土壤中SO2-4被还原成S2-,均对Cd的沉淀有促进作用,有利于Cd污染酸性水稻田钝化修复的稳定性,而干湿灌溉和旱作均对镉钝化稳定性存在一定的不利影响[37]。总体来看,农艺措施对农田土壤重金属Cd污染钝化修复效应与稳定性具有一定的影响,而翻耕、轮作等钝化修复效应及稳定性影响目前研究较少。因此,在农田土壤重金属Cd污染钝化修复中如何发挥好农艺与耕作措施的协同强化作用,避免不利因素对钝化修复效应及稳定性的影响仍然需要通过开展大量研究工作,以便确定钝化修复中良好的农艺与耕作措施。

3.4黏土礦物钝化修复对农田土壤环境质量的影响

农田土壤重金属污染钝化修复效应评价的一个重要方面就是环境友好性,即长期高效的钝化修复不应导致农田土壤板结、盐碱化和环境质量下降,影响农业稳产高产。目前,有关钝化修复对农田土壤环境质量影响研究较少,特别是长期跟踪监测研究更少,大量钝化修复研究主要集成在修复效应研究方面。连续2年酸性水稻田Cd污染土钝化修复试验表明,添加海泡石对土壤脲酶、磷酸酶活性和微生物量碳等均无明显影响,钝化修复提高了土壤过氧化氢酶活性,土壤微生物量N和真菌出现一定程度的降低[38]。在湖南省某地酸性Cd污染水稻田钝化修复试验中,稻田施用海泡石和坡缕石进行钝化稳定化,在水稻收获时,测定的土壤中脲酶、蔗糖酶、过氧化氢酶和酸性磷酸酶活性均有不同程度的提高,钝化修复明显有利于土壤中相关代谢反应的恢复,两种黏土矿物对土壤中水解氮含量无明显影响,但对土壤有效磷含量有一定的降低作用[39]。采集长期污灌菜地土壤进行盆栽试验表明,在黏土矿物材料海泡石钝化修复下,补充添加适量的鸡粪可明显提高土壤脲酶、蔗糖酶和过氧化氢酶活性,与对照相比,3种酶的含量分别增加14.0%~47.6%、2.0%~22.4%和6.4%~38.6%;大田试验条件下,3种酶的含量分别增加22.2%、5.5%和36.5%。说明在菜地土壤Cd污染黏土矿物材料钝化修复下,补充施加适量的鸡粪不仅可以起到强化Cd 钝化修复效应,而且可以进一步提高土壤酶活性,改善Cd 污染污灌菜地土壤环境质量[32]。孙约兵等[40]采用盆栽试验研究表明,海泡石钝化修复下,土壤脲酶、蔗糖酶和过氧化氢酶活性分别增加14.2%~28.8%、23.5%~34.0%和5.1%~15.4%,真菌和细菌数量分别增加45.6%~96.5%和15.5%~91.7%。而Cd污染酸性水稻田土壤鸡粪和生物炭复配持续两年钝化修复后,各修复的土壤有效磷和碱解氮含量间并无显著性变化[33]。

总体来看,黏土矿物材料钝化修复重金属污染农田土壤,在不影响农作物产量及品质的情况下,对土壤环境质量不会产生有害影响,而且具有一定的改善土壤环境质量的作用,有利于农作物的生长和产量及品质的提高。

4展望

当前我国农田土壤重金属污染形势严峻,迫切需要研发高效钝化阻控修复材料和产品及易操作、可推广的钝化修复技术体系。黏土矿物作为一种环境友好型材料,在我国储量丰富,易于开采,价格适中,且其自身与土壤环境融合性好,对土壤环境具有改善作用,但在今后仍需加强对黏土矿物材料长期钝化修复稳定性、黏土矿物材料不同添加剂量及不同老化时间对土壤重金属钝化修复效应、农艺与耕作制度及环境条件变化对黏土矿物材料重金属钝化修复效应与稳定性影响、黏土矿物材料长期钝化修复对土壤环境质量影响、黏土矿物材料对农田重金属污染钝化修复机理、中重度重金属污染农田黏土矿物材料与其他技术联合集成技术以及钝化修复技术异地复制稳定性的研究等。针对农田土壤重金属不同污染程度、不同土壤特性,采取相应的施加剂量和修复技术方法,以实现对轻中重度重金属污染农田的高效钝化修复,实现农产品安全生产,保障人体健康。

参考文献:

[1]Fu J, Zhou Q, Liu J, et al. High levels of heavy metals in rice (Oryza sativa L. ) from a typical E-waste recycling area in southeast China and its potential risk to human health[J]. Chemosphere, 2008, 71: 1269-1275.

[2]李培军, 孙铁珩, 巩宗强, 等. 污染土壤生态修复理论内涵的初步探讨[J]. 应用生态学报, 2006 , 17(4): 747-750.

[3]环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京:环境保护部,国土资源部,2014.

[4]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,2002.

[5]Evans L J, Spiers G A, Zhao G. Chemical aspects of heavy metal solubility with reference to sewage sludge amended soils[J]. International Journal of Environmental Analytical Chemistry, 1995, 59: 291-302.

[6]Ruby M V, Davis A, Nicholson A. In situ formation of lead phosphates in soils as a method to immobilize lead[J]. Environmental Science & Technology, 1994, 28: 646-654.

[7]Lombi E , Zhao F J, Zhang G Y , et al. In situ fixation of metals in soils using bauxite residue: chemical assessment[J]. Environmental Pollution, 2002, 118 : 435-443.

[8]Querol X, Alastuey A, Moreno N L, et al. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash[J]. Chemosphere,2006,62:171-180.

[9]Ruttens A, Adriaensen K, Meers E, et al. Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition[J]. Environmental Pollution, 2010, 158 : 1428-1434.

[10]Lvarez-Ayuso E A, García-Snchez A. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils[J]. Environmental Pollution,2003,125:337-344.

[11]Warren G P, Alloway B J, Lepp N W, et al. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides[J]. The Science of the Total Environment,2003,311:19-33.

[12]Castaldi P, Santona L , Melis M. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth[J]. Chemosphere, 2005,60:365-371.

[13]Yin C Y,Mahmud H B,Shaaban M G . Stabilization/solidification of lead-contaminated soil using cement and rice husk ash[J]. Journal of Hazardous Materials B, 2006,137:1758-1764.

[14]Ruttens A, Mench M, Colpaert J V, et al. Phytostabilization of a metal contaminated sandy soil. Ⅰ: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals[J].Environmental Pollution,2006,144:524-532.

[15]Kuo S, Lai M S, Lin C W. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils[J]. Environmental Pollution, 2006,144:918-925.

[16]Garcla-Sanchez A,Alastuey U A, Querol X. Heavy metal adsorption by different minerals: application to the remediation of polluted soils[J]. The Science of the Total Environment, 1999, 242: 179-188.

[17]Clemente R, Paredes C, Bernal M P. A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia (Spain)[J]. Agriculture, Ecosystems and Environment, 2007,118:319-326.

[18]Terzanoa R, Spagnuoloa M, Medici L. Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation[J]. Applied Clay Science, 2005,29:99-110.

[19]Madejón E,de Mora A P,Felipe E,et al. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation[J]. Environmental Pollution,2006,139:40-52.

[20]Singh J S, Pandey V C, Singh D P. Coal fly ash and farmyard manure amendments in dry-land paddy agriculture field: effect on N-dynamics and paddy productivity[J]. Applied Soil Ecology, 2011, 47:133-140.

[21]Lee S H, Lee J S, Choi Y J, et al. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments[J]. The Chemosphere, 2009, 77:1069-1075.

[22]Haidouti C.Inactivation of mercury in contaminated soils using natural zeolites[J].The Science of the Total Environment,1997,208:105-109.

[23]吴平霄. 黏土矿物材料与环境修复[M]. 北京: 化学工业出版社, 2004.

[24]李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报,2014, 23(4): 721-728.

[25]孙约兵, 徐应明, 史新, 等. 海泡石对镉污染红壤的钝化修复效应研究[J]. 环境科学学报,2012,36(6):1465-1472.

[26]Mery M, Ornella A, Sandro B, et al. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite[J]. Chemosphere, 2011,82:169-178.

[27]王林, 徐应明, 孙国红, 等. 海泡石和磷酸盐对镉铅污染稻田土壤的钝化修复效应与机理研究[J]. 生态环境学报,2012, 21(2): 314-320.

[28]梁学峰, 韩君, 徐应明,等. 海泡石及其复配原位修复镉污染稻田[J]. 环境工程学报,2015, 9(9): 4571-4577.

[29]林云青, 章鋼娅. 黏土矿物修复重金属污染土壤的研究进展[J]. 中国农学通报, 2009,25(24):422-427.

[30]鲁春霞. 黏土矿物对环境污染的防治作用[J]. 中国沙漠, 1999, 19(3):265-267.(下转第167页)山 东 农 业 科 学2017,49(2):163~167Shandong Agricultural Sciences山 东 农 业 科 学第49卷第2期陈鹏云,等:我国棉花品种改良的方向与策略DOI:10.14083/j.issn.1001-4942.2017.02.034

收稿日期:2016-11-18

基金项目:国家现代农业产业技术体系之棉花产业技术体系项目(CARS-18-10);转基因新品种培育重大专项(2016ZX08005-003、2014ZX0800501B);泰山学者建设工程专项(NO.ts201511070)

作者简介:陈鹏云(1990-),男,硕士研究生,研究方向为分子育种。 E-mail: arpengyun@163.com

通讯作者:张军(1968-),男,博士,研究员,从事棉花生物技术与育种研究。E-mail: scrczj@saas.ac.cn

作者:徐奕 梁学 峰彭亮 曾清如 徐应明

第3篇:农田土壤重金属污染快速检测及修复方法研究

摘 要:现阶段,我国社会经济水平显著提升,在这样的背景下,我国工业化的不断推进,工业发展规模越来越大,工业生产过程中会排出很多废水、废气、废渣等,往往都含有不少重金属元素,被排入农田土壤之中,就会形成污染。尽管农田土壤本身也具有金属元素,以满足作物成长需要,但通常含量微小,不会超过作物生长需要水平太多。如果农田土壤中的重金属元素超过一定量,累积浓度很高,那么就会超出作物能够承受的范围,影响其正常生产甚至表现出病害、毒害。假设作物受害情况并不明显,但收获的农产品金属元素含量较高,导致人畜出现不良反应,这也说明农田土壤受到了重金属污染。

关键词:农田土壤;重金属污染;快速检测;修复

引言

作为农业发展的基础——农田土壤,其关系到农产品供给,关系到农业生产和社会建设。随着科学技术的创新发展,农田生产效率明显提升,但农田土壤污染问题也更为严重。相关调查显示,我国现阶段农田土壤重金属污染严重超标,污染面积高达一千万立方米,这在工业发达地区尤其严重,引发社会的强烈关注。因此,探讨农田土壤重金属防治的有效方法,具有现实必要性。

1农田土壤重金属污染来源与危害

农田土壤重金属污染物来源主要有:大气沉降、石化工业、城市交通等排放的大气重金属颗粒物在干沉降、湿沉降等途径作用下,进入到农田土壤中;水体污染、生活污水、工业废水直接排放到水体中,造成水体重金属污染,然后通过农业灌溉等方式进入到农田土壤中;农业生产活动、农药、化肥、地膜的无节制使用,对农业农田土壤造成重金属污染;在生产生活过程中大量固体废弃物堆积对农田土壤造成重金属污染。农田土壤中的重金属污染不仅改变农田土壤结构,降低其肥力,减少农业产量,而且还会对人体健康造成间接危害,影响人类的可持续性发展。因此,强化对农田土壤重金属污染监测和治理势在必行。

2农田土壤重金属污染快速检测

2.1原子吸收光谱法

原子吸收光谱法(AAS)是基于待测元素气态基态原子对该元素原子特征谱线的吸收程度来定量测定待测元素含量的一种分析方法,具有灵敏度高、选择性强的特点,但不适合多种金属元素的同时测定。根据原子化器的不同,可分为火焰原子吸收光谱法和石墨炉原子吸收光谱法。采用石墨炉原子吸收法测定了农田土壤样品的铅、镉、钴、锑、铍含量,该法简便、快速、准确。

2.2光谱检测技术

在农田土壤重金污染的判定上,往往需借助于专业的检测技术。光谱检测技术是一种有效的检测技术,这种检测技术的灵敏性很高,但是,在实际的应用过程中,检测流程相对繁杂,对检测设备有着极高的要求,检测需耗费较长的时间,整个检测的成本较高。在光谱检测技术下,必须要由X射线来完成检测工作,X射线的电离性较强,如果长时间使用,将会对检测操作人员造成一定的伤害。因此,为保障检测工作的顺利开展,在农田土壤重金属检测中,如果应用的是光谱检测技术,操作人员需做好相应的安全防护,并具有较高的操作能力。紫外可见光光度法是光谱检测技术中应用频次相对较高的检测技术。

2.3磁化率检测技术

农田土壤中的重金属含量越高,其磁性越强。可以结合这一特性,对农田土壤中的重金属含量和种类进行分析判断。在具体檢测中主要应用到的仪器设备有野外袖珍式磁化率仪、野外农田土壤剖面磁化率仪等,可以有效提升现场农田土壤检测效果。该种方式检测速度较快,仪器灵敏度好,能够获得进准的检测数据结果,不需要对农田土壤样品进行预处理,采集样品量较好,使用方便高效。

2.4免疫分析检测技术

主要是通过免疫分析法对农田土壤重金属进行检测。而这种检测在实际运用过程中具有相对较高的灵敏度以及独特性。但是在实际运用时还是需要对此技术引起高度重视,合理运用化合物对重金属离子的综合性,保留一定的空间结构,这样可以保证氧化还原作用。保证载体蛋白能够接受综合离子化合物从而产生免疫反应。除此之外,工作人员应该选择具有一定的抗体对重金属离子化合物进行综合性检测。保证检测结果具有一定的准确性。

3农田土壤重金属污染修复方法

3.1农业治理

要想实现农田土壤中重金属污染的有效治理,也可以着手农业治理,主要是改善耕作方式,合理规划农业种植区等,从源头上规避重金属污染,将重金属污染物阻隔在农田土壤之外。对于已经污染的农田土壤,可以选择种植其他观赏性植物,也可以种植大量的树木,发展为森林,来逐渐的改善农田土壤质量。对于重金属污染较轻的区域,可以优选对重金属富集效果差的植物,以确保植物生长良好改良农田土壤性能。农业治理方式,对于重金属污染农田土壤的改良具有明显效果。

3.2生物修复

生物修复方式主要是利用植物、微生物、动物的呼吸、新陈代谢等途径,对农田土壤中的重金属进行吸收清除,或者将重金属物质进行转化,使其以毒性较低的形态存在,起到净化农田土壤的效果。植物修复方法主要是利用植物稳定、吸收、提取、转化、挥发等功能,对农田土壤中的有毒物质进行清除的方式。微生物修复技术主要是主要是利用微生物的嗜重金属特性,对农田土壤中的重金属物质进行清除。由于农田土壤中含有大量的微生物,如动胶菌、蓝细菌等,可以将其胞外聚合物与重金属离子产生作用,生产络合物,达到吸收农田土壤中重金属元素的目的。动物修复方法主要是利用蚯蚓等动物对农田土壤中的重金属物质进行吸收、降解、转移,达到净化农田土壤的目的。蚯蚓可以利用扩散、摄食等方式对铅等重金属物质进行富集。

3.3从源头上治理

当前,人们对于农田土壤中重金属污染物的控制基本上将目标集中在了“浓度”上,但是随着社会生活、生产的现代化,形成的垃圾或污染物只会越来越多,进入农田土壤之后,农田土壤自身无法完全容纳,会逐步富集,即便农田土壤中的浓度控制得当,也可能被富集到食物链中。因此,要治理重金属污染,最好的方法是从根源解决问题,首先是合理使用化肥与农药,其次是控制工厂或生活污染物的产生与排放,再次是研究出新型的重金属回收技术,在保护农田土壤的同时使金属元素资源二次利用。

3.4联合修复

如果农田土壤重金属污染种类较多、污染情况较为复杂,使用单一的修复方法难以进行彻底治理,需要采用多种修复方法联合修复的方式,来达到提升农田土壤重金属修复效率和精确性的目的。其中主要的方式有化学-生物联合修复、物理-化学联合修复等。

4结语

为改善农田土壤质量,研究了农田土壤重金属污染快速检测及修复方法。但因为重金属污染的农田土壤修复是一个长期工程,但在此次研究中,却在更长时间尺度上修复被重金属污染的农田土壤,并做出后续农田土壤修复工作。因此在今后的研究中,需要加强被重金属污染的农田土壤后续处理工作研究,确保农田土壤恢复状况,避免农田土壤二次重金属污染现象的出现。

参考文献:

[1]胡浩.农田耕地土壤重金属污染的防治[J].湖北农机化,2020(13).

[2]毛红云,孜比布拉·司马义,杨胜天,等.农田土壤重金属的污染特征研究[J].江苏农业科学,2020,48(09).

[3]朱玉斌.土壤重金属污染现状及修复技术比较[J].中国资源综合利用,2017,36(5):56-58.

[4]周娜,侯志明.土壤中的重金属污染及检测技术分析[J].中国化工贸易,2017,7(13):86.

[5]王少斌.土壤重金属污染治理技术的现状及未来对策分析[J].中小企业管理与科技(下旬刊),2019,12(7):130-131.

作者简介:

黎冬容(1986—),女,工程师,主要从事土壤和水质化学分析。

作者:黎冬容

第4篇:多环芳烃污染农田土壤的微生物修复技术与示范-国家科技部

附件3 863计划资源环境技术领域“多环芳烃污染农田土壤的

微生物修复技术与示范”重点项目申请指南

一、指南说明

近年来,我国土壤污染问题日益凸现,对生态环境、食品安全和人体健康构成严重威胁。其中,重金属、石油、多环芳烃等污染物导致的土壤污染尤为突出。研发经济高效的污染土壤修复技术是改善我国环境质量的迫切要求,也是世界科技的研究热点。本重点项目针对多环芳烃污染农田土壤,开展微生物修复技术研究和应用示范,形成多环芳烃污染农田土壤的微生物修复成套技术,为我国土壤多环芳烃污染修复提供有力的技术支撑。

此次发布的是本领域“多环芳烃污染农田土壤的微生物修复技术与示范”重点项目申请指南。本重点项目的任务落实只针对项目整体进行,考虑到工作的整体性很强,本项目只设1个课题。

二、指南内容

1.项目名称

多环芳烃污染农田土壤的微生物修复技术与示范 2.项目总体目标

该项目将针对我国突出的农田土壤环境多环芳烃污染问题,筛选高效微生物降解菌,研制高效微生物修复剂、微生物固定化载体材料

1 和生物表面活性剂,开发相关的研制工艺和技术设备;研发多环芳烃的微生物固定化降解技术和生物表面活性剂强化修复技术,发展原位微生物修复技术、植物-微生物联合修复技术,建立多环芳烃污染农田土壤微生物修复技术体系并开展工程示范,制定修复技术规范。通过项目研究,培养高水平的科技人才和创新团队,建立具有国际先进水平和引领作用的技术研发平台,为我国多环芳烃污染土壤环境质量改善和生态功能恢复提供技术支撑。

3.项目主要研究内容

(1)多环芳烃高效降解菌筛选及高效微生物菌剂研制:针对农田土壤多环芳烃污染,筛选多环芳烃高效降解菌,研制高效微生物修复剂,研发修复菌剂的制备工艺和技术。

(2)多环芳烃污染农田土壤的高效强化微生物修复技术:研制环境友化的微生物固定载体材料、生物表面活性剂及其关键工艺设备;开发多环芳烃污染土壤的微生物固定化修复技术和增溶强化生物修复技术。

(3)多环芳烃污染农田土壤的植物-微生物联合修复技术:研发多环芳烃污染土壤的植物-微生物联合修复技术;研制具有协同修复作用的营养调控剂,发展土壤根际生态调控与强化修复技术。

(4)多环芳烃污染农田土壤的微生物修复技术集成与示范:开

2 发多环芳烃污染农田土壤的原位微生物修复技术及微生物-植物联合修复技术,进行技术集成和工程示范,开展环境风险评估,制定修复技术规范。

4.项目主要考核指标

(1)筛选高效降解高分子量多环芳烃、具有自主知识产权的菌株5-8种,其中能定殖于根际土壤的菌株3-4种;研制出3-5种高效修复菌剂、生物表面活性剂和根际营养调控剂,开发2-3套制备工艺和设备;

(2)开发多环芳烃污染土壤微生物修复及其强化成套技术,使多环芳烃污染物降解效率达到60%以上,其中五环以上多环芳烃降解率达到40%以上;开发多环芳烃污染土壤的植物-微生物联合修复成套技术,使多环芳烃污染物降解效率达到70%以上,其中五环以上多环芳烃降解率达到40%以上;

(3)在国内不同地理环境的多环芳烃污染农田土壤上建立集成修复技术示范工程,示范面积不小于1公顷,多环芳烃的综合修复效率在70%以上。完成环境风险评估,建立多环芳烃污染土壤修复技术规范,形成2~3套多环芳烃污染农田土壤原位微生物修复技术。

(4)申请10-15项发明专利,其中2项以上获得授权。 5.项目经费来源及构成

3 本项目预算总经费为1600万元,其中国拨经费控制额800万元,示范工程配套经费不低于800万元。

6.项目支持年限:

2007年7月至2010年12月。 7.其它需要说明的事项

项目承担单位应具有从事多环芳烃污染农田土壤修复技术研究的丰富经验和良好条件。本项目鼓励产学研单位联合申请。

三、注意事项

1.本重点项目的任务落实只针对项目整体进行,考虑到工作的整体性很强,本项目只设1个课题。对于多家共同承担的,由研究单位自行组合形成项目申请团队(同一个研究组只能参加一个申请团队)。本项目采取择优委托的方式确定申请项目的研究单位的组合。

2. 凡在中华人民共和国境内注册一年以上,具有独立法人资格的企业(不包括外国独资企业和外资控股企业)、事业单位均可承担本项目或课题。

3.重点项目课题责任人必须是法人,法人是当然的课题依托单位,且须指定一名自然人担任课题组长。课题组长应具有中华人民共和国国籍,年龄在55周岁以下(截止指南公布之日),具有高级职称或博士学位,每年(含跨连续)离职或出国的时间不超过半年,

4 过去三年内没有863计划信用管理不良记录。

4.课题组长申请及负责的科技部三大计划(863计划、科技支撑计划和973计划)在研课题累计不得超过一项,同时可参加一项课题(申请或在研);每个参加课题的技术人员最多只能参与三大计划中两项课题的工作。科技部及所属事业单位借调的与863计划相关的人员不能申请或参加申请。

5.申报程序和要求:

本项目通过国家科技计划项目申报中心统一申报。申请指南在科技部及863计划网站上公开发布。

6.咨询联系人及联系方式 联系人:

柯 兵

张书军

联系电话:010-58884866,58884868 Email: kebing@acca21.org.cn; zhshujun@acca21.org.cn

第5篇:农业面源和重金属污染农田综合防治与修复技术研发

“农业面源和重金属污染农田综合防治与修复技术研发” 重点专项形式审查条件要求

申报项目须符合以下形式审查条件要求。 1. 推荐程序和填写要求

(1)由指南规定的推荐单位在规定时间内出具推荐函。 (2)申报单位同一项目须通过单个推荐单位申报,不得多头申报和重复申报。

(3)项目申报书(包括预申报书和正式申报书,下同)内容与申报的指南方向基本相符。

(4)项目申报书及附件按格式要求填写完整。 2. 申报人应具备的资格条件

(1)项目及下设任务(课题)负责人申报项目当年不超过60周岁(1956年1月1日以后出生)。

(2)项目及下设任务(课题)负责人具有高级职称或博士学位。

(3)受聘于内地单位的外籍科学家及港、澳、台地区科学家可作为重点专项的项目(含任务或课题)负责人,全职受聘人员须由内地受聘单位提供全职受聘的有效证明,非全职受聘人员须由内地受聘单位和境外单位同时提供受聘的有效证明,并随纸质项目申报书一并报送。

(4)项目(含任务或课题)负责人限申报一个项目,973计划(含重大科学研究计划)、863计划、国家科技支撑

1 计划、国家国际科技合作专项、国家重大科学仪器设备开发专项、公益性行业科研专项(以下简称“改革前计划”)在研项目(含任务或课题)以及国家科技重大专项在研项目(含任务或课题)负责人不得申报国家重点研发计划重点专项项目(含任务或课题);项目主要参加人员的申报项目和改革前计划、国家科技重大专项在研项目总数不得超过两个;改革前计划、国家科技重大专项的在研项目(含任务或课题)负责人不得因申报国家重点研发计划重点专项项目(含任务或课题)而退出目前承担的项目(含任务或课题)。计划任务书执行期到2016年12月底之前的在研项目(含任务或课题)不在限项范围内。

(5)特邀咨评委委员及参与重点专项咨询评议的专家,不能申报本人参与咨询和论证过的重点专项项目(含任务或课题);参与重点专项实施方案或本年度项目指南编制的专家,不能申报该重点专项项目(含任务或课题)。

(6)在承担(或申请)国家科技计划项目中,没有严重不良信用记录或被记入“黑名单”。

(7)中央和地方各级政府的公务人员(包括行使科技计划管理职能的其他人员)不得申报项目。

3. 申报单位应具备的资格条件

(1)在中国境内登记注册的科研院所、高等学校和企业等法人单位;政府机关不得作为申报单位进行申报。

(2)注册时间在2015年3月31日前。

2 (3)在承担(或申请)国家科技计划项目中,没有严重不良信用记录或被记入“黑名单”。

4. 本重点专项指南规定的其他形式审查条件要求 (1)项目申请书需经过国务院有关部门(直属机构、直属事业单位)科技主管机构推荐,或各省、自治区、直辖市、计划单列市及新疆生产建设兵团科技主管部门推荐。

(2)项目须整体申报,须覆盖全部考核指标。 (3)同一申报材料不得多头重复推荐;同一推荐主体对同一项目只能推荐1项。

(4)项目申报单位(包括联合申报中的任意一方)和项目参加人员,对同一项目不得进行重复或交叉申报。

(5)项目下设课题数不超过7个,每个课题参加单位不超过4家(含承担单位)。

本专项形式审查责任人:林友华,徐长春

3

第6篇:“农业面源和重金属污染农田综合防治与修复技术研发”

重点专项2018项目申报指南

近年来,农业面源和重金属污染问题已成为我国广泛关注的重大农业生态环境问题,对现代农业和社会经济的可持续发展、农业生态环境安全和农产品质量安全构成了严重威胁。十多年的科学研究和大量的实践证明,由于我国农业生态环境的特殊性,照搬国外技术与理论无法切实解决我国农业领域所面临的重大环境和科学问题,难以有效地遏制农业环境污染和日趋加剧的发展态势。围绕我国农业面源污染、农田重金属污染防治的重大战略需求,实施“农业面源污染和重金属污染农田综合防治与修复”国家重点研发计划重点专项十分必要而迫切。

为贯彻十八届五中全会绿色发展理念和《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发„2014‟64号)文件精神,落实《全国农业可持续发展规划(2015-2030)》确定的“保护耕地资源,防治耕地重金属污染”、“治理环境污染,改善农业农村环境”重点任务,聚焦我国农田农业面源和重金属污染问题,按照“基础研究、共性关键技术研究、技术集成创新研究与示范”全链条一体化设计,组织实施“农业面源和重金属污染农田综合防治与修复技术研发”

1 重点专项。

本专项以我国农业面源污染高发区和重金属污染典型区为重点,以农田面源污染物和重金属溯源、迁移和转化机制、污染负荷及其与区域环境质量及农产品质量关系等理论创新为驱动力,突破氮磷、有毒有害化学生物、重金属、农业有机废弃物等农田污染物全方位防治与修复关键技术瓶颈,提升装备和产品的标准化、产业化水平,建设技术集成与示范基地。到2020年,示范区实现氮磷和农药污染负荷降低20%以上、农药残留率降低30%以上,污染农田重金属有效性降低50%以上、农产品质量符合食品安全国家标准,农业有机废弃物无害化消纳利用率达到95%。

围绕专项总体目标,衔接农业面源和重金属污染防治与修复基础研究,共性关键技术、产品和装备研发,技术集成与示范的全产业链三个层次,设臵35个研究方向项目,其中基础研究7个,关键技术研发15个,典型应用示范13个。根据专项统一部署,依据国家重大需求、问题的突出性和紧迫性、基础和技术需求的重要性和关键性、区域分布代表性和典型性的原则,2016年第一批启动11个研究方向项目,其中基础研究4个、关键技术研发5个、典型应用示范2个;2017年第二批启动15个研究方向项目,其中基础研究3个,关键技术研发9个,集成应用示

2 范3个。在前两批启动项目基础上,2018拟启动 9个研究方向项目,其中关键技术研发 1个,技术集成与示范8个,拟安排国拨经费1.3亿元。项目实施周期为2018年1月1日至2020年12月31日。

一、关键技术研发

1. 集约化养殖粪污污染综合防治技术与装备研发 研究内容:针对主要畜禽种类集约化养殖过程中粪污环境污染问题,研发主要畜种集约化养殖场规划布局、环保型畜禽舍设计、粪污污染控制规程;研发集约化养殖粪污收储运的智能化控制系统及关键技术设备;研发集约化养殖业粪污高效转化利用关键技术及专用设备;研发主要畜种集约化养殖环境与粪污无害化检测技术及装备;开展基于污染防治的集约化养殖场综合养分管理技术应用及其经济与环境效应评价研究。

考核指标:【约束性指标】编制粪污污染控制技术规程2套,粪污收集、运输和贮存的智能化控制关键技术设备3套,研发粪污处理技术专用设备3套,研发粪污无害化检测技术规程3套;提出粪污污染综合防治技术方案3套;获得国家发明专利6件,有效转化3件。开展集约化养殖粪污污染防治技术和设备的试验示范,实现集约化养殖业粪污无害化利用率达到90%。【预期性指标】编制主要畜种集约化养殖粪污污染防治技

3 术标准草案4项;发表SCI论文10篇。

执行期限:2018~2020年 拟支持项目数:1-2项

二、技术集成与示范

2.长三角镉砷和面源污染农田综合防治与修复技术示范 研究内容:针对长三角经济发达地区工业化和农业集约化程度高所引起的农田重金属和面源污染加剧问题,以都市和城郊生态农业、生态高值农业、休闲农业发展对生态环境质量高要求为目标,集成农田重金属污染物阻断技术与材料、设施农业水肥一体化技术及氮磷流失削减技术、农田有毒有害化学/生物污染防控技术与产品、典型农业废弃物资源化无害化处理技术、集约化农田生态种养技术和模式;优化配套重金属低积累作物品种、超富集植物间套作技术、生态修复技术和农艺管理措施;应用农业面源和重金属污染检测技术、设备和标准,开展重金属污染和面源污染的监测和评价,建立区域重金属和面源污染的预警系统;构建长三角高度集约化农业重金属和面源污染综合防治与修复技术模式,编制技术规范,开展工程化应用。

考核指标:【约束性指标】形成长三角高度集约化农业重金属和面源污染综合防治与修复技术模式4套,编制技术规范

44 项,建设农业废弃物污染控制技术工艺生产线1条,年处理能力10000吨。建立长三角高度集约化农业重金属和面源污染综合防治与修复集成技术示范区,核心区面积500亩,示范区5000亩。示范区实现土壤镉、砷等重金属去除率达20%以上,有效性降低50%以上,氮磷和农药污染负荷削减25%以上,农产品质量符合国家食品卫生标准,农业废弃物利用率达到85%以上。【预期性指标】技术辐射推广1万亩,实现污染负荷削减目标,培训技术人员3000人次。

执行期限:2018~2020年 拟支持项目数:1-2项

3. 黄淮海粮食主产区面源和重金属污染综合防治技术示范

研究内容:针对黄淮海粮食主产区由于农业生产资料不合理投入导致面源污染和污灌、矿业冶炼等活动导致的重金属污染问题,以典型地表水源污染区域为目标,集成小麦玉米主产区氮磷淋失阻控技术与产品、农田有毒有害化学/生物污染防控技术与产品、秸秆等农业废弃物无害化处理技术与设备;优化氮磷等农业面源污染防控技术、重金属污染农田安全利用和修复技术;构建黄淮海粮食主产区农田面源和重金属污染综合防治与修复技术模式,编制技术规范,建设海河、黄河、淮河流

5 域粮田面源和重金属污染综合防治与修复集成技术示范区。

考核指标:【约束性指标】形成黄淮海粮食主产区主要种植制度面源和重金属污染综合防治和修复技术模式4套,编制技术规范4项,建设、改造作物秸秆无害化处理技术生产线1条。建立黄淮海粮食主产区面源和重金属污染综合防治与修复集成技术示范区,核心区1万亩,示范区3万亩。示范区实现氮磷污染负荷削减20%以上,土壤重金属去除率达到20%以上,或有效性降低50%以上,农产品质量达到国家食品卫生标准,农业废弃物无害化消纳利用率提高到95%。【预期性指标】技术辐射推广20万亩,实现污染负荷削减目标,培训技术人员4000人次。

执行期限:2018~2020年 拟支持项目数:1-2项

4. 黄淮海蔬菜主产区面源污染综合防治技术示范 研究内容:针对黄淮海蔬菜主产区农业投入品与产出品导致的农业面源污染问题。集成菜田氮磷污染负荷削减技术与产品、农药等农田有毒有害化学/生物污染防控技术与产品、尾菜等典型农业废弃物无害化处理技术与设备;优化配套低污染蔬菜种植模式、水肥一体氮磷流失阻控技术、农田尾菜资源化利用技术、种植/养殖/加工相结合资源高效循环农业模式;构建

6 黄淮海菜田面源污染综合防治技术模式,编制技术规范,建设黄淮海蔬菜主产区面源污染综合防治集成技术示范区。

考核指标:【约束性指标】形成黄淮海蔬菜主产区面源污染综合防治技术模式4套,编制技术规范4项,建设蔬菜废弃物无害化利用技术生产线1条,年处理能力8000吨。建立蔬菜主产区面源污染综合防治集成技术示范区,核心区0.5万亩,示范区1万亩。示范区实现氮磷、农药污染负荷削减20%-30%,农药等农田有毒有害化学/生物污染物残留率降低20%以上,蔬菜废弃物无害化消纳利用率提高到95%。【预期性指标】技术辐射推广5万亩,实现污染负荷削减目标,培训技术人员4000人次。

执行期限:2018~2020年 拟支持项目数:1-2项

5. 长江中游双季稻区面源污染综合防治技术示范 研究内容:针对低丘-平原混合河网发达,以水稻种植和畜禽养殖为农业主产业的区域特点,综合集成氮磷高效水稻品种、农田氮磷和有毒有害化学品等污染物的源头减量、稻秸资源化利用等农田面源污染防控技术、产品与设备;优化养殖污染物的控制与资源化利用技术与设备、径流输移和汇流区生物净化等小流域面源污染防控技术;构建长江中游低丘-平原混合河网

7 双季稻区农业面源污染综合防控模式,编制技术规范,开展示范推广。

考核指标:【约束性指标】形成长江中游低丘-平原混合河网双季稻农业面源污染综合防治技术模式4套,编制技术规范4项,建设秸秆和养殖污染物高效利用生产线2条,生能达到5000吨/年;建立区域面源污染综合防治技术集成与示范区,核心区1万亩,示范区5万亩。示范区氮磷和农药等污染物负荷削减30%以上,农田有毒有害等化学品残留量降低20%以上,农业废弃物无害化利用率达到95%。【预期性指标】技术辐射推广50万亩以上,实现污染负荷削减目标,培训技术人员4000人次。

执行期限:2018~2020年 拟支持项目数:1-2项

6. 西南粮食主产区砷镉污染综合防治与修复技术示范 研究内容:针对西南粮食主产区由于地质高背景、次生富集和风化程度高等特点,在碳酸岩、玄武岩等不同母质的土壤区,建立农田地质高背景土壤重金属的综合调控技术示范区,编制基于污染快速监测技术的污染农田安全种植区划和监管技术体系;集成农田重金属污染协同钝化阻隔、植物萃取技术产品与装备、耕地安全利用技术与产品;优化配套低积累作物品

8 种及农艺管理措施;建立地质高背景地区土地安全利用和规划整治的区划模式,构建西南砷镉等为主的重金属污染农田综合防治与修复技术模式,编制技术规范,开展示范应用。

考核指标:【约束性指标】建立农田地质高背景土壤重金属综合调控技术方案1套,建立基于重金属快速监测技术的分区分级治理方案1套,形成西南砷镉等重金属污染农田综合防治与修复技术模式3套,编制技术规范3项,建设1条年产5000吨的重金属钝化剂/活化剂生产线。建立重金属污染农田综合防治与修复集成技术示范区,核心区1000亩,示范区5000亩。示范区土壤砷镉去除率达到20%以上,有效性降低50%以上,农产品质量达到国家食品卫生标准。【预期性指标】技术辐射推广1.0万亩,实现重金属污染修复目标,培训技术人员3000人次。

执行期限:2018~2020年 拟支持项目数:1-2项

7. 华南镉铅污染农田修复与安全利用技术示范 研究内容:针对华南地区由于矿山开发、冶炼导致的流域性农田重金属污染问题,集成农田重金属污染防治地球化学工程技术、协同钝化阻隔技术、植物萃取技术产品与装备、植物间套作修复技术等;建立针对不同类型金属矿体、冶炼加工、矿山废弃物、尾矿、酸性矿山废水、污染地表水和土壤的重金

9 属污染源阻断、过程控制、末端治理的全过程、一体化示范工程;构建华南区域性镉铅等重金属污染农田修复与安全利用技术模式,编制技术规范,开展示范应用。

考核指标:【约束性指标】形成矿山周边镉铅等重金属污染农田一体化修复与安全利用技术模式2套,编制技术规范2项,建立配套的超富集植物快速育苗、安全焚烧等成套技术设备1套。建立华南地区镉铅为主的重金属污染农田修复与安全利用集成技术示范区,核心区500亩,示范区2000亩。示范区实现土壤镉铅去除率达到20%以上,有效性降低50%以上,农产品质量达到国家食品卫生标准。【预期性指标】技术辐射推广2万亩,实现重金属污染修复目标,培训技术人员3000人次。

执行期限:2018~2020年 拟支持项目数:1-2项

8. 西北面源污染农田综合防治技术示范

研究内容:针对西北地区由于农田径流流失及地膜导致的农业面源污染问题,集成水土流失型氮磷面源污染阻截技术与产品、农用地膜等有毒有害化学污染防控技术与产品、作物秸秆等典型农业废弃物无害化利用技术与设备;优化配套区域农业面源污染生态防控技术、农用地膜的高效回收及综合利用技术、低污染作物替代技术;构建西北地区农业面源污染综合防

10 治技术模式,编制技术规范,开展工程化推广应用。

考核指标:【约束性指标】形成西北地区农业面源污染综合防治技术模式4套,编制技术规范4项,建立农业废弃物污染控制技术生产线1条,年处理能力达到8000吨。建立农用地膜回收综合利用与示范区(点)1个,集成农用地膜回收综合利用工艺或设备1套。建立西北地区农业面源污染综合防治集成技术示范区,核心区2万亩,示范区5万亩。示范区实现氮磷、农药污染负荷削减20%以上,农田有毒有害化学/生物污染物残留量降低20%以上,农业有机废弃物无害化利用率提高到95%。【预期性指标】技术辐射推广30万亩以上,实现污染负荷削减目标,培训技术人员3000人次。

执行期限:2018~2020年 拟支持项目数:1-2项

9. 东北粮食主产区农业面源污染综合防治技术示范 研究内容:针对东北粮食主产区由于冻融型氮磷流失及作物秸秆等面源污染问题,集成冻融型氮磷流失污染阻截技术与产品、除草剂等农田有毒有害化学污染防控技术与产品;优化冻融水拦截消纳技术、东北秸秆肥料化、燃料化、饲料化综合利用与装备、导流回灌技术、种养一体化消减技术;构建东北粮食主产区农业面源污染综合防治技术模式,编制技术规范,开展规模化应用。

11 考核指标:【约束性指标】形成东北粮食主产区农业面源污染综合防治技术模式3套,编制技术规范3项,建设、改造土壤改良剂、秸秆快速腐解菌剂生产线2条,年生产能力分别达到10000吨和20吨。建立东北地区玉米秸秆肥料化燃料化能源化饲料化等综合利用技术集成与示范区(点)1个,集成东北秸秆综合利用设备或工艺1套;建立东北粮食主产区农业面源污染综合防治集成技术示范区,核心区2万亩,示范区5万亩。示范区实现氮磷、农药污染负荷削减20%以上,农田有毒有害化学/生物污染物残留量降低20%以上,农业有机废弃物无害化消纳利用率提高到95%。【预期性指标】技术辐射推广50万亩以上,实现污染负荷削减目标,培训技术人员4000人次。

执行期限:2018~2020年 拟支持项目数:1-2项

12

第7篇:河北省农田土壤重金属污染修复技术规范

河 北 省 地 方 标 准

河北省农田土壤 重金属污染修复技术规范

(征求意见稿)

河北农业大学

二〇一四年九月

1范围 ............................................................................................................. 错误!未定义书签。 2规范性引用文件 ............................................................................................................................ 2

3术语和定义 .................................................................................................. 错误!未定义书签。 3.1农田土壤 .............................................................................................. 错误!未定义书签。 3.2土壤重金属污染 .................................................................................. 错误!未定义书签。 3.3重金属污染场地 .................................................................................................................... 2 3.4土壤修复 ................................................................................................................................ 2 3.5土壤修复技术 ........................................................................................................................ 2 3.6修复模式 ................................................................................................................................ 2 4土壤重金属污染程度等级划分 .................................................................................................... 2 4.1 土壤重金属污染程度评价方法 ............................................................................................ 2 4.2土壤重金属污染评价分级标准 ............................................................................................. 3 5土壤重金属污染修复技术要点和适用范围 .............................................. 错误!未定义书签。

5.1工程修复技术 ....................................................................................... 错误!未定义书签。 5.2物理化学修复技术 ................................................................................................................. 4 5.3生物修复技术 ......................................................................................................................... 4 5.4农业生态修复技术 ................................................................................................................. 4 5.5与土壤重金属污染程度相适合的修复技术 ......................................................................... 4 6基本原则和工作程序 ....................................................................................................................

46.1基本原则 ................................................................................................................................. 4

6.2确认重金属污染场地的条件和污染程度 ............................................................................. 4

6.3确定预修复目标和修复模式 .................................................................................................

56.4 筛选修复技术 ........................................................................................................................ 5

6.5 制定技术方案 ........................................................................................................................ 6

6.6 编制技术方案 ........................................................................................................................ 6 7监测与分析方法 ............................................................................................................................ 6

7.1监测......................................................................................................................................... 6

7.2分析方法 ................................................................................................................................. 6

8标准实施与监督 ............................................................................................................................ 6

为规范重金属污染农田土壤修复技术,防止重金属污染土壤对农作物和地下水环境造成污染,保护人体健康,维护生态平衡,根据《中华人民共和国环境保护法》、《河北省环境保护条例》、《关于加强农村环境保护工作意见的通知》(国办发[2007]63号)和《国务院关于加强环境保护重点工作的意见》,结合河北省农田土壤重金属污染实际情况,制定本标准。

本标准规定了土壤重金属污染程度的评价方法、分级标准、修复技术的技术要点和使用范围,以及标准的实施与监督等相关规定。

本标准由河北省环境保护厅提出。 本标准由河北省人民政府批准。 本标准起草单位:河北农业大学。 本标准由河北省环境保护厅负责解释。

河北省农田土壤重金属污染修复技术规范

1适用范围

本标准规定了土壤重金属污染程度的评价方法、分级标准及土壤重金属污染修复技术方案编制的基本原则、程序、内容和技术要求。

本标准适用于省内农田土壤重金属污染程度的评价分级和土壤重金属污染修复技术方案的设计。

2规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB15168-1995

土壤环境质量标准

HJ/T166-2004

土壤环境监测技术规范 HJ 25.1-2014

场地环境调查技术导则 HJ 25.2-2014

场地环境监测技术导则 HJ 25.3-2014

污染场地风险评估技术导则 HJ 25.4-2014

污染场地土壤修复技术导则

3术语和定义

下列术语和定义适用于本标准。

3.1农田土壤 soil in farmland 用于种植各种粮食作物、蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等作物的农业用地土壤。

3.2 土壤重金属污染 heavy metal pollution in soil 由于人类活动产生的重金属进入土壤,积累到一定程度,超过土壤本身的自净能力,导致土壤性状和质量变化,构成对人体和生态环境的影响和危害。

3.3重金属污染场地heavy metal contaminated site 已被重金属污染的特定空间或区域的农田土壤,并已对这一空间或区域的人体健康或自然环境产生了负面影响或存在潜在的负面影响。

3.4土壤修复soil remediation 利用物理、化学和生物的方法固定、转移、吸收、降解和转化土壤中的污染物,使其浓度降低到可接受水平,或将有毒有害的污染物转化为无害的物质。

3.5土壤修复技术soil remediation technology 使遭受污染的土壤恢复正常功能的技术措施。

3.6修复模式 remediation strategy 对重金属污染场地进行修复的总体思路,包括原地修复、异地修复、异地处置、自然修复、污染阻隔和制度控制等,又称修复策略。

4土壤重金属污染程度等级划分

4.1 土壤重金属污染程度评价方法

2

4.1.1 单因子分指数:Pi=Ci /Si

式中Pi—土壤中污染物的环境质量指数;

Ci—污染物的实测浓度;

Si—污染物评价标准,公式为Si=x+2s其中x为某污染物在该地的背景值;s为标

准差。

4.1.2 多因子综合污染指数:P综 = {(Pi)2 +[max (Pi)]2/2}1/2 式中P综 —土壤污染综合污染指数;

max Pi—单项污染指数的最大值; Pi—单项污染指数的平均值。

iTriC实测/Cri4.1.3 Hakanson潜在生态危害指数(RI)法:RIi1n

式中RI

—某一点土壤多种重金属综合潜在生态危害指数;

Tri

—各重金属的毒性响应系数,见表1;

i

C实测—表层土壤重金属元素的实测含量;

i

C

—该元素的评价标准值。 r

表1重金属的毒性系数

元素 毒性系数 Ti 1 Mn 1

Zn 1

V 2

Cr 2

Cu 5

Pb 5

Ni 5

Co 5

As 10

Cd 30

Hg 40 4.2土壤重金属污染评价分级标准

按以上土壤重金属污染程度评价方法进行计算后,结合土壤环境质量标准(GB15618-1995)进行了如下分级,见表2。

表2土壤重金属污染评价分级标准

污染指数

单因子 污染指数

13 多因子 综合指数 P综≤0.7 0.73

潜在生态 危害指数 RI≤100 100600

等级 1级 2级 3级 4级 5级

土壤质量 污染程度 清洁 尚清洁 轻度污染 中度污染 重度污染

区域划分 优先保护区域 保护区域 治理区域 重点治理区域 极重点治理区域

5 土壤重金属污染修复技术要点与适用范围

5.1工程修复技术

5.1.1技术要点:用做客土的非污染土壤的pH等性质最好与原污染土壤相一致,以免引起污染土壤中重金属活性的增大;应妥善处理被挖出的污染土壤,使其不致引起二次污染。

5.1.2适用范围:深耕翻土用于轻度污染土壤,客土和换土用于重度污染区。客土法是在污染的土壤上覆盖非污染土壤,换土法是挖除部分或全部污染土壤而换上非污染土壤。污染场地面积小于或等于10000 m2轻度污染的区域,可采用深耕翻土或农业生态修复技术,大

3

于10000 m2轻度污染的区域,采用农业生态修复技术。污染场地中度或重度污染时,采用客土或换土技术。

5.2物理化学修复技术

5.2.1技术要点:修复的土壤要保持土壤理化性质稳定,尤其是pH,以避免土壤理化性质发生改变后,影响修复效率,并具有重金属再度溶出造成二次污染,或向下渗滤污染地下水的风险。

5.2.2适用范围:适用于各种程度重金属污染场地。一般,固化技术适用于中低浓度污染的农田土壤;电修复技术特别适合于低渗透的粘土和淤泥土的重金属污染的治理,不适于对砂性土壤重金属污染的治理;化学提取修复技术适用于砂壤等渗透系数大的土壤或轻质土壤的地表污染的修复。

5.3生物修复技术

5.3.1技术要点:先要确定重金属的种类,针对特定种类选择相应的植物或微生物。

5.2.2适用范围:适用于轻度和中度重金属污染的土壤。

5.4农业生态修复技术

5.4.1技术要点:在中、轻度污染的土壤上,不种叶菜、块茎类蔬菜,而改种食用部位污染物累积少的作物,如瓜果类蔬菜或果树等;将重金属富集植物与非富集植物种植在一起,能为与之间套作的植物提供一定的保护作用,但不可与叶菜类蔬菜间套作;将重金属低累积作物与超富集植物、富集植物种植在一起,达到修复土壤的同时收获符合一定卫生标准的农产品的目的。

5.4.2适用范围:适用于轻度和中度重金属污染的土壤。

5.5与土壤重金属污染程度相适合的修复技术

与土壤重金属污染程度相适合的修复技术见表3。在实际应用中可选择单一修复技术或多种修复技术联合使用。

表3与土壤重金属污染程度相适合的修复技术

等级 1级 2级 3级 4级 5级 污染程度 清洁 尚清洁 轻度污染 中度污染 重度污染 区域划分 优先保护区域 保护区域 治理区域 重点治理区域 极重点治理区域

适合的修复技术

等同于未污染区域,主要包括耕地和集中式饮用水水源地,实施优先保护

工程修复技术采用深耕翻土;生物修复技;农业生态修复技术中的农艺措施,如改变耕作制度,调整作物品种,种植不进入食物链的植物等措施。

工程修复技术采用深耕翻土;物理化学修复技术;生物修复技术;农业生态修复技术。

工程修复技术采用客土或换土;物理化学修复技术;生物修复技术;农业生态修复技术。

工程修复技术采用客土或换土;物理化学修复技术;生物修复技术。

6基本原则和工作程序

6.1基本原则

按《污染场地土壤修复技术导则》HJ 25.4-2014 标准执行。

6.2确认重金属污染场地的条件和污染程度

6.2.1资料收集

收集并核实相关资料的完整性和有效性,结合当地农业和国土部门的相关调查和监测结

4

果,确定土壤重金属污染物来源、种类、程度、范围和空间分布特征,初步判断土壤重金属污染情况及其管理制度、监测能力等情况。 6.2.2现场踏勘

考察重金属污染场地目前现状,包括植物种类、耕作制度、土壤修复工程施工条件,特别是用电、用水、施工道路等情况。如资料中缺乏土壤基本情况,对现场土壤取样,确定土壤理化性质。

6.2.3土壤重金属污染程度和环境风险评价

通过本标准4.1和4.2中污染程度评价方法确定其污染程度和等级,以及是否存在潜在健康风险及健康风险的大小和分布。

6.3确定修复目标和修复模式

6.3.1确认目标污染物

分析前期资料获得的土壤重金属监测值,确认重金属污染场地属于单一污染还是复合污染,若为重金属复合污染,要确认进行修复的重金属的主要种类。 6.3.2提出修复目标值

按照重金属污染场地所在区域土壤中目标污染物的背景值含量和国家有关标准中规定的限值,合理提出土壤目标污染物的修复目标值。 6.3.3确认修复范围和要求

确认前期重金属污染场地环境调查风险评估提出的土壤修复范围,包括修复的面积、四周边界、污染土层深度、修复范围内的种植耕作情况等。依据土壤目标污染物的修复目标值,分析和评估需要修复的土壤量。与场地利益相关方进行沟通协商,确认对土壤修复的要求,如修复时间、预期经费投入等。 6.3.4选择修复模式

根据土壤重金属污染程度等级、修复目标及要求,选择确定修复总体思路。短时、永久性处理修复适合小面积重度污染。对较大面积的轻、中度污染鼓励采用绿色、可持续的和资源化修复。

6.4筛选修复技术

6.4.1分析比较实用修复技术

根据重金属污染场地的土壤特性、污染特征、修复模式等,从各修复技术工程应用的实用性进行分析比较,包括技术成熟度、适合的污染等级、目标重金属和土壤质地、修复效果、时间和成本、优缺点等方面,初步定性筛选修复技术。通过比较分析,提出1种或多种备选修复技术进行下一步可行性评估。 6.4.2修复技术可行性评估

实验室小试、现场中试和应用案例分析的具体情况按照HJ 25.4-2014 标准执行。编制污染场地修复工程可行性研究报告,可行性报告的编写内容包括:前言、污染场地概况(农田特征条件、重金属种类、污染程度、污染范围、污染源、建议修复目标值)、筛选和评价修复技术、修复技术实施技术方案、监测与分析方法(布点、采样方法、分析方法)、结论和建议。评估报告中的指标必须是根据污染物的毒性和迁移性、修复技术的可实施性、修复的短期和长期效果、修复成本、健康与环境安全、政府和公众接受程度等方面筛选的可以量化的指标。

6.4.3 确定修复技术

对各备选修复技术进行综合比较,选择确定实用、经济、有效的修复技术,可以是一种修复技术,也可是多种修复技术的联合应用。

6.5制定修复方案

5

6.5.1初步制定修复方案

6.5.1.1制定技术路线

根据前面确定的修复技术的总体思路,制定相应的修复技术路线。修复技术路线应反映出重金属污染场地的修复方法、修复工艺流程和具体步骤,

6.5.1.2 确定修技术的工艺参数

修复技术的工艺参数通过实验室小试和现场中试获得,包括修复材料投加量或比例、设备处理能力、处理所需时间、处理条件、能耗、处理面积等。

6.5.1.3估算修复的工程量

重金属污染土壤的修复工程量涉及土壤处理和处置所需的工程量、农田种植模式改变的工程量、现场中试的工程量及修复过程中产生的需搬迁污染土壤、富集了重金属的植物等的无害化处置的工程量及方案涉及的其它工程量。根据修复方案和技术路线,估算修复工程量,可能涉及其中的一种或几种。 6.5.2 修复方案的比较与确定

对单一修复技术及多种修复技术组合方案从主要技术指标、工程费用估算和二次污染防治措施等方面进行比较,最后确定最佳修复方案。具体要求按照HJ 25.4-2014 标准执行。 6.5.3制定环境管理计划

6.5.3.1修复工程的监测计划

修复工程的监测计划包括修复前的补充监测、修复过程中和修复工程验收中的环境监测以及二次污染监控。根据最佳修复方案,结合重金属污染土壤的特性和周围的环境条件,有目的地制定修复工程的监测计划。

6.5.3.2修复工程的环境影响分析及应急安全计划

为保护重金属污染场地修复工程正常运行、周边居民的健康以及二次开发利用土地,污染场地修复必须分析修复工程中的环境影响,分析污水灌溉情况、周边工厂和汽车尾气的排放特征等,提出相应的控制措施。此外,对于某些采取特殊技术的污染场地,如化学淋洗,必须分析修复活动结束后,污染场地的维护及其对周边环境的影响。对于环境影响可能较大的修复工程项目,应进行环境影响评价。同时,应制定周密的场地修复工程应急安全计划,包括安全问题识别及相应的预防措施、突发事故的应急措施、配备安全防护设备和安全防护培训等。

6.6编制修复方案

按照HJ 25.4-2014 标准执行。

7监测与分析方法

7.1 监测

农田土壤重金属监测频次、布点、采样时间和方法按《土壤环境监测技术规范》HJ/T166-2004标准执行。

7.2 分析方法

农田土壤重金属分析方法按《土壤环境质量标准》GB15168-1995标准执行。

8标准实施与监督

本标准由县级以上人民政府环境保护行政主管部门负责监督实施。

6

第8篇:膨润土对农田土壤修复或水处理效果

第三章 膨润土对重金属污染土壤或水的处理研究

1 膨润土负载壳聚糖修复土壤镉污染的效果

为利用膨润土原位修复镉污染土壤提供理论依据,根据膨润土离子交换特性和壳聚糖在酸性溶液中带有正电荷,将膨润土与90%脱乙酰度壳聚糖的0.5%醋酸溶液混合,使壳聚糖负载在膨润土上,制成颗粒吸附剂,用于吸附溶液中Cd2+。最佳工艺条件是:壳聚糖与膨润土质量比为1:20,颗粒吸附剂用量为15gL-1,溶液中Cd2+质量浓度不大于200mgL-1,pH值为6~8,吸附平衡时间为8min,Cd2+去除率为99%。

2 壳聚糖改性膨润土修复土壤镉污染的研究

随着重金属污染土壤日益加剧,污染土壤修复和控制技术的研究越来越迫切.为利用膨润土原位修复土壤镉污染提供理论依据,采用平衡吸附试验研究了Cd2+在膨润土负载壳聚糖上的吸附行为.以90%脱乙酰度壳聚糖为原料,制备了膨润土负载壳聚糖颗粒吸附剂,用于吸附溶液中Cd2+.试验探讨了壳聚糖质量浓度对负载率的影响,结果表明,质量浓度3%的壳聚糖负载量最大,壳聚糖最大负载率达32.6%.吸附Cd2+最佳工艺条件是:壳聚糖与膨润土质量比为1∶20,膨润土负载壳聚糖颗粒吸附剂用量为15 g·L-1,溶液中Cd2+含量不大于200 mg·L-1, pH 值为6~8,吸附平衡时间为8 min,Cd2+去除率为99%.动态吸附Cd2+试验结果表明:质量浓度为 200 mg·L-1的含Cd2+溶液,流速为4~6 m(h-1,经壳聚糖-膨润土吸附剂一次处理后,溶液中Cd2+的残留量为0.7 mgL-1. 3 表面活性剂改性膨润土吸附Cr(VI)的研究

研究了膨润土原土及2种经不同表面活性剂改性的膨润土在不同的pH值、不同的用量等条件下对cr(VI)的吸附情况,以及3种土达到吸附平衡所需的时间.还研究了3种土对Cr(VI)的等温吸附.结果表明,1827改性的膨润土吸附效果好,平均去除率为93% ,且几乎不受pH值和时间的影响.其中2种改性膨润土对Cr(VI)的吸附为Freundlich吸附.

4 改性膨润土吸附重金属离子的研究与应用进展

研究了Cu和Zn在改性膨润土上的吸附动力学。计算得到拟一级速率常数分别为6.64x104 min/1和3.14/ min-1。Loral等研究了Zn2+和Cd2+在膨润土上的吸附和超声波解吸情况.Zn2+和Cd2+的最大吸附率可达到99.9%和96.8%,而最大解吸率可分别达到66.6%和51.4%。

5 两种改性膨润土对Cd2+和Pb2+吸附性能的比较

采用微波活化和高温焙烧两种方法对膨润土进行改性。比较两种改性膨润土对重金属Cdz 和pb2 的吸附性能.实验结果表明t加入经微波活化7 min的改性膨润土20 g/L,当溶液pH为8.吸附时间为40 min时.Cd和Pb的去除率分别达到95.29 和99.24 ;加人经450℃焙烧40 min的改性膨润土20 g/L,当溶液pH为9,吸附时阃为40min时,Cd0叶。和Pb0 的去除率分别可达99.84 和99.93 ;微波活化改性和高温焙烧改性膨润土的能耗成本分别约为0.1和8.8元/Kg土,综合经济成本考虑,微波活化改性膨润土处理含Cd和Pb的重金属废水更具应用前景。

6 蒙脱石等粘土矿物对重金属离子吸附选择性研究

矿物质与重金属离子问的相互作用已是当今环境科学、矿物学、土壤化学等学科领域研究的热点。通过蒙脱石、伊利石和高.孥石在一定的介质条件下对Cu、Pb、Zn、Cd、Cr 五种重金属离子的竞争吸附实验研究,阐明三种粘土矿物对五种重金属离子的吸附选择性.蒙脱石对Cr 、Cu抖有很好的选择性高岭石和伊利石对Cr 、Pb有较好的亲和力粘土矿物对重金属离子的吸附选择性受矿物的层电荷分布、重金属离子的水化热、电价、离子半径、有效离子半径等因素控制。

7 膨润土的改性技术与应用研究现状 蒙脱石价格低廉易得、优良的力学性能、适宜的离子交换容量和易于插层的结构使得人们开始将有机蒙脱石首选来制备聚合物/层状硅酸盐复合材料,这种新型的环境友好阻燃材料具有广阔的发展前景;不同类型的改性膨润土对重金属的吸附容量和吸附选择性、抵抗外界环境干扰的能力上也不相同,所以改性膨润土在污水处理方面利用空间大。到目前为止,虽然对膨润土的改性研究已经有了很多,但仍存在许多不足,有机膨润土性能与结构的关系没有系统的研究,应用过程中很多机理性问题仍未解决;应用研究有待展开,产品开发仍处于实验室研究阶段,公开的文献成果远远多于常用产品。但随着对其改性研究的不断深入,加上膨润土自身的诸多优点,改性膨润土将具有更加广泛的应用前景。

8 存在问题及研究方向

膨润土及改性膨润土应用于处理重金属废水有其独到的优越性:储量丰富,价格低廉,热稳定性较好。吸附效果好,且在吸附水中重金属的同时可去除有机污染物。但是由于膨润土自身性质等原因,在应用中还存在一些不足之处。仍需进一步研究:

(1)目前关于膨润土对重金属离子的吸附性能研究多采用模拟废水。而对实际废水、土壤重金属离子的吸附性能研究较少。由于实际废水的成分、性质更复杂.影响因素多,所以理论研究与实际应用还有一定距离。

(2) 需要寻找更加经济有效的改性方法,以提高改性膨润土吸附剂对特定重金属离子吸附的选择性。

(3) 再生是一个新的研究课题,应加强吸附剂所吸附重金属的脱附研究。虽能够利用在废水处理中,但膨润土易与水混合成泥浆,为后期的水土分离造成很大的困难。

(4)土壤中重金属多呈结合态,游离的离子较少,因此采用膨润土能够稳定的重金属量有限。

第9篇:地下水污染的治理与修复

环境工程实验班 黄朋

学号:3130206216

摘要:地下水是人类宝贵的淡水资源,由于受到人类活动的影响,目前却在遭受着日益严重的污染,地下水污染防治迫在眉睫。

本文通过介绍地下水资源现状、地下水污染状况、污染的途径和污染防治的研究进展,提出了几种治理地下水污染的技术方法,例如,微生物修复技术,原位修复技术,地下水原位治理的渗透性反应墙技术。

关键词:地下水污染;防治;研究进展;

Abstract:Groundwater is a kind of precious fresh water resource.However,groundwater is becoming seriously polluted due to human

activities so that the measure of preventing groundwater pollution must be taken. Through introducing groundwater resource situation,groundwater

pollution situation,pollution ways and progress in pollution prevention to propose several management in technology of groundwater pollution.Such as microbial remediation,situ repair technology and

permeable reactive barrier technology of groundwater in situ treatment. Key words:groundwater pollution;prevention;research progress;

前言

地下水是水资源的重要组成部分,已经成为城市和工农业用水的主要水源。在干旱、半干旱地区,地下水则是主要的,甚至是唯一的可用水源。在全国660多个城市中,利用地下水作为饮用水的城市有400多个,全国有近1/3人口饮用地下水。由于地下水自净能力较弱,一旦受到污染,将难以更新和恢复,会对生态环境造成严重影响,直接对人类及其活动造成危害。大量未经处理或未达到一定排放标准的生活和工业污水的无序排放、工业废水和城市垃圾填埋场渗滤液的泄漏、农药化肥的生产及超量施用、生活和工业有害固体废弃物的随降雨入渗,使中国地下水污染的问题日益突出。因此,了解地下水的污染现状,加强对地下水污染的防治,开发相应的一些高新技术来挽救我们日益恶化的地下水环境,是我们当前所面临的一项迫切的任务。随着人口的增长和社会经济的快速发展,对水资源的需求量也大幅度增长。近30年来,我国地下水的开采量以每年25亿立方米的速度递增,全国有400个城市开采地下水,40%的耕地部分或全部依靠地下水进行灌溉,地下水的供给量已经占到了全国总供水量的20%,北方缺水地区占到了52%,在华北和西北城市供水中占到了72%和66%,有些城市基本上是依靠地下水来满足对水资源的需求。而在广大的农村,地下水更成为主要的饮用水源。对地下水资源的过度开发利用,导致地下水位下降,水源枯竭,有些地区还形成了严重的地下水漏斗。根据国土资源部发布的《我国主要城市和地区地下水水情通报(2005)》,2005年在具备系统统计数据的171个地下水漏斗中,漏斗面积扩大的就有65个,占到了统计数的38%,面积扩大了6 736平方公里,仅河北沧州第Ⅲ承压含水层面积就扩大了2 089平方公里,最大水位埋深达到101米。由此导致了湿地消失、植被死亡和土地沙漠化等严重的生态灾难,以及地面沉降、岩溶塌陷、海水入侵等自然灾害的频频发生。地表环境污染加剧引发地下水污染,构成对人体健康和生命财产安全的严重威胁。根据中国地质境监测院公布的信息,目前,我国地下水污染呈现由点到面、由浅到深、由城市到农村的扩展趋势,污染程度日益严重。全国195个城市监测结果表明,97%的城市地下水受到不同程度污染,40%的城市地下水污 染趋势加重;北方17个省会城市中16个污染趋势加重,南方14个省会城市中3个污染趋势加重。在一些地区,地下水污染已经造成了严重危害,危及到供水安全。 地下水超采与污染互相影响,形成恶性循环。水污染造成的水质性缺水,进一步加剧了对地下水的超采,使地下水漏斗面积不断扩大,地下水水位大幅度下降;地下水位的下降又改变了原有的地下水动力条件,引起地面污水向地下水的倒灌,浅层污水不断向深层流动,地下水水污染向更深层发展,地下水污染的程度不断加重。日益严峻的地下水环境问题已经成为自然、社会、经济可持续发展的制约因素。

第一章地下水污染源

(1)工业污染源

工业污染源主要指未经处理的工业“三废”,即废气、废水和废渣。工业废气如二氧化硫、二氧化碳、氮氧化物等物质会对大气产生严重的一次污染,而这些污染物又会随降雨落到地面,随地表径流下渗对地下水造成二次污染,未经处理的工业废水如电镀工业废水、工业酸洗污水、冶炼工业废水、石油化工有机废水等有毒有害废水直接流入或渗入地下水中,造成地下水污染;工业废渣如高炉矿渣、钢渣、粉煤灰、硫铁渣、电石渣、赤泥、洗煤泥、硅铁渣、选矿场尾矿及污水处理厂的淤泥等,由于露天堆放或地下填埋隔水处理不合格,经风吹、雨水淋滤, 其中的有毒有害物质随降水直接渗入地下水,或随地表径流往下游移过程下渗至地下水中,形成地下水污染。 (2)农业污染源

农业用水占全部用水量的70%以上,污染的影响面广泛。一是过量施用农药、化肥,残留在土壤中的农药、化肥随雨水淋滤渗入地下,引起地下水污染二是由于地表水污染严重,农业灌溉使用被污染的地表水,造成污水中的有毒有害物质侵蚀土壤,并下渗到地下水中,造成污染。 (3)生活污染源

随着我国城镇化步伐的加快,生活垃圾与生活污水量激增,由于无害化处理率低,造成对陆地生态环境和水生态环境的严重污染。我国每年累计产生垃圾达720亿吨,占地约5.4亿平方米,并以每年占地约

3000万平方米的速度发展,全国已有200多个城市陷入垃圾重围之中。

第二章 污染方式、途径、类型

地下水污染主要指人类活动引起地下水化学成分、物理性质和生物学特性发生改变而使质量下降的现象。地表以下底层复杂,地下水流动极其缓慢,因此,地下水污染具有缓慢过程,不易发现和难以治理的特点。地下水一旦受到污染,即使彻底消除污染源也得十几年,甚至几十年才能使水质恢复。至于要进行人工的地下含水层的更新,问题就更复杂了

地下水污染的主要原因主要有:工业废水向地下直接排放,受污染的地下水浸入到地下含水层,人类粪便或因过量使用农药而受污染的水渗入地下等。污染的结果是使地下水中有害成分如酚,铬,汞,放射性物质、细菌、有机物等的含量增高。污染的地下水对人体健康和工农业生产都有危害。

一、污染方式 直接污染

特点是污染物直接进入含水层,在污染过程中污染物的性质不变。这是对地下水污染的主要方式。 间接污染

特点是地下水污染并非由于污染物直接进入含水层引起的,而是由于污染物作用于其他物质,使这些物质中的某些成分进入地下水造成的。

二、污染途径 间歇入渗型

污染物通过大气降水或灌溉水的淋滤,使固体废物、表层土壤或地层中的有害或有毒组分,周期性地从污染源通过包气带深入含水层。

这种渗入多半是呈非饱和状态的淋雨状渗流形式,或者呈短时间的饱水状态连续渗流形式.此种污染,无论在其范围或浓度上,均可能有季节性的变化。主要污染对象是潜水。 连续入渗型

污染物随污水或污水溶液连续不断地渗入含水层。最常见的是污水聚积地段(污水池、污水渗坑、污水快速渗滤场、污水管道等)的渗漏,以及被污染地表水 体和污水渠的渗漏。其主要污染对象也多半是潜水。 越流型

污染物通过层间弱透水层以越流的形式转移到其他含水层。这种转移或者是通过天然途径(水文地质天窗),或者通过人为途径(结构不合理的井管、破损的老井管等),或者人为开采引起的地下水动力条件的变化而改变了水流方向,是污染水流通过大面积的弱透水层越流转移到其他含水层。其污染来源可能是地下水环境本身的,也可能是外来的,它可能污染承压水也可能污染潜水。研究这一类型污染的困难之处是难于查清越流具体地点及地质部位。 径流型

污染物通过地下径流的形式进入含水层,即通过废水处理井,或者通过岩溶发育的巨大岩溶通道,或者通过废液地下储存层的隔离层的破裂进入其他含水层。海水入侵是海岸地区地下淡水超量开采而造成海水向陆地流动的地下径流。此种形式的污染。其污染物可能是人为来源也可能是天然来源,可能污染潜水也可能污染承压水。其污染范围可能不很大,但其污染程度往往由于缺乏自然净化作用而显得十分严重。

三、污染类型

① 地下淡水的过量开采导致沿海地区海(碱)水入侵 ② 地表污(废)水排放和农田污染造成的硝酸盐污染 ③ 石油和石油化工产品的污染 ④ 垃圾填埋场渗滤污染

第三章 污染与保护

时采取措施,防微杜渐。最好是尽量减少污染物进入地下含水层的机会和数量,诸如污水聚集地段的防渗,选择具有最优的地质、水文地质条件的地点排放污染物等。 治理技术  物理处理法 屏蔽法

该法是在地下建立各种物理屏障,将受污染水体圈闭起来,以防止污染物进一步扩散蔓延。常用的灰浆帷幕法是用压力向地下灌注灰浆,在受污染水体周围形成一道帷幕,从而将受污染水体圈闭起来。其他的物理屏障法还有泥浆阻水墙、振动桩阻水墙、板桩阻水墙、块状置换、膜和合成材料帷幕圈闭法等,原理都与灰浆帷幕法相似。总的来说,物理屏蔽法只有在处理小范围的剧毒、难降解污染物时才可考虑作为一种永久性的封闭方法,多数情况下,它只是在地下水污染治理的初期,被用作一种临时性的控制方法。 被动收集法

该法是在地下水流的下游挖一条足够深的沟道,在沟内布置收集系统,将水面漂浮的污染物质如油类污染物等收集起来,或将所有受污染地下水收集起来以便处理的一种方法。被动收集法一般在处理轻质污染物(如油类等)时比较有效,它在美国治理地下水油污染时得到过广泛的应用。  水动力控制法

水动力控制法是利用井群系统,通过抽水或向含水层注水,人为地改变地下水的水力梯度,从而将受污染水体与清洁水体分隔开来。根据井群系统布置方式的不同,水力控制法又可分为上游分水岭法和下游分水岭法。上游分水岭法是在受污染水体的上游布置一排注水井,通过注水井向含水层注入清水,使得在该注水井处形成一地下分水岭,从而阻止上游清洁水体向下补给已被污染水体;同时,在下游布置一排抽水井将受污染水体抽出处理。而下游分水岭法则是在受污染水体下游布置一排注水井注水,在下游形成一分水岭以阻止污染羽流向下游扩散,同时在上游布置一排抽水井,抽出清洁水并送到下游注入。同样,水动力控制法一般也用作一种临时性的控制方法,在地下水污染治理的初期用于防止污染物的扩散蔓延。  抽出处理法

抽出处理法是当前应用很普遍的一种方法,可根据污染物类型和处理费用来选用,大致可分为三类:

物理法:包括:吸附法、重力分离法、过滤法、反渗透法、气吹法和焚烧法等。 化学法:包括:混凝沉淀法、氧化还原法、离子交换法和中和法等。 生物法:包括:活性污泥法、生物膜法、厌氧消化法和土壤处置法等。  原位处理法

原位处理法是地下水污染治理技术研究的热点,不但处理费用相对节省,而且还可减少地表处理设施,最大程度地减少污染物的暴露,减少对环境的扰动,是一种很有前景的地下水污染治理技术。原位处理技术又包括物理化学处理法及生物处理法。 物理化学处理法 ①加药法。

通过井群系统向受污染水体灌注化学药剂,通过井群系统向受污染水体灌注化学药剂,c渗滤液,添加氧化剂降解有机物或使无机化合物形成沉淀等。 ②渗透性处理床。

渗透性处理床主要适用于较薄、较浅含水层,一般用于填埋渗滤液的无害化处理。

具体做法是在污染羽流的下游挖一条沟,该沟挖至含水层底部基岩层或不透水粘土层,然后在沟内填充能与污染物反应的透水性介质,受污染地下水流入沟内后与该介质发生反应,生成无害化产物或沉淀物而被去除。常用的填充介质有:

a.灰岩,用以中和酸性地下水或去除重金属;

b.活性炭,用以去除非极性污染物和CCl

4、苯等;

c.沸石和合成离子交换树脂,用以去除溶解态重金属等。 ③土壤改性法。

利用土壤中的粘土层,通过注射井在原位注入表面活性剂及有机改性物质,使土壤中的粘土转变为有机粘土。经改性后形成的有机粘土能有效地吸附地下水中的有机污染物。 生物处理法

原位生物修复的原理实际上是自然生物降解过程的人工强化。它是通过采取人为措施,包括添加氧和营养物等,刺激原位微生物的生长,从而强化污染物的自然生物降解过程。通常原位生物修复的过程为:先通过试验研究,确定原位微生物降解污染物的能力,然后确定能最大程度促进微生物生长的氧需要量和营养配比,最后再将研究结果应用于实际。现在所使用的各种原位生物修复技术都是围绕各种强化措施来进行的,例如强化供氧技术大致有以下几种:

①生物气冲技术。该技术与原位物化法中的气冲技术相似,都是将空气注入受污染区域底部,所不同的是生物气冲的供气量要小一些,只要能达到刺激微生物生长的供气量即可。

②溶气水供氧技术。这是由维吉尼亚多种工艺研究所

(VirginiaPolytechnicInstitute)的研究人员开发的技术,它能制成一种由2/3气和1/3水组成的溶气水,气泡直径可小到55μm。把这种气水混合物注入受污染区域,可大大提高氧的传递效率。

该技术是把过氧化氢作为氧源注入到受污染地下水中,过氧化氢分解以后产生氧以供给微生物生长。过氧化氢常常要与催化剂一起注入,催化剂用以控制过氧化氢的分解速度,使之与微生物的耗氧速度相一致。

第四章 我国现状

全国地下淡水的天然补给资源约为每年8840亿m3,占水资源总量的三分之一,其中山区6 560亿m3,平原区2 280亿m3;地下淡水可开采资源为每年3 530亿m3,其中山区为1 970亿m3,平原区为1 560亿m3。按赋存介质划分,地下水主要有孔隙水、岩溶水和裂隙水三种类型,孔隙水天然淡水资源量每年2 500亿m3,可采资源量每年l 686亿m3,岩溶水天然淡水资源量每年2 080亿m3,可开采资源量每年870亿m3,裂隙水天然淡水资源量每私260亿m3,可开采资源量每年971亿m3。总体上,中国地下水资源地域分布差异明显,南方地下水资源丰富,北方相对缺乏,南、北方地下淡水天然资源分别约占全国地下淡水总量的70%和30%。北方地区70%生活用水、60%工业用水和45%农业灌溉用水来自地下水。据统计,全国181个大中城市,有61个城市主要以地下水作为供水水源,40个城市以地表水、地下水共同作为供水水源,全国城市总供水量中,地下水的供水量占30%。根据《全国环境质量报告书》(1993),在中国,只有不到11%的人能喝到符合我国卫生标准得水。再饮用只来水的2亿人中,1.1亿人饮用的是高硬度水,7000万人喝的是高氟水3000万人则喝的是高硝酸盐水。因为大部分作为水源的江河湖海都受到工业及城市排污的污染。2011年发布的《全国地下水污染防治规划(2011—2020年)》(下称地下水污染防治规划),初步判断我国地下水污染正在由点状、条带状向面上扩散,由浅层向深层渗透,由城市向周边蔓延。

清澈的小河,透亮的井水,已成为记忆。赵亮2012年7月在对海河流域调查时,发现村民大都被迫放弃了饮用井水。

2000年-2002年国土资源部进行了全国地下水资源评价,按照《地下水质量标准》,37%已是不能饮用的Ⅳ类、Ⅴ类水。

2011年,全国共200个城市开展了地下水质监测,其中“较差—极差”水质监测点比例为55%。与2010年相比,15.2%的监测点水质在变差。

根据《地下水污染防治规划》,2009年中国地下水开采总量1098亿立方米,占总供水量的18%。在全国655个城市中,400多个以地下水为饮用水源,约占城市总数的61%。在传出有工厂将污水通过高压井排到1000多米地下的消息后,潍坊市称未排查到相关问题,并悬赏10万元征集线索。

2月21日,潍坊对媒体称尚未发现有价值的举报线索。而事件仍进一步发酵。网络上关于地下排污线索也不断涌现。媒体日前又曝出,潍坊下辖的寿光市存在打井排污现象,当地一个工业园区普遍存在地下排污。环保机构“公众环境研究中心”主任马军22日接受记者采访认为,有关部门不必纠缠“1000米”的字眼,民众对地下水污染的焦虑,折射的是地下水严重污染的现状。

美国地下水污染事

1947年至1952年,美国当地一家名为“福卡”的化学公司把二噁英和笨等82种致癌物质的21800吨工业废料排入运河,运河被填埋后,这一带变成一片广阔的土地,开发商盖起了大量的住宅和一所学校。从1977年开始,这里的居民不断发生各种怪病,孕妇流产、儿童夭折、婴儿畸形、癫痫、直肠出血等也频频发生。后来,多种有毒物质的黑色液体从地下渗出地面。1974年至1978年之间这里出生的孩子56%有生育缺陷,自从搬到拉夫运河,妇女流产率增加300%,泌尿系统疾病增加300%。

目前在美国,除了完备的立法外,技术革新也为地下水污染修复带来了曙光,可渗反应墙(简称“PPR技术”)是目前欧美许多发达国家新兴的用于原位去除地下水及土壤中污染的方法。

可渗反应墙是由一面活性铝、活性木炭及沸石等活性物质组成的埋在地下的“墙。”当污染物通过反应墙时,通过离子交换、表面络合、表面沉淀、生物降解等作用除去污染物。这项技术已在北美和欧洲地区成熟应用,在治理点污染上收效良好。 相关规定

1)禁止企业利用渗坑、渗井、裂隙和溶洞倾倒含有毒物质的废水,含病原菌废水和其他废弃物;

2)禁止企业在无良好隔渗地层,使用无防渗措施的沟渠,坑塘输送或存贮含有毒废水、含病原体废水;

3)对已受污染的潜水和承压水不得混合开采地下水; 4)地下工程应采取防护性措施,防止地下水污染; 5)人工回灌补给地下水,不得恶化地下水质。

参考文献

【1】钟佐.地下水有机污染控制及就地恢复技术研究进展(一)[J].水文地质工程地质,2001(3):1-3 【2】束

治,袁

勇.污 染 地下 水 原 位 处 理 方 法:可

应墙

[J].环

理技 术 与 设 备,2002,3(1):47-51..

【3】张红梅,速宝玉.土壤及地下水污染研究进展[J].灌溉捧水学报,2004 ,23(3):70-74 【4】倪深海,郑天柱,徐春晓.地下水超采引起的环境问题及对策水咨源保护 [J].2003(4):5-6.

【5】王玉秋,钱茜.浅谈地下水污染来源危害及防止对策[J].山东环境,2000(增刊):204-205 【6】陈梦熊,马风山著.中国地下水资源与环境[M].北京:地震出版社,2002,337-338. .

上一篇:离职证明范本免费下载下一篇:龙湖企业文化手册