2燃烧热实验报告

2023-06-30 版权声明 我要投稿

由于报告格式复杂,内容要求简要明确,很多人对写作报告,甚是感到苦恼。非常需要一份正确的报告格式范文。以下是小编精心整理的《2燃烧热实验报告》,供大家阅读,更多内容可以运用本站顶部的搜索功能。

第1篇:2燃烧热实验报告

2燃烧热实验报告

华 南 师 范 大 学 实 验 报 告

学生姓名 学 号 专 业 化学(师范) 年级、班级 课程名称 物理化学实验 日

实验指导老师 蔡跃鹏 实验评分

【实验目的】

①明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别与联系。 ②掌握量热技术的基本原理;学会测定奈的燃烧热。 ③了解氧弹卡计主要部件的作用,掌握氧弹卡计的实验技术。 ④学会雷诺图解法校正温度改变值。 【实验原理】

物质的标准摩尔燃烧热(焓)△cHmθ是指1mol物质在标准压力下完全燃烧所放出的热量。在恒容条件下测得的1mol物质的燃烧热称为恒容摩尔燃烧热QV,m,数值上等于这个燃烧反应过程的热力学能的变化△rUm;恒压条件下测得的1mol物质的燃烧热称为恒压摩尔燃烧热Qp,m,数值上等于这个燃烧反应过程的摩尔焓变△rHm,化学反应热效应通常是用恒压热效应△rHm来表示。若参加燃烧反应的是标准压力下的1mol物质,则恒压热效应△rHmθ即为该有机物的标准摩尔燃烧热△cHmθ。

若把参加反应的气体与生成的气体作为理想气体处理,则存在下列关系式。

Qp,m=QV,m+(∑VB)RT

(3-4) 式中,∑VB为生成物中气体物质的计量系数减去反应物中气体物质的计量系数;R为气体常数;T为反应的绝对温度;Qp,m与QV,m的量纲为J/mol。

本实验所用测量仪器为氧弹量热计(也称氧弹卡计),按照结构及其与环境之间的关系,氧弹量热计通常分为绝热式和外槽恒温式,本实验所用为外槽恒温式量热计。

氧弹为高度抛光的刚性容器,耐高压、耐高温、耐腐蚀,密封性好,是典型的恒容容器。测定粉末样品时需压成片状,一面充氧时冲散样品或燃烧时飞散开来。

量热反应测量的基本原理是能量守恒定律。在盛有定量水的容器中,样品的物质的量为nmol,放入密闭氧弹,充氧,然后使样品完全燃烧,放出的热量传给水及仪器各部件,引起温度上升。设系统(包括内水桶、氧弹本身、测温器件、搅拌器和水)的总热容为C(通常称为仪器的水当量,及量热计及水每升高1K所需吸收的热量),假设系统与环境之间没有热交换,燃烧前、后的温度分别为T

1、T2,则此样品的恒容摩尔燃烧热为

QV,m=式中,QV,m为样品的恒容摩尔燃烧热,J/mol;n为样品的物质的量,mol;C为仪器的总热容,

J/K或J/℃。式(3-5)是最理想、最简单的情况。但是,由于一方面氧弹量热计不可能完全绝热,热漏在所难免,因此,燃烧前后温度的变化不能直接用测到的燃烧前后的温度差来计算,必须经过合理的雷诺校正才能得到准确的温差变化[需由温度-时间曲线(即雷诺曲线)确定初温和最高温度];另一方面,多数物质不能自然,如本实验所用萘,必须借助电流引燃点火丝,再引起萘的燃烧,因此,式(3-5)左边必须把点火丝燃烧所放热量考虑进去,如式(3-6):

- nQV,m-m点火丝Q点火丝=C△T

(3-6)

式中,m点火丝为点火丝的质量;Q点火丝为点火丝的燃烧热,点火丝(铁丝)燃烧热为-6694.4J/g;△T为校正后的温度升高值。

仪器热容C的求法是用已知燃烧焓的物质(如本实验用的苯甲酸),放在量热计中燃烧,测其始、末温度,经雷诺校正后,按式(3-6)即可求出C。

样品完全燃烧是实验成功的第一关键,为此氧弹充以1.0~1.5Mpa的高压氧,因此要求氧弹密封耐压、耐腐蚀。同时,为燃烧完全,避免充氧时样品散开,粉末状样品必须压成片状。第二关键是使燃烧后放出的热量尽可能全部传递给卡计本身和其中盛装的水,而几乎不与周围环境发生热交换。为了减少卡计与环境的热交换,卡计放在一个水恒温的套壳中,故称外壳恒温卡计。另外卡计壁高度抛光也是为了减少辐射。

虽然采取了多种措施,但热漏还是无法完全避免,因此,燃烧前后温度的变化值还是不能直接精确测出来,必须经过雷诺作图法或计算法校正。本实验用精密数字式贝克曼温度计来测量温度差。 【仪器和试剂】

外槽恒温式氧弹卡计(1个),氧气钢瓶(1瓶),压片机(2台),数字式贝克曼温度计(1台),0~100℃温度计(1支),万用电表(1个),扳手(1把);萘(A.R),苯甲酸(A.R),点火丝(铁丝)(约10cm长)。 【实验步骤】

(1)测定氧弹卡计和水的总热容C ①样品压片

压片前,线检查压片用模子,若发现压模有铁锈、油污和尘土等,必须擦净后才能进行压片。用台秤称取约0.8g左右的苯甲酸,压好样品,再用分析天平分别准确称取一段10cm长得点火丝和棉线,再用棉线将点火丝绑在样品(不能有粉末)上,然后在分析天平上准确称重。

②装置氧弹、充氧气

将绑好点火丝的苯甲酸样品放在氧弹卡计的燃烧皿中,压片应尽量进入燃烧皿(切忌把压片悬挂于燃烧皿上方),将点火丝的两端分别嵌入绑紧在氧弹中的两根电极上,旋紧氧弹盖,用万能电表检查电机是否通路。

连接好氧气瓶和氧气减压阀表,并用铜导管(高压管)将减压表与氧弹进气管相连接,打开氧气瓶上端阀门,此时减压阀表中指针旋转所指示的压力即为氧气瓶中氧气总压力,然后略微旋紧减压阀(即打开),使减压表上另一表盘的指针压力读数约为10kg/cm1MPa。随即放松(即关闭)减压阀。按动充氧装置的手柄,使充氧仪上压力表的指针为10MPa,保持数秒,此时氧弹已充有约10Mpa

- 2

【实验评注与拓展】

本实验成功的关键:

①保证样品完全燃烧,是实验成功的关键之一,为此,样品压片须力度适中; ②氧弹点火要迅速而果断,点火丝与电极要接触良好,防止松动; ③实验结束后,一定要把未燃烧的铁丝重量从公式中减掉;

④在测定过程中,应该避免卡计周围的温度大幅度波动。量热法是物理化学中一个重要的实验技术,主要用来测定反应的热效应(包括燃烧热、物质生成热、中和热、反应热等)、相变热和热容等。它能定性检测放热或吸热过程的存在,定量测定这些过程的进行程度;用来研究物质的平衡性质;通过热化学数据研究某些有机物的结构等,这些数据对于热力学和热化学的计算是很重要的。

例如:有些化合物如蔗糖等,不能从稳定的单质直接合成,其生成焓也就无法通过实验直接测定,只能依靠间接方法进行测定。对于有些容易在氧气中燃烧的物质(如大多数的有机物),则可以测定其燃烧热。在燃烧产物生成焓都已知的情况下,利用盖斯定律可求得该化合物的生成焓。

另外,本实验所用氧弹卡计,除可以测定固体物质的燃烧热外,也可以测定液体物质的燃烧热;不仅限于物质在氧中的燃烧,也可充以其他气体,如充氯气研究物质氯化反应的热效应。 【提问与思考】

①什么是燃烧热?它在化学计算中有何应用?

答:燃烧热是指在一定压力、温度下,某物质完全氧化成相同温度的指定产物时的焓变。在化学计算中,它可以用来求算化学反应的焓变以及生成焓。

②测量燃烧热两个关键要求是什么?如何保证达到这两个要求?

答:A.样品完全燃烧,所以样品的量不能太多,压片不能太紧也不能太松。

B.量热计完全绝热,事实上不可能实现,因此需要经过合雷诺校正得到准确的温差变化。 ③实验测量到的温度差值为何要经过雷诺作图法校正,还有哪些误差来源会影响测量的结果? 答:因为要保证实验的准确性须保证量热计完全绝热,但这是不可能的,系统和环境间或多或少会存在热交换,因此燃烧前后温度的变化不能直接用测到的燃烧前后的温度差来计算,必须经过合理的雷诺校正才能得到准确的温差变化。其他误差来源:样品是否充分燃烧。

④在本实验中,哪些是系统?哪些是环境?系统和环境间有无热交换?这些热交换对实验结果有何影响?如何校正?

答:盛水桶内部物质及空间为系统,除盛水桶内部物质及空间的热量计其余部分为环境,系统和环境之间有热交换,热交换的存在会影响燃烧热测定的准确值,可通过雷诺校正曲线校正来减小其影响。

⑤ 固体样品为什么要压成片状?萘和苯甲酸的用量是如何确定的?

答:压成片状有利于样品充分燃烧;萘和苯甲酸的用量太少测定误差较大,量太多不能充分燃烧,可根据氧弹的体积和内部氧的压力确定来样品的最大用量。

⑥ 试分析样品燃不着、燃不尽的原因有哪些?

- 4

第2篇:燃烧热实验报告

燃烧热的测定

摘要

本实验中借助氧弹式量热计,在测定标准物质苯甲酸的燃烧热的基础上,先求算出了所用仪器的量热计热容,再以此为基础测定了蔗糖的恒容燃烧热。文章末尾对实验中的误差和雷诺校正方法的合理性进行了讨论。

实验步骤(修正) 1. 取消硝酸滴定过程

2. 先向量热器内加入2000mL去离子水,放入氧弹后再加入1000mL去离子水。 3. 实验过程中,在开始时恒温段每30s记录一个数据,维持5min;之后使用电极点火燃烧,燃烧过程中每15s记录一个数据,直至温度升高并恒定;温度升高并恒定后再次恢复至每30s记录一个数据。

数据记录及处理

1. 样品质量的测量:

表1 样品质量测定

样品 苯甲酸 m粗/g

m线/g

mNi/g m总/g m剩/g 1.2142

0.0158 0.0146 0.6245 0.0094 蔗糖 1.0404

0.0169 0.0163 0.9292 0.0078

2、水当量的测定:

表2 苯甲酸T-t数据表

t/s T/℃ 435 0.879 450 0.924 465 0.956 480 0.982 495 1.002 510 1.019 525 1.032

(失误漏记) 540

555 1.052 570 1.06 585 1.067 600 1.072 615 1.077 630 1.081 645 1.084 660 1.086 675 1.089 690 1.091 t/s 0 30 60 90 120 150 180 210 240 270 300 330 345 360 375 390 405 420 T/℃ 0 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 点火 0.007 0.079 0.325 0.571 0.725 0.815 t/s 705 720 735 750 765 780 810 840 870 900 930 960 990 1020 1050 1080

T/℃ 1.092 1.093 1.095 1.096 1.096 1.097 1.098 1.098 1.098 1.098 1.098 1.097 1.097 1.097 1.097 1.097

3、蔗糖燃烧热的测定:

表3 蔗糖T-t数据表

t/s T/℃

405 0.799 420 0.860 435 0.898 450 0.924 465 0.944 480 0.960 495 0.971 510 0.980 525 0.988 540 0.995 555 1.001 t/s 0 30 60 90 120 150 180 210 240 270 300 T/℃ 0 0 0 -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001 t/s

645 660 690 720 750 780 810 840 870 900 930 T/℃ 1.02 1.022 1.024 1.026 1.027 1.028 1.029 1.029 1.029 1.029 1.029 330 点火 570 345 0.023 585 360 0.257 600 375 0.529 615 390 0.712 630

4、苯甲酸燃烧T-t数据作图(雷诺校正)

1.005 1.009 1.013 1.016 1.018 960 990 1020

1.028 1.028 1.028

H1.000CD0.800E0.600T/C°0.4000.2000.000A0200BG4006008001000由雷诺校正图可知,升温△T=1.098K,t=409.8s

5、蔗糖燃烧T-t数据作图(雷诺校正)

t/s

1.200H1.0000.800E0.6000.4000.2000.000CDT/C°A0200BG4006008001000由雷诺校正图可知,升温△T=1.030K,t=391.3s

6.水当量的计算

(1) 引燃用镍丝的校正:

t/s

mNi0.01460.00940.0052g

qNiQvNimNi3243kJ/g0.0052g17J (2) 棉线的校正:

q棉Qv棉m棉16736kJ/g0.0158g264J (3) 量热计常数的计算: 苯甲酸燃烧反应式:C7H6O2(s)+对于气体产物而言n=-0.5 已知苯甲酸恒压热容为:Qp26460J/g 则QvQp15O2(g)=7CO2(g)+3H2O(l)2

nRT0.58.314289.452646026450(J/g) M122.125燃烧物质质量G0.61100.01460.01580.5806g

qq棉qNi26417281J

认为体系中已经将氮气排尽从而忽略由于形成硝酸造成的误差,计算可得

WQvGq264500.5941281DC水=3000.00.99887914.18182036(J/K)T1.098

7、 计算蔗糖的恒容燃烧热Qv和恒压燃烧热Qp (1)引燃用镍丝的校正:

mNi0.01630.00780.0085g qNiQvNimNi32430.008528J

(2) 棉线的校正:

q棉Qv棉m棉167360.0169283J (3) 蔗糖恒容燃烧热:

Qv已知W2036J/K

(WDC水)TqG

D3000.00.99887912996.6g

qq棉qNi28328311J

G0.92920.01690.01630.9060g

Qv(20362996.64.1818)1.0303111.640104(J/g)

0.8960(4) 蔗糖的恒压溶解热:

由方程:C12H22O11(s)12O2(g)12CO2(g)11H2O(l),可知n0 于是QpQv

误差分析 nRTQv1.640104(J/g) M由查阅文献可知,蔗糖燃烧热为-16490(J/g)。相对偏差

1649016400100%0.6%16490

实验值与理论值较为接近。

e1. 定量误差分析 (1) 质量称量误差

以万分天平计,称量误差为0.0002g,镍丝质量为差值法得到,误差应为0.0004g。

镍丝燃烧误差:

QvNi3243mNi0.00041.2(J/K)T1.098(刻意多保留一位有效数字) Q3243QvvNimNi0.00041.4(J/g)G0.9060W棉线燃烧误差:

167360.00023.0(J/K)T1.098(刻意多保留一位有效数字)

Q16736Qvv棉m棉0.00023.7(J/g)G0.9060Wm棉Qv棉

Qv26450G0.000615(J/K)T1.030燃烧物称量误差:

Q26450QvvG0.000627(J/g)G0.5806W累计加和来看,

W19100%0.93%W2036

Qv32100%0.20%Qv16400由此分析,称量本身系统误差对最终结果造成影响较小。

值得一提的是,在实验过程中称量结束至燃烧过程中,需使用棉线及镍丝固定待测物;这一过程中难免会有待测物压片散块造成质量偏差。这是实验中非常重要的一个误差来源,其质量偏差将会线性传递至最终误差里。

在实际操作中,为了减少这类误差;可以在结束后将栓系绳子的工作放于一称量纸上完成,将待测物固定完成后再称量纸上洒落样品。从而弥补由于样品易散造成的误差。

(2) 水的体积测量造成的误差

为便于讨论,假设两次使用2000mL及1000mL容量瓶会累计造成5mL误差(认为容量瓶本身存在千分之一误差,再考虑挂壁、溅出等影响)

WC水水V4.18180.998871521(J/K)QvC水水TG 4.18180.9988711.030V524(J/g)0.9060W21100%1.03%W2036

Qv24100%0.146%Qv16400由此可见,加入水量的误差在极大估计条件下(5mL)也不会对最终结果造成太大影响。

(3) 温度波动造成的误差

在实验的非加热段,由数据显示温度波动为0.01K,则

QvGq264501.0881304(T)0.01132(J/K)T21.9822

WDC水20362996.64.1818Qv(T)0.01163(J/g)G0.8960WW132100%6.50%W2036

Qv163100%0.994%Qv16400本实验中,由温度波动0.01K即可对最终结果造成1%误差,由此可见温度波动是实验误差的另一主要因素。因此,采用雷诺校正是很有必要的。

(4)是否进行酸校正的定量分析:

假设氧弹内容积为1L(偏大估计),即含有790mL氮气。本实验中反复冲入氧气至1MP再放气至常压,重复三次除去氮气。则剩余氮气量可计算为790*0.13=0.79mL 换算为物质的量n(氮气)=0.033mmol

151N2(g)+O2(g)+H20==HNO3(l)242H59800 J /molUHnRT598001.758.314(273.1516.4)55587J/mol

由氮气产生的热效应Q55587J/mol*0.033mmol1.8J

此数值仅与镍丝称量误差带来的影响大致相同,对于整个实验体系可以忽略不计。因此本实验省略酸校正分析是合理的。

2.定性误差分析 (1)热容值变化的讨论

理论上,热容随温度变化而变化;因此c=c(T)并非一个常量。在本实验中,通过计算水当量表征仪器的吸热效应,同时控制燃烧标准物质和待测物质时体系上升大致相同的温度。同时,体系整体温度上升幅度并不大(1.1℃左右),因此粗略地认为热容随温度变化幅度可忽略是合理的。

(2)待测物质量

本实验定量分析过程中可发现,待测物质量大小对最终的误差有很大影响。在实验过程第一次压片过程中,由于操作并不熟练,压制得到的苯甲酸固体质量偏小;仅仅0.6g,计算发现由此导致的系统误差是较大的。因此,在蔗糖燃烧实验中改进了压片手法,增加了待测物质量,分析得到的系统误差显著下降。

实验操作讨论

在实验过程中,我认为有如下操作值得反思和注意 (1)压片操作

如果压片过松,则所得药片的强度较差,不宜成型,遇到外部振动或者在移动过程中会出现碎裂、散落现象。如果压片过紧,则压片器容易卡主,在取出样品过程中可能又会造成样品的损坏。

相较而言,苯甲酸标准物质颗粒较小,分布均匀,较为容易压片。而蔗糖晶体必须充分研磨成细末状再进行压片才会相对容易。 (2)固定压片的操作

将压片与点火器件稳定固定在氧弹中是本实验中最难的操作。首先需要明确,镍丝的作用是产生火花引燃体系,棉线的作用是将镍丝与待测物空间上固定在一起,同时起到引燃的作用。讲义上指出可以将镍丝压入样品内,但在本实验中受限于设备限制,以下操作更为合理:压出的样品用棉线固定捆住,同时棉线本身提供镍丝的固定支撑点,令镍丝穿过细线并环绕住压片。

同时在固定操作中,建议在下方放置称量纸。以便于收集散落的待测物,称量后校正得到正确的燃烧物质量。

(3)对于氧弹的清洁操作

两次测定之间除了需要擦净量热桶内壁、氧弹外壁的水分外,还需要将氧弹内筒仔细擦干净,除去上一次燃烧过程中产生的水,减少误差。

结论

本实验通过在氧弹式量热计中燃烧苯甲酸,通过使用雷诺校正,计算出水当量的方法作为基准,求得了蔗糖的恒压(恒容)燃烧热为1.640*104J/g。之后通过定量、定性误差分析,讨论了实验过程中应当特别注意的细节。

思考题

1. 雷诺图解法的本质和适用范围

在量热实验中,量热计与周围环境的热交换无法完全避免,对温差测量值的影响可用雷诺(Renolds) 温度校正图校正。

1.200H1.0000.800E0.6000.4000.2000.000CDT/C°A0200BG400600800 1000t/s如图所示,图中B点意味着燃烧开始,热传入介质;HG为线延长并交温度曲线于E点,其间的温度差值即为经过校正的 。E点认为是环境均衡温度。图中(G-A)为开始燃烧到温度上升至室温这一段时间内,由环境辐射和搅拌引进的能量所造成的升温,故应予扣除。同理(H-C)由室温升高到最高点这一段时间内,热量计向环境的热漏造成的温度波动,计算时必须考虑在内。故可认为,HG两点的差值较客观地表示了样品燃烧引起的升温数值。

在量热实验中,如果无法保证体系完全与外界隔绝热交换,则需要用雷诺校正法扣除环境影响。同时在某些情况下,量热计的绝热性能良好,但搅拌器功率较大,可能由于搅拌造成温度波动,也需要用雷诺校正减小误差。

总之,雷诺校正的目的是使实验中温差变化能客观反映仅仅由燃烧产热而不受环境影响的结果。 2. 标准物质苯甲酸的恒压燃烧热Qp=-26460J/g,恒容燃烧热为多少?

见实验部分数据呈现及处理。 3. 搅拌过快或过慢有何影响?

搅拌过快可能造成由机械搅拌做功导致体系温度升高,从而引入不必要误差;搅拌过慢会使得温度计受热不均,测量值与真实值产生偏差。 4. 本实验中苯甲酸的作用是什么?可否将一定量的苯甲酸与蔗糖混合在一起只进行一次测量求蔗糖的燃烧热? 不可。

这样求蔗糖的燃烧热。由公式(WDC水)TQVGq可知,若将苯甲酸和蔗糖一起燃烧,则存在有W和Qv(蔗糖)两个未知数,无法单独求出蔗糖的燃烧热。

如果适当改进,至少进行两次测定并严格计算二者比例,可以通过解方程组确定蔗糖的燃烧热 5. 实验中“准确量取低于环境温度为1℃的自来水3000mL,顺筒壁小心倒入内筒”,为什么加入内筒的水温度要选择比环境低1℃左右? 由雷诺校正定义可知,应当使得环境温度处于燃烧前后温度差之间;若超出此范围,则雷诺校正无效。

参考资料 [1] 韩德刚,高执隶,高盘良.物理化学.高等教育出版社.2001 [2] 物理化学实验第4版.北京大学出版社.2001

第3篇:燃烧热-物化实验报告

燃烧热的测定

姓名:憨家豪 学号:2012012026 班级:材23 同组人:赵晓慧 实验日期:2014年4月19日 提交报告日期:2014年4月20日

实验老师姓名:郭勋

1 引言

1.1 实验目的

(1)熟悉弹式量热计的原理、构造及使用方法; (2)明确恒压燃烧热与恒容燃烧热的差别及相互关系; (3)掌握温差测量的实验原理和技术; (4)学会用雷诺图解法校正温度改变值; 1.2 实验原理

在指定温度及一定压力下,1 mol物质完全燃烧时的定压反应热,称为该物质在此温度下的摩尔燃烧热,记作△cHm。通常,完全燃烧是指C→CO2(g),H2→H2O(l),S→SO2(g),而N、卤素、银等元素变为游离状态。由于在上述条件下△H=Qp,因此△cHm也就是该物质燃烧反应的等压热效应Qp。

在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Qv(即燃烧反应的△cUm)。若反应系统中的气体均为理想气体,根据热力学推导,Qp和Qv的关系为

=+∆ (1)

式中:T——反应温度,K;

∆ ——反应前后产物与反应物中气体的物质的量之差;

R——摩尔气体常数。

通过实验测得值,根据上式就可计算出,即燃烧热的值。

测量热效应的仪器称作量热计。量热计的种类很多。一般测量燃烧热用弹式量热计。本实验所用量热计和氧弹结构如图2-2-1和图2-2-2所示。实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。同时,还对内水桶的外表面进行了电抛光。这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。

弹式量热计的基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及周围的介质和量热计有关附件的温度升高。测量介质在燃烧前后的变化值,就可求算该样品的恒容燃烧热。 =∙∆−棉线∙棉线−点火丝∙点火线 (2)

式中: m——为待测物的质量,kg ;

——为待测物的摩尔质量,kg·mol ;

-1 ——仪器常数,kJ·℃

-1

;

∆——样品燃烧前后量热计温度的变化值;

棉线,镍丝——分别为棉线和点火丝的恒容燃烧热(-16736和-3243 kJ/mol)

棉线 ,镍丝——分别为棉线和点火丝的质量,kg;

先燃烧已知燃烧热的物质(如苯甲酸),标定仪器常数K,再燃烧未知物质,便可由上式计算出未知物的恒容摩尔燃烧热,再根据(1)式计算出摩尔燃烧热。

2 实验操作

2.1 实验药品、仪器型号及测试装置示意图

实验药品:萘(AR);苯甲酸(AR)。

实验仪器:弹式量热计1套;2000 ml容量瓶1个;1000 ml容量瓶1个;水盆1个(容量大于3000 ml);电脑及数据记录仪一套;压片机、镍丝、棉线、万用表、分析天平、剪刀、氧气瓶及减压阀公用。

测试装置示意图见上。

2.2 实验条件(实验温度、湿度、压力等)

大气压100.6 kPa,室温18.2 ℃,相对湿度44%。

2.3 实验操作步骤、现象及方法要点

1.仪器常数的测定 (1)样品准备

取8 cm镍丝和10 cm棉线各一根,分别在分析天平上准确称量。

在台秤上称量0.8 g左右的苯甲酸,在压片机上压成片状,取出药片并轻轻去掉粘附在药片上的粉末,用称好的棉线捆绑在药片上,固定好。将镍丝穿入棉线,在分析天平上准确称量。

将苯甲酸片上的镍丝固定在氧弹的两根电极上,如图2-2-3,用万用表检查是否通路。确认通路后旋紧弹盖,通入1.0 MPa氧气,然后将氧弹放入内水桶,接上点火电极。 (2)仪器准备

打开量热计电源,开动搅拌,将温度传感器置于外水套中,观察温度显示。待温度稳定后,记下温度。

用水盆接取自来水(大于3000 ml),将温度传感器放入水盆中,不断搅动,通过加入凉水或热水调节水温,使温度低于外水套0.7 ℃左右。准确量取3000 ml,倒入内桶。

(3)燃烧测量

盖上桶盖,将温度传感器插入内桶,开动搅拌。待温度稳定后,打开电脑记录软件,记录体系温度随时间的变化情况(软件记录的是电压随时间的变化关系,以下不再区分)。开始阶段(打开软件到点火),相当于图2-2-4中的AB部分,;6~8分钟后,按下点火开关,半分钟内温度应迅速上升(若温度不能短时间内迅速升高,应停止实验,检查氧弹和仪器找出原因后再继续实验),进入反应阶段,相当于图2-2-4中的BC部分。直到温度上升速度明显减慢,进入末期,相当于图2-2-4中的CD部分。8~10分钟后,取出温度传感器,放入外水套中,读出外套水温,即图2-2-4中E点。

切断电源,取出氧弹,放出氧弹中的气体。打开氧弹,检查样品是否完全燃烧。若燃烧完全,将剩余镍丝取下称重(注意:称量剩余镍丝时,应去除镍丝顶端熔融的小球)。

当氧弹打开后,如发现氧弹中有较多的黑色物质,则此次实验燃烧不完全,应重新测量。燃烧不完全最主要的愿因就是氧气的量不足(氧弹漏气、充氧不足、操作失误未能冲入氧气等),此外样品量过大,药片松散部分脱落也可造成燃烧不完全。

将内桶的水倒入水盆用于下次的测量,将氧弹洗净擦干。 2.未知物测量

取0.6g左右的萘,同上述操作方法。

3 结果与讨论 3.1实验原始数据

表1 原始数据记录

实验组数 1 2 (镍)/ 0.0257 0.0202

(棉线)/ 0.0099 0.0117

(总)/ 0.8139 0.6015

(剩余)/ 0.0170 0.0185

摩尔质量 曲线峰高/ 122.12 128.17

/ 125.4956 139.1136 注:组号为1的物质为苯甲酸,组号为2的物质为待测的萘,下同。

3.2实验数据处理

选择并双击物理化学实验,选择并双击燃烧热测定,输入镍丝、棉线、剩余镍丝、总质量及标准只样品和被测样品的摩尔质量,点击打开,选择并打开文件,交替移动光标1和2到点火前一段平稳的基线位置,点击线性拟合1,交替移动光标1和2到完全燃烧后温度不变的位置(水平线位置),点击线性拟合2,交替移动光标移动到外套水温曲线位置,点击线性拟合3,移动光标,将绿色光标放在拟和曲线3与升温曲线的交点上,蓝色光标放在升温曲线上的任何位置,点击计算△H;如果线性拟合交点不理想,点击刷新,移动光标重新拟合。确定后,点击提交,峰高值就会显示出来。两条曲线都处理完成后,点击计算处理,就可以得到被测样品的燃烧热值。

这样做是因为使内水桶完全绝热是很困难的,总会有内外水套之间的热交换。为了校正这部分热损失,需在升温曲线上找出与外水套温度相等的点,过此点作垂线与曲线的两条始末阶段直线的外延线相交于两点,此二点之间的距离即为校正后的△H值。苯甲酸和萘的电压(温度)—时间曲线

540510480V (mV)450420390360030060090012001500t (s)

图3-2-1 苯甲酸电压(温度)—时间曲线

570540510V (mV)48045042039003006009001200t (s)

图3-2-2 萘温度(时间)—电压曲线

软件计算得到的萘的燃烧热为 △H = 5076.4824 kJ/mol。

3.3讨论分析:

1、首先是水温的调节,要使水的温度低于外水套温度约0.6 ℃左右,但水加入仪器中之后会有一定地升高,因而在调节水温的时候应该使水的温度低于外水套温度约0.8 ℃左右。我们在第一次测量时水温没有控制好,调水温时温差只取了0.5 ℃,水倒入内桶后,内外筒温差只有0.1 ℃,无法继续实验。重新配时温差扩大为约0.8 ℃,后续试验可以顺利进行。

2、点火是实验的一个关键步骤,我们两次点火都成功了。总结点火不成功的可能原因如下: (1)深入弹体内部的电极和氧弹壁接触短路; (2)连接燃烧丝的电炉断了,应用万用表检查; (3)弹内氧气不足,应取出氧弹检查。

3、弹内氧气不足还会造成燃烧不充分,燃烧后打开氧弹会发现大量黑色物质,遇到此情况需重新做。本次实验燃烧完全,说明充气操作比较规范。

4、本次实验燃烧焓误差约为1.5%,相较最大允许误差是比较小的,实验结果还是比较令人满意。分析误差产生的原因如下:

(1)反应温度(外水套温度)一直处于变化之中,无法精确测量,故计算的摩尔燃烧热的实际值与文献值略有差异;

(2)燃烧热的定义中要求燃烧前后温度不变,实验中却是需要利用内水桶水温的升高来进行曲线峰值的计算,属于非等温反应系统。在计算方法上进行了简化,认为温度近似不变; (3)尽管内水桶与外水套之间以空气隔热但系统并不能做到严格绝热,热交换是存在的,具体表现为外水套的温度点火后会升高。为了减小热交换的影响,内水桶点火前水温应调节成比外水套温度低0.7 ℃左右(这样测量过程中的吸热量会近似等于放热量)。但是由于在内同水倒入的过程中温度会发生变化,故温差会减少,导致测量不准;

(4)操作不严格,例如在制作药片时应带手套,徒手操作对样品的质量测量会带来误差; (5)氧弹中除了氧气外还有一部分空气,空气中的氮气也会燃烧放热,但在本实验中并未校正。

4 结论

通过这个实验,熟悉了弹式量热计的原理、构造及使用方法;明确恒压燃烧热与恒容燃烧热的差别及相互关系。同时,掌握温差测量的实验原理和技术。

实验结果:萘的燃烧热:△H = 5076.4824 kJ/mol,标准数据(1 atm,25 ℃)为△H = 5153.8 kJ/ mol,相对误差:1.5%。

5 参考文献

1. 北京大学化学院物理化学实验教学组.物理化学实验.北京:北京大学出版社,2002.44~45。

2.清华大学化学系物理化学实验编写组.物理化学实验.北京:清华大学出版社,1991.26~37。

3.复旦大学等.物理化学实验.北京:高等教育出版社,1992.43~47。

6 附录(思考题)

1. 本实验中如何考虑系统与环境?系统与环境通过哪些途径进行热交换?这些热交换对结果影响怎样?如何校正?

答:内水桶以内为系统,具体包括氧弹、测温器件、搅拌器和水,近似为绝热系统。 内水桶以外的外水桶和水为环境。

系统和环境主要通过内外水桶之间的空气对流进行热交换。这些热交换使得环境吸收系统的热量,系统升温变慢,可能引起实验结果偏低。可以通过雷诺法校正。

2. 使用氧气时应注意哪些问题? 答:(1)尽可能远离热源;

(2)在使用室特别注意在手上,工具上,钢瓶和周围不能占有油脂。扳子上的油可用酒精洗去,待干后再使用,以防爆炸和燃烧;

(3)氧气瓶应与应氧气表一齐使用,不能随便用在其他钢瓶上;

(4)开阀门及调压时,人不要站在钢瓶出气口,头不要在瓶头之上,而应在侧面; (5)开气瓶总阀之前,必须检查氧气表调节阀门是否处于关闭。不要在调节阀开放状态,突然打开气瓶总阀。

3. 搅拌过快或过慢有何影响?

答:搅拌过快会生成一部分另外的非反应生成的热,使得结果偏高。过慢又不利于反应热扩散,体系内温度不均。

4. 氧弹中含有氮气,燃烧后生成HNO3。对结果有何影响?如何校正?

答:在氧弹内,N2和O2化合生成硝酸,并溶进水中,这些作用都会引起体系温度的升高。为了精确测量,应当在装氧弹时加1 ml的蒸馏水与其中,燃烧后将弹体用蒸馏水清洗,用0.1 mol/dm的NaOH滴定之。每毫升的NaOH滴定液相当于1.43卡(放热)。其数值加在仪器的水当量中。

5. 如果反应完后,剩余镍丝丢失,可不可以忽略,为什么?

答:基本可以忽略,镍丝质量不到0.01 g,燃烧时放出热量不到1 J,比样品燃烧所放的热小20倍以上,按照数据处理要求可以忽略。

3

第4篇:实验二 燃烧热测定

燃烧热的测定

实验

二、燃烧热的测定

专业:11化学

姓名:赖煊荣

座号:32

同组人:陈见晓

时间:2013.10. 15

Ⅰ、目的要求

1.用氧弹热量计测定萘的燃烧热。

2.明确燃烧热的定义,了解恒压燃烧热与恒容燃烧热的差别。 3.了解热量计中主要部分的作用,掌握氧弹热量计的实验技术。 4.学会雷诺图解法校正温度改变值。

Ⅱ、基本原理

一、燃烧与量热

根据热化学的定义,1mol物质完全氧化时的反应热称作燃烧热。所谓完全氧化,对燃烧产物有明确的规定。

量热法是热力学的一个基本实验方法。在恒容或恒压条件下,可以分别测得恒容燃烧热Qv和恒压燃烧热Qp。由热力学第一定律可知,Qv等于体系内能变化ΔU;Qp等于其焓变ΔH。若把参加反应的气体和反应生成的气体都作为理想气体处理,则它们之间存在以下关系:

ΔH =ΔU + Δ(pV)

Qp = Qv + Δn RT

——(1)

式中,Δn为反应前后反应物和生成物中气体的物质的量之差;R为气体常数;T为反应时的热力学温度。

热量计的种类很多,本实验所用氧弹热量计是一种环境恒温式的热量计。氧弹热量计的装置如图右。

二、氧弹热量计

氧弹热量计的基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及其周围的介质和热量计有关附件的温度升高。测量介质在燃烧前后温度的变化值,就可求算该样品的恒容燃烧热。其关系

燃烧热的测定

式如下:

-W样/M 〃Qv – l〃Ql =(W水c水+C计) ΔT

——(2)

式中,W样和M分别为样品的质量和摩尔质量;Qv为样品的恒容燃烧热;l和Ql是引燃用金属丝的长度和单位长度燃烧热,W水和C水是以水作为测量介质时,水的质量和比热容;C计称为热量计的水当量,即除水之外,热量计升高1℃所需的热量;ΔT为样品燃烧前后水温的变化值。

三、雷诺温度校正图

实际上,热量计与周围环境的热交换无法完全避免,它对温差测量值的影响可用雷诺温度校正图校正。具体方法为:称取适量待测物质,估计其燃烧后可使水温上升1.5~2.0℃。预先调节水温低于室温1.0℃左右。按操作步骤进行测定,将燃烧前后观察所得的一系列水温和时间关系作图。得一曲线如下左图。图中H点意味着燃烧开始,热传入介质;D点为观察到的最高温度值;从相当于室温的J点作水平线交曲线于I,过I点作垂线,再将FH线和GD线延长并交ab线于A、C两点,其间的温度差值即为经过校正的ΔT。图中AA′为开始燃烧到温度上升至室温这一段时间Δt1内,由环境辐射和搅拌引进的能量所造成的升温,故应予扣除。CC′为由室温升高到最高点D这一段时间Δt2内,热量计向环境的热漏造成的温度降低,计算时必须考虑在内。故可认为,AC两点的差值较客观地表示了样品燃烧引起的升温数值。

本实验采用贝克曼温度计来测量温度差。 Ⅲ、仪器、试剂

XRY-1A型数显氧弹式热量计(已包含贝克曼温度计、秒表、放大镜等)1套、氧气钢瓶1只、氧气减压阀1只、压片机1台、电子天平1台、万用电表1台、量杯(1000ml)1只、量筒(10ml)1个、塑料桶1个、直尺1把、剪刀1把、温度计(100℃)1支、引燃专用金属丝、苯甲酸(分析纯)、萘(分析纯)

Ⅳ、实验步骤

1.测定热量计的水当量

(1)样品制作

用电子天平称取大约1g苯甲酸(切勿超过1.1g),在压片机上压成圆片。样片压得太紧,

燃烧热的测定

点火时不易全部燃烧;压得太松,样品容易脱落。将样品在干净的玻璃板上轻击

二、三次,再用电子天平精确称量。

(2)装样并充氧气

拧开氧弹盖,将氧弹内壁擦干净,特别是电极下端的不锈钢丝更应擦干净。搁上金属小皿,小心将样品片放置在小皿中部。剪取10cm长的引燃金属丝,在直径约3mm的玻璃棒上,将其中段绕成螺旋形约5~6圈。将螺旋部分紧贴在样片的表面,两端如图2所示固定在电极上。用万用电表检查两电极间电阻值,一般应不大于20Ω。旋紧氧弹盖,再用万用电表检查后卸下进气管口的螺栓,换接上导气管接头。导气管另一端与氧气钢瓶上的减压阀连接。打开钢瓶阀门,使氧弹充入2 M Pa的氧气。

关闭氧气瓶阀门,旋下导气管,放掉氧气表中的余气。将氧弹的进气螺栓旋上,再次用万用表检查两电极间的电阻,在确保两电极导通。如阻值过大或电极与弹壁短路,则应放出氧气,开盖检查,重新装样。

(3)测量

用量杯(1000 ml)准确量取已被调节到低于室温1.0℃的自来水2700 ml于盛水桶内。将氧弹放入水桶中央,接好两极导线,装好搅拌马达,盖上盖板。待温度稳定上升后,每隔1min读取一次温度。10~15min后,按下面板上电键通电点火。若指示灯亮后即熄灭,且温度迅速上升,表示氧弹内样品已燃烧;若指示灯根本不亮且温度也不见迅速上升,则须停止实验。打开氧弹检查原因。自按下电键后,读数改为每隔15s一次,直至两次读数差值小于0.005℃,读数间隔恢复为1min一次,继续15min后方可停止实验。本实验用自动报时装置,按报时间隔读取相应读数。实验时间大约40分钟。

2.萘的燃烧热测量

称取0.6g左右的萘,同上述方法进行测定。

Ⅴ、数据处理

表1.苯甲酸燃烧时温度随时间的变化 次数/30s 温度/℃ 次数/30s 温度/℃ 次数/30s 温度/℃

1 26.341 11(点火) 26.465 21 27.281 2 26.379 12 26.493 22 27.316

3 26.397 13 26.607 23 27.346

4 26.461 14 26.699 24 27.373

5 26.462 15 26.851 25 27.397

6 26.469 16 26.962 26 27.419

7 26.461 17 27.047 27 27.440

8 9 10

26.464 26.468 26.463 18 27.131 28 27.460

19 27.186 29 27.480

20 27.498 30 27.498

燃烧热的测定

次数/30s 温度/℃ 次数/30s 温度/℃ 31 27.515 41(熄火) 27.654 32 27.532 42 27.666

33 27.547 43 27.679

34 27.561 44 27.690

35 27.576 45 27.702

36 27.590 46 27.712

37 27.590 47 27.723

38 27.603 48 27.733

39 27.627 49 27.743

40 27.639 50 27.753 压片后苯甲酸的质量m=0.981g 铁丝原长L1=10cm 剩余未燃尽的铁丝的长度L2=2.2cm

表2.萘燃烧时温度随时间的变化 次数/30s 温度/℃ 次数/30s 温度/℃ 次数/30s 温度/℃ 次数/30s 温度/℃ 次数/30s 温度/℃ 1 25.593 11(点火) 25.499 21 26.329 31 26.588 41(熄火) 26.699 2 25.604 12 25.515 22 26.399 32 26.602 42 26.707

3 25.597 13 25.581 23 26.415 33 26.615 43 26.717

4 25.596 14 25.618 24 26.446 34 26.630 44 26.726

5 25.595 15 25.754 25 26.474 35 26.639 45 26.737

6 25.602 16 25.897 26 26.498 36 26.646 46 26.741

7 25.609 17 26.023 27 26.520 37 26.653 47 26.750

8 25.577 18 26.119 28 26.539 38 26.664 48 26.758

9 25.560 19 26.206 29 26.556 39 26.675 49 26.766

10 25.548 20 26.272 30 26.572 40 26.686 50 26.773 压片后萘的质量m=0.607g

燃烧热的测定

铁丝原长L1=10cm 剩余未燃尽的铁丝的长度L2=2.2cm

表3. 实验室条件的记录表

实验开始时

温度/℃ 压力/hp 湿度/%

由ΔT计算水当量和萘的恒容燃烧热Qv,并计算其恒压燃烧热Qp: C6H5COOH(s)+15/2O2(g)=7CO2(g)+3H2O(l) 由Qp = Qv + ΔnRT 可知 Qv苯甲酸 = Qp ﹣ΔnRT

=﹣3226.9kJ/mol×0.973/122.12﹣(-0.5) ×8.314×298k

=﹣24.47kJ 由图1可知:△T1=1.10 k 有以下关系式

实验结束时

26.1 1020.0 57.2

温度/℃ 压力/hp 湿度/%

26.9 1021.0 58.0

燃烧热的测定

- QvW样/M QvW样/M ·Qvl·Ql = (W水c水 + c计) ΔT2 Qv萘= [(W水c水 + c计)ΔT2+ l·Ql]•M/- W2

=(KΔT2+ l·Ql) M/- W2

=[0.193×1.09+8.5×(-2.9)/1000]×128.18/(-0.607)

=-39.22 kJ Qv .m 萘=-39.22/(0.607/128.18)= -8281.7 kJ/mol Ⅵ、结果分析与讨论

由结果看出误差相对于标准值较大,应该与实验中操作有失误有关。在实验数据处理中将反应的热效应近似为一常数,但实际上它的值是温度的函数,在实验过程中发现环境温度并不稳定,在实验过程中有变化,因此带来一定误差。

上述计算相对误差的公式是假定在苯甲酸和茶都完全燃烧的条件下得出的,实际上仅用眼睛来观察试样燃烧后是否有残余的黑渣存在而判断撤烧完全与否是不准确的,也是不科学的,因所谓完全燃烧是指碳元素生成二氧化碳、氢元素生成水,所以即是没有碳渣,若是有一氧化碳生成也不为完全燃烧,这也会给实验带来难以估计的误差,如果将燃烧后的残气用气体分析仪分析一下,则这个误差也是可估计的。

Ⅶ、思考题

1.固体样品为什么要压成片状?

答:排除空气等气体杂质的同时,节省了样品在氧弹中所占体积,减小误差;同时,压片后的样品燃烧会更充分,便于准确秤样,装入氧弹时不易洒落;.便于与铁丝接触;便于铁丝、样品与正负极连接;便于燃烧完全。

2.在量热学测定中,还有哪些情况可能需要用到雷诺温度校正方法?

答: 在体系与周围环境可能有热交换的情况下都可能需要用到雷偌温度校正方法。例如在测量中用到热量

燃烧热的测定

计或用到搅拌器等的情况下。

3.如何用萘的燃烧热数据来计算萘的标准生成热?

答: 因为△fHm=△rH反应物-△rH生成物,所以求出萘在此温度下的燃烧热;再用公式△fH2=△fH1+Cp(T2-T1)求出萘的标准生成热。

Ⅷ、参考资料

1.《物理化学实验》(第三版)复旦大学等编P34-39;P186-188 2.《物理化学实验》(第二版)复旦大学等编P43-47;P241-242 7

第5篇:山大物化实验燃烧热

第二篇 基础实验

化学热力学 实验一 燃烧热的测定

【目的要求】

1. 通过测定萘的燃烧热,掌握有关热化学实验的一般知识和技术。 2. 掌握氧弹式量热计的原理、构造及其使用方法。 3. 掌握高压钢瓶的有关知识并能正确使用。 【实验原理】

燃烧热是指1 mol物质完全燃烧时的热效应,是热化学中重要的基本数据。一般化学反应的热效应,往往因为反应太慢或反应不完全,因而难以直接测定。但是,通过盖斯定律可用燃烧热数据间接求算。因此燃烧热广泛地用在各种热化学计算中。许多物质的燃烧热和反应热已经精确测定。测定燃烧热的氧弹式量热计是重要的热化学仪器,在热化学、生物化学以及某些工业部门中广泛应用。 燃烧热可在恒容或恒压情况下测定。由热力学第一定律可知:在不做非膨胀功情况下,恒容反应热QV=ΔU,恒压反应热Qp=ΔH。在氧弹式量热计中所测燃烧热为QV,而一般热化学计算用的值为Qp,这两者可通过下式进行换算:

Qp=QV + ΔnRT (1) 式中:Δn为反应前后生成物与反应物中气体的摩尔数之差;R为摩尔气体常数;T为反应温度(K)。

在盛有定量水的容器中,放入内装有一定量样品和氧气的密闭氧弹,然后使样品完全燃烧,放出的热量通过氧弹传给水及仪器,引起温度升高。氧弹量热计的基本原理是能量守恒定律,测量介质在燃烧前后温度的变化值,则恒容燃烧热为:

QV =(M/m)· W·(t终-t始) (2) 式中:W为样品等物质燃烧放热使水及仪器每升高1℃所需的热量,称为水当量。

水当量的求法是用已知燃烧热的物质(如本实验用苯甲酸)放在量热计中燃烧,测定其始、终态温度,一般来说,对不同样品,只要每次的水量相同,水当量就是定值。 热化学实验常用的量热计有环境恒温式量热计和绝热式量热计两种。环境恒温式量热计的构造如图2-1-1所示。

由图可知,环境恒温式量热计的最外层是储满水的外筒(图中5),当氧弹中的样品开始燃烧时,内筒与外筒之间有少许热交换,因此不能直接测出初温和最高温度,需要由温度—时间曲线(即雷诺曲线)进行确定,详细步骤如下:

将样品燃烧前后历次观察的水温对时间作图,联成FHIDG折线,如图2-1-2所示。图中H相当于开始燃烧之点,D为观察到的最高温度读数点,作相当于环境温度之平行线JI交折线于I过I点作ab垂线,然后将FH线和GD线外延交ab线A、C两点,A点与C点所表示的温度差即为欲求温度的升高ΔT。图中AA′为开始燃烧到温度上升至环境温度这一段时间Δt1内,由环境辐射进来和搅拌引进的能量而造成体系温度的升高必须扣除,CC′为 温度由环境温度升高到最高点D这一段时间Δt2内,体系向环境辐射出能图2-1-1 环境恒温式氧弹量热计

量而造成体系温度的降低,因此需要添加上。由此可见AC两点的温差是较1-氧弹;2-温度传感器;3-内筒;4-空气隔层;5-外筒;6-搅拌

客观地表示了由于样 品燃烧致使量热计温度升高的数值。

有时量热计的绝热情况良好,热漏小,而搅拌器功率大,不断稍微引进能量使得燃烧后的最高点不出现,如图2-1-3所示。这种情况下ΔT仍然可以按照同样方法校正。

图2-1-2 绝热较差时的雷诺校正图 图2-1-3 绝热良好时的雷诺校正图

【仪器试剂】

氧弹式量热计1套;氧气钢瓶(带氧气表)1个;台称1只;电子天平1台(0.0001g)。 苯甲酸(A.R.);萘(A.R.);燃烧丝;棉线。 【实验步骤】 1. 水当量的测定:

(1) 仪器预热 将量热计及其全部附件清理干净,将有关仪器通电预热。 (2) 样品压片 在电子台秤上粗称0.7~0.8g苯甲酸,在压片机中压成片状;取约10cm长的燃烧丝和棉线各一根,分别在电子天平上准确称重;用棉线把燃烧丝绑在苯甲酸片上,准确称重。

(3) 氧弹充氧 将氧弹的弹头放在弹头架上,把燃烧丝的两端分别紧绕在氧弹头上的两根电极上;在氧弹中加入10mL蒸馏水,把弹头放入弹杯中,拧紧。 当充氧时,开始先充约0.5MPa氧气,然后开启出口,借以赶出氧弹中的空气。再充入1MPa氧气。氧弹放入量热计中,接好点火线。

(4) 调节水温 准备一桶自来水,调节水温约低于外筒水温1℃。用容量瓶量取一定体积(视内筒容积而定)已调温的水注入内筒,水面盖过氧弹。装好搅拌头。 (5) 测定水当量 打开搅拌器,待温度稳定后开始记录温度,每隔30s记录一次,直到连续几min水温有规律微小变化,开启“点火”按钮,当温度明显升高时,说明点火成功,继续每30s记录一次;到温度升至最高点后,再记录几min,停止实验。

停止搅拌,取出氧弹,放出余气,打开氧弹盖,若氧弹中无灰烬,表示燃烧完全,将剩余燃烧丝称重,待处理数据时用。

2. 测量萘的燃烧热 称取0.6~0.7g萘,重复上述步骤测定之。 【注意事项】

— 内筒中加3000mL水后若有气泡逸出,说明氧弹漏气,设法排除。 — 搅拌时不得有摩擦声。

— 燃烧样品萘时,内筒水要更换且需重新调温。 — 氧气瓶在开总阀前要检查减压阀是否关好;实验结束后要关上钢瓶总阀,注意排净余气,使指针回零。 【数据处理】

1. 将实验条件和原始数据列表记录。

2. 由实验数据分别求出苯甲酸、萘燃烧前后的t始和t终。 3.由苯甲酸数据求出水当量W。

Q总热量=Q样品·(M/m)+Q燃丝·m燃丝+Q棉线·m棉线-5.983·VNaOH= W·(t终-t始) 式中:Q铁丝= -6695J·g-1;Q镍铬丝=-1400.8J·g-1;Q棉线=-17479J·g-1。 4.求出萘的燃烧热QV,换算成Qp。

5. 将所测萘的燃烧热值与文献值比较,求出误差,分析误差产生的原因。

思 考 题

1. 在氧弹里加10mL蒸馏水起什么作用?2. 本实验中,那些为体系?那些为环境?实验过程中有无热损耗,如何降低热损耗?盛水桶内部物质及空间为系统,除盛水桶内部物质及空间的热量计其余部分为环境,系统和环境之间有热交换,热交换的存在会影响燃烧热测定的准确值,可通过雷诺校正曲线校正来减小其影响。

3. 在环境恒温式量热计中,为什么内筒水温要比外筒水温低?低多少合适? 4. 欲测定液体样品的燃烧热,你能想出测定方法吗?玻璃泡中 【讨论】

1. 量热计的类型很多,分类方法也不统一。常用的为环境恒温式和绝热式量热计两种。绝热式量热计的外筒中有温度控制系统,在实验过程中,内桶与外筒温度始终相同或始终略低0.3℃,热损失可以降低到极微小程度,因而,可以直接测出初温和最高温度。

2. 在燃烧过程中,当氧弹内存在微量空气时,N2的氧化会产生热效应。在一般的实验中,可以忽略不计;在精确的实验中,这部分热效应应予校正,方法如下:用0.1mol·dm-3 NaOH 溶液滴定洗涤氧弹内壁的蒸馏水,每毫升0.1 mol·dm-3 NaOH溶液相当于5.983 J(放热)。

1.常用的热量计分为哪几种?

2.燃烧热测定中,我们在样品上绑棉线的目的是什么?

3.用钢瓶对氧弹充氧时应遵循什么顺序?

4.样品在氧弹中燃烧后,水温的升高是由那些因素引起的? 5.换另一个样品时,内筒水是否更换?为什么? 6.氧弹内加入少量水的作用是什么? 7.雷诺校正是校正什么?

8.怎样测定液体样品的燃烧热?计算公式? 9.燃烧热测量中,记录外筒水温的目的是什么?

第6篇:燃烧热的测定

四、实验步骤

1、熟悉整个实验流程,了解量热计点火流程和温差仪使用方法。

2、量热计比热容测定(即测量水当量)

(1)压片:

在托盘天平上粗略称取0.9 g左右的苯甲酸,在压片机中压成片状。不要过于用力,也不要太松。样片压得太紧,点火时不易全部燃烧;压得太松,样品容易脱落,且充氧气时样品上的粉末会被吹散。将样品在干净的滤纸上轻击

二、三次(样品仍应保持块状),再用分析天平准确称量(小数点后应有四位有效数字),记录质量。

(2)装样:

拧开氧弹盖,将氧弹内壁擦干净,取一根燃烧丝准确测量其长度并记录,然后将燃烧丝两端分别固定在两根电极上,中部缠可绕在圆珠笔芯等上使其旋为螺纹状,贴紧样品苯甲酸(燃烧丝与坩埚壁不能相碰)。按图5.2将铁丝两端固定在氧弹电极上。铁丝与药片充分接触,但与燃烧皿切不可相碰,以免造成短路。在弹杯中注入10ml水,把弹头放入弹杯中,用手拧紧。用万用电表检查两极间电阻值,一般不应大于10 Ω,保证线路连接良好。

图5.2 氧弹内部示意图

1—电极;2—燃烧皿;3—铁丝;4—药片

(3)充氧气: 首先顺次打开氧气钢瓶总阀门和减压阀门,开始先充入少量氧气(约0.5MPa),然后将氧弹中的氧气放掉,借以赶出氧弹中的空气,再向氧弹中充入约2Mpa的氧气(勿超过2.5 MPa)。关闭氧气瓶总阀门,放掉氧气表中的余气。再次用万用表检查两电极间的电阻。如阻值过大,可能是电极与弹壁短路,则应放出氧气,开盖检查并连接好后重新充气,待用。 (4)调节水温 将热量计夹套内注满水, 用温差测量仪测定夹套水温,待温度稳定后记录其温度值。先在水桶中调节自来水的温度低于夹套水温1.0 °C左右,再用大容量瓶(1L)准确量取已被调好水温的自来水3 L于内桶中,再将氧弹放入,水面刚好盖过氧弹。如氧弹有气泡逸出,说明氧弹漏气,寻找原因并排除。将两根电极线一端插入氧弹两电极上,另一端插入点火输出孔,电极线嵌入桶盖的槽中,缓缓盖上盖子,注意观察使搅拌器不与氧弹相碰。同时将温差测量仪探头从夹套中取出,擦干后插入内筒水中。在面板上按下搅拌按钮,开始搅拌。 (5)点火

开启SHR-15恒温式热量计的电源开关,点火指示灯亮,开启搅拌开关,进行搅拌。水温基本稳定后,将温差仪“采零”并“锁定”。待温度稳定后,设置蜂鸣60秒一次,每隔60秒记录一次温差值(精确至±0.002℃),直至连续10次水温有规律微小变化。设置蜂鸣15秒一次,按下“点火”按钮,此时点火指示灯灭,停顿一会点火指示灯又亮,直到燃烧丝烧断,点火指示灯才灭。氧弹内样品一经燃烧,水温很快上升,点火成功。每隔15秒,记录一次温差值,直至两次读数差值小于0.005℃,设置蜂鸣60秒一次,每隔60秒记录一次温差值(精确至±0.002℃),连续读10个点,实验结束。

注意:水温没有上升,说明点火失败,首先看温度传感器位置是否正确。其次应关闭电源,取出氧弹,放出氧气,仔细检查加热丝及连接线,找出原因并排除。 (6)校验

实验停止后,关闭电源,将传感器放入外筒。取出氧弹,放出氧弹内的余气。旋下氧弹盖,测量燃烧后残丝长度并检查样品燃烧情况。样品没完全燃烧,实验失败,须重做;反之,说明实验成功。

3、测待测物的燃烧热

粗略称取1.5 g左右蔗糖,压片后精确称重(注意压片机的清洗,不可混入苯甲酸),同法进行上述实验操作一次。

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com。举报文章