通信原理实验心得

2023-02-01 版权声明 我要投稿

第1篇:通信原理实验心得

通信原理实验教学探讨

摘要:针对通信原理实验教学传统实验箱模式和计算机仿真模式存在的弊端,探索出新的逐级提高的三级教学模式。首先进行模块化的验证性实验,然后进行模块功能自主实现的仿真设计型实验,最后上升为结合硬件描述语言和硬件平台的综合设计型实验。教学实践表明,新的教学模式能较好地激发学生的学习兴趣,增强学生的实践动手能力和科技创新能力,有效地提高了通信原理的教学效果。

关键词:通信原理;实验教学;教学改革

通信原理课程是通信工程、信息工程、网络工程、信息对抗等电子信息类专业的一门重要理论课程,也是一般专业基础课与专业课之间的“桥梁”课程,承担着从一般基础理论到实践应用、从个体功能到整体系统的重要过渡,对培养学生通信理论分析与综合应用能力有着非常重要的作用。[1]

然而,该门课程理论性强,公式和相关数学推导繁多,许多概念和原理非常抽象,这就需要在理论教学中合理而高效地引入实验环节,将枯燥抽象的概念和原理具体化、形象化。这样,既可以让学生深入地掌握理论知识,又可以提高学生的学习兴趣,锻炼学生的实际动手能力。

一、通信原理实验教学现状

1.传统的实验箱教学模式

目前的通信原理实验教学主要采用传统的通信原理综合实验箱进行验证性实验。学生在整个实验过程中只需根据实验内容找到相应的电路板模块,然后按照实验操作步骤进行简单的连接电路和拨动开关就可以利用示波器观察输出波形和相关数据。实验操作简单,验证效果直观形象,能够加深学生对相关理论的理解。

然而,这种实验箱模式的实验教学对培养学生综合思维能力、创新能力和动手能力方面所起的作用不大,主要体现在:第一,学生在做这类实验时往往不考虑实验原理,不做电路分析,只是机械地在实验箱电路板上进行连线测试,在预留的测试点观察波形和数据,甚至波形和数据是否正确都不知道。实验做完后,通过抄写实验指导书上的实验步骤和公式,简单整理数据便形成了实验报告,导致实验报告几乎是千篇一律。第二,这类验证性实验动手调节部分少,实验过程中也几乎不会遇到操作难点,这样经过两到三次实验后,学生对这种就是“看波形”的实验不再感兴趣,学习积极性下降,自然影响对通信原理理论知识的理解和掌握。

2.计算机仿真实验教学模式

传统的实验箱教学模式,一台套的实验设备包括通信原理综合实验箱、示波器、万用表、函数信号发生器、误码测试仪等,并且一般情况下需要购置20台套才能基本满足实验开课需求,花费非常大。因此,采用计算机进行仿真实验是很好解决实验室建设经费紧张的教学模式。

通常应用于通信原理课程实验的仿真软件主要有两种[2,3]:一是Matlab中的Simulink仿真平台。该平台可以进行交互式的动态仿真,用户可以利用模块框图方便地设计出仿真模型,不需要对模块内部进行任何的硬件和软件设计,仿真过程简单,结果形象。二是System View软件。利用该软件进行系统设计时,只需从配置的图符中调出有关图符,进行各个图符的参数设置和相互间的连线,即可进行仿真操作,给出分析结果。

计算机仿真的实验教学模式开设简单,方式灵活,既可以在多媒体课堂教学中演示,也可以以作业的形式让学生课后练习,能很好地加强学生对抽象概念的理解和感性认识,促进通信原理理论部分的理解和掌握;然而,计算机仿真教学模式同传统实验箱模式类似,只能给学生提供直观形象的波形展示,理解整个通信系统的模块组成,而各模块功能如何具体实现学生仍然未知,限制了学生从认知系统到设计系统的能力提高过程。

二、通信原理三级实验教学模式

针对上述通信原理实验教学存在的弊端,笔者所在的教学团队根据多年的实验教学探索,摸索出一条行之有效的三级实验模式,即验证性实验、仿真实现型实验、综合设计型实验逐级提高的实验教学模式。我校的通信原理实验课程通常包含10课时的课程实验和一周左右的课程设计,因此前两级实验安排在课程实验中进行,而综合设计型实验安排在课程设计中进行。具体的实验教学内容如下:

1.验证性实验

该级实验主要让学生掌握各类通信系统的模块构成以及通信信号在经各模块处理后的波形变化,使学生对抽象的通信原理理论有直观形象的感性认识。这部分实验可以通过通信原理实验箱进行或者利用更灵活的计算机仿真实现。在此以Simulink平台并以DSB调制解调系统为例进行说明。首先利用Simulink提供的模块库,找到构建系统所需的信号发生器、DSB AM调制模块、高斯信道模块、DSB AM解调模块以及波形显示模块(如图1所示),然后设置相关模块的仿真参数并连接即可。由于实验课学时有限,该级实验可以分解为课程实验、课堂演示实验以及课后作业式实验,使学生能尽可能多地完成一些典型的通信系统。

2.仿真实现型实验

初级的验证性实验可以简单地对理论知识进行验证与演示,但学生对模块内的结构原理缺乏细节性认识和掌握,因此也就无法较深刻地理解掌握理论知识。基于此,让学生脱离仿真软件模块,自主实现相应的模块功能既能促进对理论知识的深刻理解,又能增强算法实现能力,为后续的综合设计型实验打下较好的基础。以图1为例,DSB AM调制模块主要考虑实现调制信号和载波信号的乘积运算;高斯信道模块可以用已调信号和高斯噪声信号的加法运算来实现;而DSB AM解调模块则除了进行待解调信号与载波信号的乘法运算外,还需设计低通滤波器对乘积信号进行低通滤波处理。从该例可以看出,只有对DSB AM调制解调系统有非常清晰的原理性认知,才能有的放矢地设计相应的仿真性算法;同时,借助前一级的验证性实验所观察到的波形规律,可以很轻松地对仿真性的波形结果进行判定,以方便算法中相关参数和设计性结构的调试。显然,这一过程对通信原理相关知识从理论到实践有了更透彻清晰的理解和掌握。

3.综合设计型实验

通常情况下,学生在学习通信原理课程前已经学习过有关EDA技术的课程。EDA技术是现代电子设计技术的核心,它以EDA软件工具为开发环境,采用硬件描述语言,以可编程器件为实验载体,可实现源代码编程、自动逻辑编译、逻辑分割、逻辑综合、布局布线、逻辑优化和仿真等功能,并以ASIC、SOC芯片为目标器件,是以电子系统设计为应用方向的电子产品自动化的设计技术。[4]因此,将EDA技术引入到综合设计型实验中,学生不仅要进行硬件设计,也需要利用硬件描述语言(如VHDL语言)进行软件编程,是学生硬件和软件综合设计能力的培养。

为方便说明,以简单的振幅键控(ASK)解调系统为例,其相应的建模方框图如图2所示。解调器包括分频器、计数器、寄存器和判决器等。分频器对时钟信号进行分频得到与发端数字载波相同的数字载波信号;寄存器在时钟的上升沿到来时把数字ASK信号存入到寄存器中;计数器利用分频器输出的载波信号作为时钟信号,在其上升沿到来时对寄存器中的ASK载波个数进行计数,当计数值m > 3时输出为“1”,否则输出为“0”;判决器以数字载波作为判决时钟,对计数器输出信号进行抽样判决,并输出解调后的基带信号。根据上述建模思想进行VHDL语言编程,然后进行编译和时序仿真后,下载到FPGA目标器件中,以实现硬件设计功能。

该级实验主要采用课程设计的形式,也可以以科技创新活动的形式开展。时间相对充裕,学生可以有充分的时间查找资料,论证设计方案,验证实验结果。通过该级实验可以发挥学生的主观能动性,提高学生分析问题、解决问题的能力,为学生以后进入工作岗位提供很好的动手锻炼机会。

三、三级实验模式教学成效

多年来,笔者所在的教学团队根据学生的学习反馈,兼顾理论教学需要和学生的学习兴趣,不断调整上述各级实验的实验项目和要求,取得了明显的成效。首先,通信原理课程的学习兴趣提高,课程不及格率呈逐年下降趋势;其次,学生进行电子通信系统设计的兴趣明显增强,报名参加校级和全国性电子设计大赛的人数逐年增加,也取得了较好的成绩。如2013年有15组学生分别获得全国大学生电子设计大赛湖北赛区一、二、三等奖;再次,考研学生以通信原理作为专业课的人数逐年增加,毕业论文选题为通信系统设计方向的也明显增多。

四、结语

采用三级实验教学模式,由易到难,循序渐进推进通信系统的认知和设计,能有效克服学生的畏难情绪,逐渐培养学生的学习兴趣,使学生能更深刻地理解和掌握通信原理相关理论和知识,为后续课程的学习和工作实践打下了良好的基础。

参考文献:

[1]达新宇,陈校平,邱伟,等.通信原理实验与课程设计[M].第二版.北京:北京邮电大学出版社,2009.

[2]张水英,徐伟强.通信原理及Matlab/Simulink仿真[M].北京:人民邮电出版社,2012.

[3]罗卫兵,孙桦,张捷.System View动态系统分析及通信系统仿真设计[M].西安:西安电子科技大学出版社,2001.

[4]段吉海,黄智伟.基于CPLD/FPGA的数字通信系统建模与设计[M].北京:电子工业出版社,2006.

(责任编辑:王祝萍)

作者:崔文超?龚国强?唐庭龙?魏康林

第2篇:运用虚拟仿真实验改革通信原理实验教学

摘 要:当今社会科技迅猛发展,高校实验教学设备的种类越来越多,因此在实验教学中模拟的特定环境也越来越逼真。但目前仍然没有办法满足所有实验环境的需求,在通信原理课程的实验教学中,基本不能根据实验要求建立真实的通信系统,也就无法进行相关的实验结果分析。此时,虚拟仿真软件应运而生,利用这种软件可以建立虚实结合的实验系统和环境,更好地实现仿真实验,改革通信原理实验教学,提高整体教学效果。

关键词:通信原理;虚拟仿真实验;实验教学

通信原理课程通常分为理论和实验两部分,即知识理论和实践操作两部分。其中,通过仿真实验可以真实地再现情景,提高教学效果。但如果单纯依靠高校教学环境和实验室器材设备,实践操作部分课程并不能达到理想的仿真效果,还需要借助一定的虚拟仿真软件来完成。通过虚拟仿真实验,学生能更加了解通信系统中的各模块、各环节的关系,获得更加丰富的实践操作感受,更好地理解所学的通信原理理论知识,让原本枯燥的理论学习变得更加有趣。同时,在虚拟仿真实验中能更好地锻炼学生的逻辑分析能力、实际操作能力以及发现问题和解决问题的能力。

一、目前高校通信原理实验课程的实际情况

目前,许多高校在通信原理实验课程教学方面已经获得了一定的发展,但是在教学方法、教学内容、实验课程的讲解以及实验设备的配置等方面还是存在一些不足和缺陷。

1)高校通信原理实验课程的教学内容以一些经典理论知识的验证性实验为主,多数情况下只是让学生按照预设流程进行实验操作,基本不需要学生进行实验设计。虽然在一定程度上帮助学生熟悉了理论知识,但缺乏对学生逻辑思维分析方面的锻炼以及发现问题解决问题能力的培养,更不利于学生探索、创新能力的养成。

2)实验购置的硬件设备大多已模块化,使用时都已经组装好,虽然便于学生进行尽快熟悉设备进行仿真实验,但如果只是单纯地观察分析预设实验流程的逻辑计算结果,不仅与现实操作存在巨大的差异,而且容易造成学生的轻视心理,降低学生的学习兴趣。

3)实验设备的参数通常早已设定好,学生在进行仿真实验时,只能使用预设参数,导致许多需要修改参数来对比分析结果的实验无法进行,许多原理知识无法一一验证。

4)购置实验器材设备的成本较高,导致某些实验设备比较陈旧,更新换代并不及时,影响教师进行相关课程的实验教学。

5)实验室的数量有限、地点固定,学生只能按照学校的统一安排进行某项实验,无法根据自己的对理论知识和实践操作的实际掌握情况进行实验学习,这也在一定程度上影响了实验教学效果和教学效率。

二、进行虚拟仿真实验改革的原因

通信系统虚拟仿真软件有许多,比如SystemView、Matlab等,都可以高度模拟通信系统中的每一个环节和细节,它们的出现和运用,让高校通信原理课程教学变得更加有趣。通过虚拟仿真实验可以让学生尽快熟悉通信系统的各个模块及环节,其中对信号和噪音系统真实的模拟,能让学生通过波形和频谱变化锻炼自己的综合分析能力和创新实践能力。同时,虚拟仿真软件能让学生摆脱实验室以及实验设备的限制,让实验教学变得更加灵活,学生在电脑上安装这个软件后就可以随时随地进行各种实验。因此,运用虚拟仿真实验改革通信原理实验教学势在必行。

三、通信原理实验教学改革

1)实验室改革是提高通信原理实验教学的必然要求,包括通过添置器材设备等措施建立综合性实验室。原先的实验室可能只有一些硬件设备,比如通信原理实验箱和示波器,进行实验的学生分组不能多于实验室设备的数量。改革后的虚实结合的综合性实验室增加了计算机,可以让学生进行之前实验设备所无法完成的实践操作,更多地实现通信原理知识的设计与验证,更好地满足学生进行实践操作学习的渴望。

2)实验项目的设计非常重要。在进行实验项目设计时,必须结合教学内容以及教学重点难点,合理运用虚实结合的实验环境,分别安排适合的基础硬件实验和综合性实验。比如,可以设计码型变换等基础硬件实验以及数字调制与解调等综合性实验。基础硬件实验可以让学生掌握硬件设备的安全使用方法与正确操作流程,综合性实验可以让学生通过虚拟仿真了解完整的通信系统、信号在传输过程中的变化特性,两者结合能让学生对通信原理有更直观、全面的认识,更清楚地知道如何设计、实现具有实际应用价值的通信系统。

四、虚拟仿真实验的优势

高校学生在老师的指导下学会使用虚拟仿真实验系统,可以设计出符合需求的通信模块,在虚拟系统中设定不同的设备参数,不断地进行观察调试,直到构建出完整的通信系统。同时,还可以通过分析比较信号波形和频谱来更好地理解通信传输过程。除此之外,虚拟仿真实验还有以下优点。

1)虚拟仿真实验弥补了高校实验设备存在的缺憾,强大的虚拟设备和分析工具让学生可以进行多种模块选择、不同参数设置的实验学习。

2)在虚拟仿真实验中学生可以根据学习理解或者疑惑进行实验操作甚至试错,而不用担心操作不当损坏实验设备而进行经济赔偿。同时,各种实验操作变得更加直观和简单,能进一步激发学生的学习热情和兴趣,还可以提升学生自主思考、独立设计的能力,帮助学生形成对通信原理知识的系统的认识和理解。

3)虚拟仿真实验除了能及时更新实验项目外,还可以降低实验经费开支,教师可以根据教学内容的变化、科研成果的更新以及现实应用的需求改进原有的或增加新颖的实验项目,与时俱进地提升学生的专业技能和水平,让学生可以更好地适应社会发展的需要。

五、结语

计算机技术飞速发展,让我们的工作、生活、学习都发生了翻天覆地的变化,虚拟仿真实验的改革可以让学生更加直观地认识通信系統,更好地学习、掌握通信系统的原理和技术。同时,虚拟仿真实验的改革让实验教学更加完善,更符合当代学生的学习需求,也让通信教学内容变得更加丰富。此外,虚拟仿真实验改革还能够提升学生的学习兴趣和实践创新能力,培养出更多优秀的通信专业人才,推进通信领域不断向前发展。

参考文献:

[1] 高晓新,金耀,马江权,陈群.互联网虚拟仿真教学培训系统建设探讨[J].实验技术与管理,2017(01).

[2] 通信原理综合实验教学改革的实践[J].李莉,赵蓉,项东.实验室研究与探索,2015(08).

[3] 谢慧,张志刚,聂峰.基于SystemView的通信原理实验教学体系[J].实验技术与管理,2012(02).

作者:张雪臻

第3篇:通信原理实验教学改革探讨

摘 要 本文针对高职通信相关专业通信原理课程实验教学的特点及存在的问题,从实验教学的方法及内容改革等方面做出了探讨,旨在更好地配合理论教学,加强高职院校学生对通信原理课程的基本理论知识的掌握与理解,同时培养学生的自主学习能力、创新意识及动手能力。

关键词 高职院校 通信原理 实验教学 教学改革

Key words vocational college; communication principle; experiment teaching; teaching reform

0 引言

作为一门通信技术相关专业的专业基础课程,通信原理是进入相关专业领域的第一门课。它不仅是一般专业基础课与专业课之间的连通枢纽,还是从基础理论到实际实践应用、从零碎的个体功能到实现整体系统运用的重要过渡。该课程开设的主要目的是让学生在该领域建立起通信的基本概念、基本理论知识以及对问题的基本分析方法,为今后从事与现代通信技术的应用、通信产品的安装、测试、维护等相关工作奠定基础。高职院校的学生一般对基础知识的掌握程度不高,同时,自主学习的能力也有所欠缺,而本课程的特点又是理论性强,公式及运用到的数学推导及知识繁多,很多概念及原理非常抽象,所以实验教学在这之中起着至关重要的作用,它不仅能够将抽象的原理及概念形象化、具体化,让学生对枯燥乏味的理论知识产生兴趣,还能够培养高职学生的实验实践动手能力。传统的实验教学方式与方法的效果不太理想,因此高职院校通信原理课程实验教学就需要在内容及方法上都做出改革与革新。

1 通信原理实验教学的特点及存在的问题

1.1 高职院校通信原理实验教学特点

高职院校的通信原理实验教学应该引导学生培养自主学习以及动手实践的能力,同时实验教学中的专业理论基础知识教学应遵循“适用”、“够用”的原则,做到以学生为本,把实验教学的重心放在实践应用之上。

高职院校的通信原理理论教学的一个典型数字通信系统是以信源、调制器、信道、调节器、信宿以及信道信源的编码为节点,以信号的传输为系统主线,从而培养学生在通信系统上建立的宏观分析思想及微观分析方法。同时,将通信原理实验按照信号流程规划实验课程项目,包括终端技术、基带及频带传输技术、同步技术和复接技术在内的实验课程。整个通信原理实验教学课程应该包含动手实践性强、实际应用性强、基础理论知识运用相关的课程。

1.2 实验教学存在的问题

(1)教师的教学观念老套。通信原理的实验不同其他课程实验,由于课程本身特点性质所决定,如若不注重教学观念很容易使实验教学变得枯燥乏味,让学生们在做实验过程中逐渐失去兴趣。存在最明显的一个问题即是有些教师在实验教学过程中,只是简单的教授学生实验的操作方法,然后让学生反复去练习、操作,然后教师们仅仅注重实验最后的数据结果,一份简单的实验报告,对通信原理的相关理论知识在实验中哪些方面有应用没有做很详细清楚的解释,对学生进行实验操作时所遇到的问题甚至没有及时进行解答或指导。所以在通信原理实验教学中教师的教学观念老套陈旧,会严重影响教学质量。

(2)软硬件设施不到位。在通信原理实验教学过程中,相关的实验器材设备,软硬件设施是必不可少的。实验的准确性,实验目的能否达到预期或要求值很大程度上取决于实验相关的软硬件设备。很多高职院校没有意识到这一点的重要性,长时间使用老旧的实验设备,对硬件不进行及时的维护与引进,对软件不进行更新及升级,这样势必会对实验教学的质量产生较大的影响。如传统的实验箱是很多实验的实验器材,大多高职院校的通信原理实验课程中同样会采用实验箱进行实验教学,但这局限了学生在做实验时的动手环节,他们通过已设定好的试验模块进行简单的操作,然后得出千篇一律的实验结果及实验报告,这样会使学生学习的积极性下降,影响对通信原理理论知识的掌握与理解。

2 通信原理实验教学方法及内容的改革

2.1 对通信原理实验教学的方法进行改革

(1)采用由简到繁,从易到难的渐进自主式教学方式。在安排学生进行实验时,实验内容上可以按照从简单到复杂的思路来开展,例如在课程初期先让学生做一些验证性的实验,让学生能够更加直观地理解掌握理论知识;在课程中期安排一些综合性较强的实验,使学生能够交叉运用理论知识;在课程末期则可安排一些给定主题的设计性实验,使学生自主设计,同时还可使学生根据自身兴趣爱好设计一些实验方案,使他们拥有实验自主权。这种渐进自助式的实验教学方式能够更好地因材施教,激发学生的学习激情。

(2)采用启发式的教学方法。在以学生为主体的前提下,通过教师引导与启发,使学生获得知识及实验实践的能力。在通信原理的实验课堂中,教师可以根据实验过程中所出现的现象进行提问,同时学生在操作过程中遇到不明之处向老师寻求帮助解答,教师对学生进行逐步引导,让学生自己去探索知识原理的所在。这种启发式教学方法更够培养学生的自主学习能力及敢于探索的精神,其教学效果明显优于“灌输式”教学模式。

(3)采用研讨式实验教学模式。传统的实验大多都是实验目的、实验操作步骤、得出实验结果、验证并得出结论的模式进行的,在教学方面忽略了教师的引导作用,让学生以固定的模板机械地进行实验。研讨式的实验教学模式则从根本上与之不同,通过对一个项目或课题的引进改造,使之变成一个需学生与教师集体探讨来完成的实验,当然,在实验过程中教师更多的是起着指导的作用。研讨式的实验教学方法能够使学生灵活运用已有的理论和知识,逐步分析与探讨实验进行的方式与方案,提高了学生们思考问题及解决问题的能力。

2.2 对通信原理实验教学的内容进行革新

(1)验证性实验。验证性实验是所有实验的基础及开端。该类是最传统的实验教学方式,其大多是对已知的结论或实验理论进行一个理解就验证。在通信原理实验中,这类实验旨在让高职学生理解并掌握各类通信系统的模块构成以及经处理后的波形变化,使学生对理论知识的认识从抽象到具体形象的过程逐渐转变,对实验结果做出相应的理论分析及正确的解释。同时,高职院校的培养学生的方向是技术型、应用型,所以涵盖基础理论知识的验证性实验是基础。诸如二进制数字调制解调系统的运用、PCM编码译码实验、帧同步实验、数字基带信号实验、自适应差分脉冲编码调制系统实验等等都可作为验证性实验对理论知识进行巩固加强。通过验证性实验课与理论课的结合,提高两方面的教学质量。

(2)仿真性实验。对一些基础理论知识的验证与演示可以通过验证性实验来完成,但这些实验大多是在实验箱中进行的,这对学生掌握系统内模块结构原理的细节性认识不利,因此,需要仿真性实验来帮助学生进一步了解与掌握内部机制。高职院校培养的人才类型是实用型、应用性,学生将来的工作更加专业化及技能化,这类仿真性实验可以模拟实际工程中通信系统的实现,增强学生走向社会后的适应力。现如今的仿真软件非常多,在实验中利用计算机进行仿真性实验能够使实验变得更加灵活、经济,使其极具开发性。例如,利用MATLAB软件中的SIMULINK模块进行调制系统中的DSB系统的解调模拟仿真实验;利用System View对滤波器设计、信号处理、完整通信系统的设计与仿真。对于仿真效果好,电路设计合理以实现的电路,可让学生进行设计安装布线图,最后在教师的指导下完成电路的制作,并实现仿真结果。仿真性实验能够模拟出真实环境中系统的运行状态,同时,它也不受实验器材的限制,所需的元器件或模块直接从数据库中调用即可,这在极大程度上改善了实验的条件带来的不足。

(3)综合创新设计性实验。综合创新设计性实验是对通信原理理论知识的综合运用实践。通过教师颁布的实验目的及实验要求,学生综合运用理论知识来自主设计实验方案,实现路线,计算实验所用的数据参数,然后自主调试运行。该类实验可采用课程设计的形式来进行,这样可以给学生更多的空间去自主完成该实验。综合创新设计性实验能够最大程度地反映学生掌握和运用所学的理论知识的程度,培养了学生综合分析和解决系统问题的能力。这与传统的模板式实验有着本质上的区别,它能够更好地帮助学生从实践的角度去掌握与理解通信原理这门课程,为之后的专业课程及今后走向工作岗位打下夯实的基础。

3 实验课程考核机制的改革

对高职学生的培养应更加注重技能培训,实践应用能力的训练,所以通信原理实验的考核机制不能按照传统课程的形式来进行。由于实验课程更多的是注重实践动手能力,那么,考核应该从实验课开始贯穿于课程结束。平时成绩应该增加权重,强调过程,加强对平时实验表现的评价。在平时成绩的评定中,教师应重点观察学生在实验过程中的学习、组织、操作能力的表现;在期末最终考核过程中可以通过课程设计、实验抽考和设计作品展示等形式进行,这些最终的考核方式都是只有通过平时实验积累才能达到实验课程要求的形式,从而达到进一步引导学生注重平时实践动手能力培养这一效果。

4 总结

通过对通信原理实验课的特点及实验教学所存在的问题进行剖析,逐步探索出高职院校通信原理实验教学的改革方向。不仅在实验教学方式上要逐步摈弃“灌输式”的教学方法,采用由简到繁,从易到难的渐进自主式、启发式以及研讨式的实验教学方法,还要从实验的内容上进行革新,将实验按照验证性、仿真性以及综合创新设计性等类型进行分类开展。如此一来,通信原理实验教学能够帮助高职院校的学生更好地理解掌握及运用理论知识,同时还能提高学生的实验积极性、自主学习、创新以及解决实际问题的能力,使学生成为技能型、应用型的人才。

参考文献

[1] 王晓玲,胡沁涵,陈虹.计算机仿真建模技术在通信原理实验教学中的应用[J].现代计算机(专业版),2015.13:34-37.

[2] 田莹,卢金玉,刘宴涛.基于Matlab/Simulink的通信原理虚拟仿真实验教学方法研究[J].现代电子技术,2015,v.38;No.44514:28-31.

作者:龚江涛

第4篇:通信报告通信原理实验心得体会

通信原理实验心得体会

091180024代岳 通信工程

众所周知,《通信原理》是电子、通信、计算机、自控和信息处理等专业的重要基础课,所以我们通信工程专业的同学在本学期除了平时要上每周2次,每次2节的通信原理理论课程外,还要上每周1次持续3个小时的实验课来帮助我们理解通信原理课的知识,使同学们掌握和熟悉通信系统的基本理论和分析方法,为后续的学习打下良好的基础。

在做本学期的实验前,我以为跟以往的电子类实验差不多,以验证为主,不会很难做,就像以前做物理实验一样,课上按照要求做完实验,然后课后两下子就将实验报告写完,下次课上一交,就OK了。直到做完本学期所有的通信原理实验时,我才知道其实并不容易做,因为自主设计占了很大一部分,需要查找资料和跟不断跟同学讨论问题来解决难点,但学到的知识与难度成正比,使我获益良多. 首先,在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就很可能会听不懂,这将使我们在做实验时的难度加大,浪费课上完成实验的宝贵时间。比如做BPSK自行设计的实验,你要清楚BPSK系统的传输特性以及输入输出序列的原理,如果我们不清楚,在做实验时才去探索讨论,这将使你极大地浪费时间,使你事倍功半。同时,做实验时,一定要亲力亲为,不要钻空子,务必要将每个步骤,每个细节弄清楚,最好能理解明白。在完成实验后,还要进行一定的复习和思考。只有这样,你的才会印象深刻,记得牢固。否则,过后不久,也许是半个学期,就会忘得一干二净,这是很糟糕的一种情况。在做实验时,老师还会根据自己的经验,将一些课本上没有的知识教给我们,拓宽我们的眼界,使我们认识到通信原理实验的应用是那么的广泛,可以大大增强我们的探索的兴趣。

通过完成本学期的通信原理实验,使我学到了不少实用的通信知识,加深了对通信系统的理解,加强了动手的能力,与理论课完成了很好的互补。更重要的是,在做实验的过程,我们收获了思考问题和解决问题的各种角度以及方法, 提高了在实践中研究问题,分析问题和解决问题的能力,这与做其他的实验是通用的,让我受益匪浅,对以后的学习更加有信心。

第5篇:通信原理实验报告

1, 必做题目

1.1 无线信道特性分析 1.1.1 实验目的

1) 了解无线信道各种衰落特性;

2) 掌握各种描述无线信道特性参数的物理意义;

3) 利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2 实验内容

1) 基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

移动通信系统

1.1.3 实验作业

1) 根据信道参数,计算信道相干带宽和相干时间。

fm=200; t=[0 4e-06 8e-06 1.2e-05]; p=[10^0 10^-0.3 10^-0.6 10^-0.9]; t2=t.^2; E1=sum(p.*t2)/sum(p); E2=sum(p.*t)/sum(p); rms=sqrt(E1-E2.^2); B=1/(2*pi*rms) T=1/fm

2) 设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。(配合截图来分析) Impulse Response(IR)

移动通信系统

从冲击响应可以看出,该信道有四条不同时延的路径。多径信道产生随机衰落,信道冲击响应幅值随机起伏变化。可以看出,该信道的冲激响应是多路冲激响应函数的叠加,产生严重的码间干扰。 Frequency Response(FR)

频率响应特性图不再是平坦的,体现出了多径信道的频率选择性衰落。

移动通信系统

IR Waterfall

频率展宽后,信号的冲激响应不再平坦,是由于多径信道中不同信道的叠加影响

Doppler Spectrum

由于多普勒效应,接受信号的功率谱展宽扩展到fc-fm至fc+fm范围。

移动通信系统

3) 观察并分析信号在经过瑞利衰落信道前后的星座图变化(截图并解释)。

标准的QPSK星座图,4个相位 后

移动通信系统

信号经过多径信道后,相位和幅值均发生了随机变化,信号不再分布在四个点附近,可以看出信号质量很差。说明多径信道对信号产生了巨大的干扰。PSK/QPSK通信链路搭建与误码性能分析

1.2BPSK/QPSK通信链路搭建与误码性能分析 1.2.1实验目的

掌握基于simulink的BPSK、QPSK典型通信系统的链路实现,仿真BPSK/QPSK信号在AWGN信道、单径瑞利衰落信道下的误码性能。

1.2.2实验作业

1) 基于simulink搭建BPSK/QPSK通信链路,经过AWGN信道,接收端相干解调,仿真并绘出BPSK和QPSK信号在EbN0为0~10dB时(间隔:

移动通信系统

1dB)误码性能曲线。 仿真参数:

a) 仿真点数:106

b) 信源比特速率:1Mbps。

Bpsk通信链路

QPSK通信链路

BPSK AWGN参数

移动通信系统

QPSK AWGN参数

用bertool画出BPSK信号的误码率曲线(0~10dB)

移动通信系统

由此可见BPSK和QPSK的在同一Eb/No时误比特率基本一样,这与理论分析一致

2) 在1的基础上,信号先经过平坦(单径)瑞利衰落,再经过AWGN信道,假设接收端通过理想信道估计获得了信道衰落值(勾选衰落信道模块的“Complex path gain port”)。仿真并绘出BPSK和QPSK信号在EbN0为0~40dB时(间隔:5dB)误码性能曲线。 信道仿真参数:最大多普勒频移为100Hz。

BPSK通信链路

移动通信系统

QPSK通信链路

瑞利单径信道参数

移动通信系统

QPSK AWGN参数

移动通信系统

BPSK AWGN参数

BPSK/QPSK 0-40db误码率曲线

BPSK和QPSK在同一Eb/No的误比特率基本一致,这和理论基本一致

移动通信系统

2、分组题目

2.1SIMO系统性能仿真分析 2.1.1实验目的

1.掌握基于simulink的单发多收(SIMO)16QAM仿真通信链路;

2.仿真SIMO 16QAM信号在单径瑞利衰落信道下,不同接收分集数、不同合并方式下的误比特率性能。

2.1.2实验内容

1.掌握单发多收的原理,利用分集技术,搭建单发多收通信系统框图。 2.利用MATLAB中simulink所包含的通信系统模块搭建基于各种分集技术类型的单发多收通信链路。

3. 比较分析不同接收分集数、不同合并方式下的误比特率性能。

2.1.3实验原理

移动信道的多径传播引起的瑞利衰落、时延扩展以及伴随接收机移动过程产生的多普勒频移使接收信号受到严重的衰落;阴影效应会使接收的信号过弱而造成信号的中断;信道存在噪声和干扰,也会使接收信号失真而造成误码。因此,在移动通信系统中需要采取一些数字信号处理技术来改善接收信号的质量。其中,多天线分集接收技术就是一个非常重要且常见的方法。

分集接收的基本思想就是把接收到的多个衰落独立的信号加以处理,合理地利用这些信号的能量来改善接收信号的质量。

分集技术总体来说分为两类,针对阴影衰落的宏观分集和针对微观衰落的微观分集。本实验主要注重微观分集。分集技术对信号的处理包含两个过程,首 先是要获得M个相互独立的多径信号分量,然后对它们进行处理以获得信噪比 的改善,这就是合并技术。合并方式共分为三种,选择合并、等增益合并和最大 比值合并。

选择合并是最简单的一种,在所接收的多路信号中,合并器选择信噪比最高的一路输出。最大比值合并会将所有路信号的能量和信息都利用上,会明显改善

移动通信系统

合并器输出的信噪比。基于这样的考虑,最大比值合并把各支路信号加权后合并。各路信号权值用数学方法得出。等增益合并性能上不及最大比值合并,但是却容易实现得多,其主要思想是将各路信号赋予相同权值相加。 2.1.4 实验仿真 2.1.4.1实验框图

系统整体框图

移动通信系统

接收分集

二分集等增益合并

移动通信系统

三分集等增益合并

二分集选择合并

三分集选择合并

移动通信系统

二分集最大比值合并

三分集最大比值合并

2.1.4.2 仿真结果

从图中可以看到,通过等增益合并方式能够显著的减小误码率,并且随着Eb/N0 的增加而更好的显示出性能优越;相对比不同的分集数可看出,分集数的增加能 有效地减小误码率。

移动通信系统

由图可看到,三种合并方式都能显著地减小误码率,在分集数为二的情况下,效果最好的是最大比值合并,等增益次之,都优于选择合并;

2.1.5 实验结论

移动信道的多径传播引起的瑞利衰落、时延扩展以及伴随接收机移动过程产生的多普勒频移使接收信道受到严重的衰落,所以必须采取相应的抗衰落的措施来提高系统性能。在本次课程设计中,我们小组学习研究了对三种不同分集合并技术在改善系统性能方面的效果的课题实验。通过仿真实验得出的不同分集的误码率,分集技术能有效地减小误码率从而提高系统性能;而通过对误码率曲线的分析,可以看出:对于三种分集合并技术,等分集前提下,最大比值合并优于等增益合并优于选择合并;而对于同一合并技术,增加分集数能优化其性能。

2.2直接序列扩频系统性能分析

2.2.1实验目的

1)了解直接序列扩频系统的原理

2)基于simulink搭建直接序列扩频仿真通信链路,仿真分析在不同信道条件下的误比特率性能。

3)观察体会直接序列扩频对误码率的改善程度 2.2.2 实验内容

1) 搭建基于simulink搭建直接序列扩频仿真通信链路,观察频谱和波形 2)仿真分析在不同信道条件下的误比特率性能。

移动通信系统

2.2.3实验原理

所谓直接序列扩频,就是直接用具有高码率的扩频码序列在发送端去扩展信号的频谱。而在接收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信息。

直扩系统的抗干扰能力是由接收机对干扰的抑制产生的,如果干扰信号的带宽与信息带宽相同(即窄带),此干扰信号经过发送机伪噪声码调制后将展宽为与发送信号相同的带宽,而其谱密度却降低了若干倍。相反,直扩信号经伪噪声码解扩后变成了窄带信息,从而使增益提高了若干倍。

实验原理框图

伯努利信源b(t)x(t)s(t)信道r(t)e(t)Tby(Tb)dt判决0y(t)c(t)cos(wct)c(t)cos(wct)

直接序列扩频通信系统

2.2.4实验仿真

直接序列扩频simulink仿真通信链路

a.伯努利序列参数和PN序列参数: 伯努利信源100bps

移动通信系统

PN序列2kbps

移动通信系统

b.扩频前后频谱变化: 扩频前频谱:

类似sinc函数的频谱

扩频后频谱:

频谱明显展宽 功率谱密度降低

移动通信系统

扩频调制后波形:

移动通信系统

解扩解调波形:

c.误比特率

AWGN信道(仿真点数1e6)

移动通信系统

BPSK理论误码率(-7到10dB的误比特率曲线)

通过两者对比,我们可以发现直接序列扩频通信系统对Eb/No的改善近似为13dB,这和理论分析出的值接近。

第6篇:通信原理实验报告

中南大学

《通信原理》实验报告

姓 名 班 级 学 号

课程名称 指导教师

通信原理 董健

1

通信原理实验报告

目录

2

通信原理实验报告

实验一 数字基带信号

一、 实验目的

1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容

1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3 、用示波器观察HDB

3、AMI译码输出波形

三、实验步骤

1、熟悉数字信源单元和HDB3编译码单元的工作原理。接好电源线,打开电源开关。

2、用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:

(1) 示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

3

通信原理实验报告

(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K

2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

4

通信原理实验报告

3、 用示波器观察HDB3编译单元的各种波形。 仍用信源单元的FS信号作为示波器的外同步信号。

(1) 示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K

1、K

2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI端)波形和HDB3码(开关K4置于右方HDB3端)波形。再将K

1、K

2、K3置为全0,观察全0码对应的AMI码和HDB3码。观察时应注意AMI、HDB3码的码元都是占空比为0.5的双极性归零矩形脉冲。编码输出AMI-HDB3比信源输入NRZ-OUT延迟了4个码元。

全1码对应的AMI码

全1码对应的HDB3码

5

通信原理实验报告

全0码对应的AMI码

(2)将K

1、K

2、K3置于0111 0010 0000 1100 0010 0000态,观察并记录对应的AMI码

6

通信原理实验报告

和HDB3码。

AMI码

HDB3码

7

通信原理实验报告

(3)将K

1、K

2、K3置于任意状态,K4先置左方(AMI)端再置右方(HDB3)端,CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET、BPF、BS-R和NRZ ,观察这些信号波形。

CH1接信源单元的NRZ-OUT,CH2依次接AMI单元的DET

CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的DET HDB3

8

通信原理实验报告

CH1接信源单元的NRZ-OUT,CH2依次接AMI单元的BPF

CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的BPF

CH1接信源单元的NRZ-OUT,CH2依次接AMI单元的BS-R

9

通信原理实验报告

CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的BS-R

10

通信原理实验报告

CH1接信源单元的NRZ-OUT,CH2依次接AMI单元的NRZ

CH1接信源单元的NRZ-OUT,CH2依次接HDB3单元的NRZ

11

通信原理实验报告

四、根据实验现象回答

1. 根据实验观察和纪录回答:

(1)不归零码和归零码的特点是什么?

不归零码特点:脉冲宽度τ 等于码元宽度Ts 归零码特点:τ

举例: 信源代码:

100001100001000001 AMI: 10000-110000-1000001 HDB3:10001-11-100-100010-1 2. 总结从HDB3码中提取位同步信号的原理。 HDB3位同步信号

整流窄带带通滤波器整形移相

HDB3中不含有离散谱fS(fS在数值上等于码速率)成分。整流后变为一个占空比等于0.5的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱fS成分,故可 通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号。

12

通信原理实验报告

实验二 数字调制

一、实验目的

1、掌握绝对码、相对码概念及它们之间的变换关系。

2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。

3、 掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。

4、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。

二、实验内容

1、用示波器观察绝对码波形、相对码波形。

2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。

3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。

三、实验步骤

本实验使用数字信源单元及数字调制单元。

1、熟悉数字调制单元的工作原理。接通电源,打开实验箱电源开关。将数字调制单元单刀双掷开关K7置于左方N(NRZ)端。

2、用数字信源单元的FS信号作为示波器的外同步信号,示波器CH1接信源单元的(NRZ-OUT)AK(即调制器的输入),CH2接数字调制单元的BK,信源单元的K

1、K

2、K3置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律 AK波形

13

通信原理实验报告

BK波形

3、示波器CH1接2DPSK,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。注意:2DPSK信号的幅度比较小,要调节示波器的幅度旋钮,而且信号本身幅度可能不一致,但这并不影响信息的正确传输。

CH1接2DPSK,CH2接AK

14

通信原理实验报告

CH1接2DPSK,CH2接BK

4、示波器CH1接AK、CH2依次接2FSK和2ASK;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的) 示波器CH1接AK、CH2接2FSK

15

通信原理实验报告

示波器CH1接AK、CH2接2ASK

四、实验总结

1、设绝对码为全

1、全0或1001 1010,求相对码。

2、设相对码为全

1、全0或1001 1010,求绝对码。

3、设信息代码为1001 1010,假定载频分别为码元速率的1倍和1.5倍,画出2DPSK及2PSK信号波形。

4、总结绝对码至相对码的变换规律、相对码至绝对码的变换规律并设计一个由相对码至绝对码的变换电路。

16

通信原理实验报告

实验三 模拟锁相环与载波同步

一、 实验目的

1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。

2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。

3. 了解相干载波相位模糊现象产生的原因。

二、实验内容

1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。 2. 观察环路的捕捉带和同步带。

3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。

三、实验步骤

本实验使用数字信源单元、数字调制单元和载波同步单元。

1.熟悉载波同步单元的工作原理。接好电源线,打开实验箱电源开关。

2.检查要用到的数字信源单元和数字调制单元是否工作正常(用示波器观察信源NRZ-OUT(AK)和调制2DPSK信号有无,两者逻辑关系正确与否)。

3. 用示波器观察载波同步模块锁相环的锁定状态、失锁状态,测量环路的同步带、捕捉带。

(1)观察锁定状态与失锁状态

打开电源后用示波器观察ud,若ud为直流,则调节载波同步模块上的可变电容C34,ud随C34减小而减小,随C34增大而增大(为什么?请思考),这说明环路处于锁定状态。用示波器同时观察调制单元的CAR和载波同步单元的CAR-OUT,可以看到两个信号频率相等。若有频率计则可分别测量CAR和CAR-OUT频率。在锁定状态下,向某一方向变化C34,可使ud由直流变为交流,CAR和CAR-OUT频率不再相等,环路由锁定状态变为失锁。

接通电源后ud也可能是差拍信号,表示环路已处于失锁状态。失锁时ud的最大值和最小值就是锁定状态下ud的变化范围(对应于环路的同步范围)。环路处于失锁状态时,CAR和CAR-OUT频率不相等。调节C34使ud的差拍频率降低,当频率降低到某一程度时ud会突然变成直流,环路由失锁状态变为锁定状态。

4. 观察环路的捕捉过程

先使环路处于失锁定状态,慢慢调节C34,使环路刚刚进入锁定状态后,关闭电源开关,然后再打开电源,用示波器观察ud,可以发现ud由差拍信号变为直流的变化瞬态过程。ud的这种变化表示了环路的捕捉过程。

17

通信原理实验报告

5. 观察相干载波相位模糊现象

使环路锁定,用示波器同时观察调制单元的CAR和载波同步单元的CAR-OUT信号,反复断开、接通电源可以发现这两个信号有时同相、有时反相。

18

通信原理实验报告

四、 实验总结

1.总结锁相环锁定状态及失锁状态的特点。

答:模拟锁相环锁定的特点:输入信号频率与反馈信号的频率相等,鉴相器输出电压为直流。模拟锁相环失锁的特点:鉴相器输出电压为不对称的差拍电压 。 2.设K0=18 HZ/V ,根据实验结果计算环路同步带ΔfH及捕捉带ΔfP 。 答:代入指导书“3式”计算得:v112v,则

fH186108Hz;v28v,则fp18472Hz

3.由公式nRCKdKo及6811n计算环路参数ωn和ζ,式中 Kd=6

2(R25R68)C114

-6 V/rad,Ko=2π×18 rad/s.v,R25=2×10,R68=5×10,C11=2.2×10F 。(fn=ωn/2π应远小于码速率,ζ应大于0.5)。

答:nn2186.5fn17.6Hz远小于码速率 ;111rad4362(210510)2.21051032.2106170.5(波特);1110.6

24.总结用平方环提取相干载波的原理及相位模糊现象产生的原因。

答:平方运算输出信号中有2fc离散谱,模拟环输出信号频率等于2fc,二分频,滤波后得到干扰波;2电路有两个初始状态,导致提取的相干载波有两种相反的相位状态 5.设VCO固有振荡频率f0 不变,环路输入信号频率可以改变,试拟订测量环路同步带及捕捉带的步骤。

答:环路处于锁定状态后,慢慢增大C34,使ud增大到锁定状态下的最大值ud1(此值不大于+12V);

① ud增大到锁定状态下的最大值ud1值为: 4.8 V

19

通信原理实验报告

继续增大C34,ud变为交流(上宽下窄的周期信号)。 ③ 环路失锁。再反向调节减小C34,ud的频率逐渐变低,不对称程度越来越大。

④ 直至变为直流。记环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud2;继续减小C34,使ud减小到锁定状态下的最小值ud3;

环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud2为:2.4 V ud减小到锁定状态下的最小值ud3为 :1.6 V ⑤ 再继续减小C34,ud变为交流(下宽上窄的周期信号),环路再次失锁。然后反向增大C34,记环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud4。环路刚刚由失锁状态进入锁定状态时鉴相器输出电压为ud4的值为:4.4 V

20

通信原理实验报告

实验四 数字解调与眼图

一、 实验目的

1. 掌握2DPSK相干解调原理。

2. 掌握2FSK过零检测解调原理。

二、 实验内容

1. 用示波器观察2DPSK相干解调器各点波形。

2. 用示波器观察2FSK过零检测解调器各点波形。 3.用示波器观察眼图。

三、 实验步骤

1. 复习前面实验的内容并熟悉2DPSK解调单元及2FSK解调单元的工作原理,接通实验箱电源。将数字调制单元单刀双掷开关K7置于左方NRZ端。

2. 检查要用到的数字信源、数字调制及载波同步单元是否工作正常,保证载波同步单元处于同步态!

3. 2DPSK解调实验

(1)将数字信源单元的BS-OUT用信号连线连接到2DPSK解调单元的BS-IN点,以信源单元的FS信号作为示波器外同步信号,将示波器的CH1接数字调制单元的BK,CH2(建议使用示波器探头的x10衰减档)接2DPSK解调单元的MU。MU与BK同相或反相,其波形应接近图4-3所示的理论波形。

(2)示波器的CH2接2DPSK解调单元的LPF,可看到LPF与MU同相。当一帧内BK中“1”码“0”码个数相同时,LPF的正、负极性信号电平与0电平对称,否则不对称

21

通信原理实验报告

(3)示波器的CH1接VC,调节电位器R39,保证VC处在0电平(当BK中“1”与“0”等概时LPF的中值即为0电平),此即为抽样判决器的最佳门限。

(4)观察数字调制单元的BK与2DPSK解调单元的MU、LPF、BK之间的关系,再观察数字信源单元中AK信号与2DPSK解调单元的MU、LPF、BK、AK-OUT信号之间的关系。 BK与 2DPSK 的MU

BK与 2DPSK 的LPF

22

通信原理实验报告

BK与 2DPSK 的BK

AK与 2DPSK 的MU

23

通信原理实验报告

AK与 2DPSK 的LPF

AK与 2DPSK 的BK

24

通信原理实验报告

AK与 2DPSK 的AK-OUT

(6)将数字调制单元单刀双掷开关K7置于右方(M序列)端,此时数字调制器输入的基带信号是伪随机序列(本系统中是M序列)信号。用示波器观察2DPSK解调单元LPF点,即可看到无噪声状态下的眼图。

25

通信原理实验报告

4. 2FSK解调实验

将数字调制单元单刀双掷开关K7还原置于左方NRZ端。将数字信源单元的BS-OUT用信号连线换接到2FSK解调单元的BS-IN点,示波器探头CH1接数字调制单元中的AK,CH2分别接2FSK解调单元中的FD、LPF、CM及AK-OUT,观察2FSK过零检测解调器的解调过程(注意:低通及整形2都有倒相作用)。LPF的波形应接近图4-4所示的理论波形。

AK与 2FSK的 FD

AK与 2FSK的 LPF

26

通信原理实验报告

AK与 2FSK的 AK-OUT

四、实验总结

1. 设绝对码为1001101,根据实验观察得到的规律,画出如果相干载波频率等于码速率的1.5倍,在CAR-OUT与CAR同相、反相时2DPSK相干解调MU、LPF、BS、BK、AK波形示意图,总结2DPSK克服相位模糊现象的机理。

当相干载波为-cosωt时,MU、LPF及BK与载波为cosωt时的状态反相,但AK仍不变(第一位与BK的起始电平有关)。2DPSK系统之所能克服相位模糊现象,是因为在发端将绝对码变为了相对码,在收端又将相对码变为绝对码,载波相位模糊可 使解调出来的相对码有两种相反的状态,但它们对应的绝对码是相同的。

27

第7篇:现代通信原理实验教案

现代通信原理

实验教案

杨 斌

实验一 数字基带信号及传输

一、实验目的:

1.了解单极性码、双极性码、归零码、非归零码等基带信号的产生原理及其波形的特点。

2.掌握AMI码、HDB3码、双相码的编码规则。 3.掌握插入帧同步码时分复用信号的帧结构特点。 4.学会设计简单的时分多路信号传输系统。

二、实验内容:

1.用示波器观察单极性非归零码(NRZ),传号交替反转码(AMI), 三阶高密度双极性码(HDB3)。

2.改变码序列,比较其单极性码,AMI码,HDB3码波形,并验证是否符合其编码规则。 3.观察HDB3编码中的四连零检测、补V、加B补奇、单/双极性变换的波形,并验证是否符合编码规则。

4.观察并比较单、双极性码(非归零、归零)、时钟信号、时序信号及双相码的波形和相位特点。

5.分析电路,设计实验方案,产生100%占空比的AMI码,比较100%占空比AMI码与50%占空比AMI码的功率谱。(选作) 6.分析电路,设计实验方案,产生不同码速率的信息。(选作) 7.尝试用信源电路的组合,产生其它码型。(选作)

三、预习要求:

1.复习教材中有关基带信号及时分复用的内容。 2.认真预习本实验指导书的工作原理和实验内容。

3.熟悉有关器件的功能及其应用方法以及两模块框图的信号流程和设计原理。 4.对于选作实验,自行设计实验方案及测试步骤。

四、实验仪器:

1 、两路3A直流稳压电源

一台

2、双踪示波器

一台

3、频率计

一台

4、数字信源模块

一块

5、HDB3编译码模块

一块

6、频谱仪

一台(选做) 2

五、基本实验参考实验步骤: 1.熟悉信源模块的工作原理。

2.调整直流电源输出分别为+12V,-12V。 3.用示波器观察数字信源模块上的各种波形。

(1)接通电源

用示波器观察两个通道探头分别接P10的256kHZ时钟和T20的单极性归零码并观察其波形。

(2)用U21产生X1110010(X为任意码,1110010为7位帧同步码)、U22、U23、U24产生任意信息代码,并观察本实验中集中插入帧同步码时分复用信号帧结构以及NRZ码的特点。

(3)用示波器观察P19~P21,P22,P23各点的波形。

(4)用示波器观察AMI码与单极性归零码的关系。 (5)观察T1、T2、T3、T4四路时序信号的相位关系。 (6)观察单极性非归零码与双相码的波形关系。

七、实验报告要求:

1.根据实验观察和记录各点波形(用座标纸绘),并分析波形与理论是否相符。 2.比较不同信码中的AMI码与HDB3码波形是否相同,为什么?

3.什么是时序信号,比较各时序信号的相位关系,并分析时序信号在信号合路时的作用。

实验二

HDB3编、译码实验

一、 实验目的: 1. 加深对HDB3编、译码的工作原理的理解。 2. 了解HDB3编码与译码器的电路组成及工作过程。 3. 了解HDB3码信号中提取位同步信号(时钟)的方法。

二、 实验内容: 1. 观察HDB3编码器中的四连零检测、补V、加B补奇、单/双极性变换以及

HDB3码的波形,并验证是否符合编码规则。 2. 观察HDB3译码器中的双/单极性变换、V码检测及扣V扣B后的译码波形以及时钟提取电路输出的位同步信号波形。 3. 手动加入误码时,观察解码输入和检错显示。 4. 当输入信码为外加伪随机信码时,设计实验方案观察输入信码和HDB3码的功率频谱。(选做) 5. 设计实验方案,观察与比较100%占空比HDB3码与50%占空比HDB3码的功率谱。(选做)

三、 预习及预习报告要求: 1. 预习本实验的工作原理和实验内容。 2. 对于选作实验,自行设计实验方案及测试步骤。

四、实验仪器:

1 、两路3A直流稳压电源

一台

2、双踪示波器

一台

3、频率计

一台

4、数字调制模块

一块

5、数字解调模块

一块

6、频谱仪

一台(选做)

五、实验报告要求:

1.根据实验观察和记录各点波形(用座标纸绘),要求绘出32位码的完整波形,

并分析波形与理论上的是否相符。

2.若把对应的AMI码送入HDB3译码中会出现什么现象?并说明道理。 3.本实验的误码检测电路只能检测哪类误码差错,为什么? 4.对本实验有何体会,有何改进意见?

实验三 数字调制与解调

2FSK调制与解调

一、实验目的:

1、 了解二进制移频键控2FSK信号的产生过程及电路的实现方法。

2、 了解非相干解调器过零检测的工作原理及电路的实现方法。

3、 了解相干解调器锁相解调法的工作原理及电路的实现方法。

二、实验内容:

1、了解相位不连续2FSK信号的频谱特性,了解频偏△f=(f1-f2)/2不同时,传输2FSK信号所需带宽的情况与2ASK信号带宽进行比较。

2、了解2FSK(相位不连续)调制,非相干、相干解调电路的组成及工作原理。

3、观察2FSK调制,非相干、相干解调各点波形。

4、了解畸变信道模拟电路的原理,畸变信号送入过零检测电路与锁相解调电路,会产生如何结果。(选作)

5、2FSK信号保持f1=1024KHz. 改变f2使f2-f1=3fs时,改变f2使f2-f1=2fs时解调器解调效果。(选作)

6、改变f

1、f2的频率大小,观察不同调制指数下的调制解调效果。(选作)

7、利用实验模块的电路,设计出其它解调方法,并自行验证。(选作)

三、预习要求:

1、复习教材有关2FSK调制与解调的理论。

2、复习模拟锁相环的原理和实验方法。

3、认真预习本实验指导书的工作原理和实验内容。

1、对于选作实验,自行设计实验方案及测试步骤。

四、实验仪器:

1 、两路3A直流稳压电源

一台

2、双踪示波器

一台

3、频率计

一台

4、数字调制模块

一块

5、数字解调模块

一块

7、频谱仪

一台(选做)

五、实验报告要求

1、将数字调制器、过零检测器、锁相解调器观察输出波形画出,并给以必要的

说 明。

2、画图时将波形的相位关系正确表示出来,若波形之间产生相位差说明原因。

3、通过实验说明各种解调方法各有什么优缺点。

4、本实验有何收获,请提出改进意见。

2PSK、2DPSK调制与解调

一、实验目的

1、了解2PSK、2DPSK的调制原理及电路的实现方法;

2、掌握绝对码、相对码相互变换方法;

3、了解2PSK调制与解调存在的相位含糊问题;

4、了解2PSK、2DPSK的相干解调原理及电路的实现方法

二、实验内容

1、用示波器观察2PSK、2DPSK调制器信号波形与绝对码比较是否符合调制规律;

2、用示波器观察2PSK、2DPSK信号频谱;

3、用示波器观察2PSK、2DPSK信号解调器信号波形;

4、观察相位含糊所产生的后果;

5、观测绝/相、相/绝变换的规律,设计出另一种定义的绝/相、相/绝变换电路,并测试。(选作)

6、设计实验方案,比较不同信道带宽下调制解调的性能。(选作)

7、利用各种实验模块的电路,自行组合出差分非相干解调的实验。(选作)

8、加入噪声后,设计实验方案测试误码情况。(选作)

三、预习要求:

1、复习教材有关2PSK、2DPSK的调制与解调的理论。

2、复习绝/相、相/绝变换的原理。

3、认真预习本实验指导书的工作原理和实验内容。

4、对于选作实验,自行设计实验方案及测试步骤。

四、实验仪器

1、两路3A直流稳压电源一台

2、频率计一台

3、双踪示波器一台

4、数字调制模块一块

5、数字解调模块一块

6、频谱仪一台

7、连接线若干

五、实验报告要求

1、画出2DPSK调制器、相干解调器详细方框图。

2、根据实验测试记录依次画绝对码为11101100时2DPSK调制器、相干解调器各点波形,并作必要说明。

6 实验四 P CM 基带通话系统设计

一、实验目的

1、 将所做过的独立实验内容综合运用,组成两个采用PCM的2人可通话的基带传输系统。

2、 了解独立实验模块在系统实验中所起的作用。改变独立实验模块的参数,直观感受对系统的影响。

3、 掌握独立实验模块之间正确的连接方法。

二、实验内容

1、掌握独立实验模块之间正确的连接方法。

2、连接不用时域均衡器的PCM两人通话的基带传输系统。

3、连接使用时域均衡器的PCM两人通话的基带传输系统。(选作)

4、设计实验方案,用其它线路码进行基带传输系统。(选作)

注意:以上实验信号的流程是单向的。要实现2人通话,将耳机交叉后。

三、预习要求

1、复习教材前面相关各章节的理论。

2、认真预习本实验指导书的工作原理和实验内容。

3、对于选作实验,自行设计实验方案及测试步骤。

四、实验仪器

1、两路3A直流电源一台

2、频率计一台

3、示波器一台

4、数字信源模块、数字调制模块、载波、时钟提取模块、数字解调模块、帧同步提取模块、终端模块、PCM编译码模块各一块。

5、连接线若干

五、实验原理

1、不使用时域均衡器模块的基带传输系统:

该系统传输的HDB3码是理想码,即不产生畸变、也不需采取均衡措施。基带传输系统发端:包括PCM编码器、HDB3编码器、复接器等。这些电路都以数字信源模块的时钟相位作为基准,因此PCM编码器所需的时钟、帧同步信号、主时钟都是由信源模块提供。其信号流程图如下:

7 基带传输系统收端:包括HDB3译码器、时钟提取电路、帧同步提取模块、终端模块,这些电路都是后面模块以前面模块的时钟相位作为基准。因此,PCM译码器需要外时钟、外帧同步信号。而主时钟可根据集成电路的要求,采用异步时钟。我们采用PCM模块自身的主时钟2048KHz。其信号流程如下图:

2、使用时域均衡器的基带传输系统:

该系统所传输的HDB 3码产生畸变。这是模拟传输线传输中的由于时延、衰减等等造成的信码畸变。在收端必须采用均衡的办法加以弥补。其信号流程如下图:

基带传输系统发端时相同的,收端则增加了时域均衡器。在时域均衡器内有信码畸变电路,它应该属于传输线部分。除此之外还有时钟提取电路,它真实的反映了收端时钟的产生过程。在收端同样是后面的模块以前面模块的时钟相位为基准。

使用时域均衡器模块的基带传输系统实验,应该复习时域均衡器模块实验的内容和方法,当信码畸变电路固定后,正确调整可变系数求和电路,使得眼图波形张开最大。改变时钟延时使其处于最佳取样时刻,否则会产生大量误码使信号中断。

六、实验步骤

1、连接好整个系统的电源线和信号线

2、连接不使用时域均衡器的基带传输系统

3、采用数等衬言源模块、时域均衡器模块,复习正确调试时域均衡器的方法

4、连接使用时域均衡器的基带传输系统

七、实验报告

1、画出发端、收端关键波形,且绘出相位关系

2、画出可通话2DPSK方框原理图

3、分析联调时所遇问题,写出是如何解决。

第8篇:通信原理实验改革探究

摘要本文在教学改革实践的基础上,对通信原理实验进行了教学改革探究。旨在更好地配合理论教学,加强学生对通信原理基本理论知识的掌握,培养学生的再学习能力、创新意识和动手能力。本文从通信原理实验课的特点出发,在实验内容、实验平台、实验教学和实验管理四个方面制定了系统的教学改革方案并进行了尝试,取得了良好的教学效果。

中图分类号:G420文献标识码:A

创新能力社会经济的飞速发展要求当代大学生具备更高的知识掌握和运用能力,为更好的适应社会和工作需求,他们必须练就自学习能力、创新能力、实践动手能力和科研开发能力,对知识做到学以致用,会学会用。实验是对学生的再学习能力和实践动手能力培养的最有效手段之一,在辅助教学中起着至关重要的作用,因此对实验进行教学改革是各高校教学改革的当务之急。本人凭借多年的理论和实验教学经验,结合本校理论和实验教学现状,不断探索研究,提出了一系列的实验教学改革方案并将之应用于实际教学过程中取得了良好的教学效果。现将改革重点总结如下,希望能对同行有所帮助。

1 实验内容改革

以前我们的通信原理实验主要是验证性实验,验证性实验能加深学生对理论知识的理解,但对动手开发能力的培养却远远不够。因此我们将实验课程内容调整为验证性、综合性和设计性实验三部分。并逐渐增加综合性、设计性实验的比重。

验证性实验是实验教学中不可缺少的部分, 是学生理解、巩固、掌握理论知识的必要手段,我们挑选有代表性的实验去做,一方面强化了理论知识,另一方面为后续的综合性、设计性实验做出铺垫,打下基础。同时必须保证验证性实验与理论课教学的同步性。

综合性实验旨在培养学生系统的概念,必须按实验内容的内在联系进行设计,培养学生的综合实践能力。我们的方案是由教师提供综合性实验涉及的相关资料,然后由学生根据资料写出完整的实验方案,由教师提供相应实验模块的电路原理图,学生在读懂电路图的基础上,画出相应的电路方框图,并标出具体的测试点,完成整个实验内容的设计。这样有助于学生系统理解整个实验,还可以通过改变系统参数,测试其对系统性能的影响。

2 实验平台改革

以前我们的实验平台主要是通信原理实验箱,实验箱比较适合于验证性实验,有利于学生深入理解通信原理的基本理论知识。但用来操作设计性和综合性实验却有捉襟见肘之感,灵活性和可操作性不强。随着实验内容的改革我们又增加了System View平台、MATLAB仿真平台和EDA设计平台。

System View是美国ELANIX公司推出的,基于Windows环境下运行的用于系统仿真分析的可视化软件工具,它使用功能模块描述程序。利用System View可以构造各种复杂的模拟、数字、数模混合系统并以时域波形、眼图、功率谱等形式给出系统的仿真分析结果。对学生深入了解硬件系统的具体实现很有帮助。EDA技术是以计算机为工具,借助EDA软件平台,用硬件描述语言完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真。

EDA实验平台一方面可以简化电路,学生用硬件描述语言代替实际连线,可以在一个可编程逻辑器件上实现多种不同的实验内容,做到举一反三;另一方面学生要充分学习实验理论以便能够自己编写程序,这大大改变了以前实验中学生只知按照实验步骤连线来完成测试内容,而根本不追求理解掌握实验原理的误区。这一平台能够大大调动学生的主观能动性,提高学生的实验兴趣和实验态度。

MATLAB是美国Math Works公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。MATLAB用于通信原理实验中,通过数学函数实现实验内容,可使学生从数学的角度深入了解通信原理的具体实现,与课堂上理论知识的数学推导直接挂钩,强化记忆。还可以通过改变参数多角度分析实验结果进行仿真,对学生综合能力提高很有帮助。其难点在于学生要充分学习MATLAB的应用,自己动手编写模块文件,这对初学者提出了更高的要求。

综上所述,我们的实验策略是验证性实验采用传统实验箱结合MATLAB仿真,MATLAB具有出色的图形处理功能,比较直观,而实验箱可以把通信原理知识的理论和实际应用很好结合;设计性实验采用EDA技术结合MATLAB工具,MATLAB平台侧重通信模块功能的数学实现,而EDA平台强调通信模块功能的硬件和软件实现,二者结合可以使学生对实验内容有全方位的把握;综合性实验采用多种平台相结合,由学生根据自身状况自行取舍,因材施教,充分发挥学生的主观能动性。

3 实验教学方法改革

为了融多种实验平台于实验教学中,我们对传统的实验教学方法也进行了相应的改革。

验证性实验的教学方法是实验箱操作与软件仿真相结合,验证性实验较为简单,主要依靠实验箱上已给模块连线操作,借助数字示波器观测分析实验波形。已有固定实验模块主要是模拟现实应用,测得波形大多存在延时和失真,对于理论学习不够扎实的学生,往往不能观测和识别正确的波形,更谈不上做出详细准确的实验分析结果。因此,可以借助MATLAB绘制波形,有利于学生把握实验结果,从而提高实验的整体效果。

设计性实验的教学方法是模块仿真和EDA技术相结合。DSP技术和EDA技术是目前实际通信产品开发的两种主要技术,前者对普通大学生来说要求较高、难度较大,因此建议采用EDA平台。这种教学方法,可以使学生了解掌握实际工程的设计方法,为今后更好的学习和工作奠定基础。综合性实验的教学方法是学生自选平台,灵活施教。对于大型通信系统的模拟仿真和设计建议学生采用System View软件实现,对较简单的通信系统,建议学生采取MATLAB仿真结合EDA设计。具体实施由学生根据自己对平台的熟练程度自己选择。综合性实验大多费时费力,为此我们对实验室实行开放式管理,以方便学生自由安排时间完成实验。

4 实验管理方式改革

为了更好的对通信原理实验进行数字化、网络化管理,我们一改传统的实验管理方式,尝试采用由我们实验教学小组自己开发的通信原理实验信息管理系统。

学生可以通过实验信息管理系统进行实验预习、预约,还可根据实验要求和自己的兴趣来选择实验项目,使学生在实验进行之前,对实验有了较全面的了解,掌握了主动权。完成实验后,学生可以通过网络上交电子实验报告,查询实验成绩。

实验室管理人员可以对实验教学进行宏观调控,更合理地安排实验时间、实验场地、实验设备及辅导教师,提高了实验中心的运行效率。实验辅导教师能够及时获得学生实验预习和预约结果,据此安排必要的实验准备工作并能更有针对性地进行实验指导和成绩管理。学生和老师之间的有机互动,使实验的运行机制更科学合理,使学生更了解自己的操作对象,更好地发挥主观能动性。

5 结束语

经过一段时间的尝试,我们的通信原理实验教学改革已经初见成果,我们一改以往以教为主、以验证性实验为主的教学模式为以学为主、以设计性实验为主的教学模式,一方面使学生能够更加充分的理解和掌握通信原理的基本概念、理论、方法,另一方面也能够对学生的实践动手能力、科研开发能力和常用硬软件的熟练运用能力进行充分的锻炼。这种改革使学生的学习兴趣明显增强,动手能力明显提高,得到了学生的一致好评。

参考文献

[1]金小萍.通信原理实验教学方法的改革[J].技术监督教育学刊,2008(1).

[2]孔令红.基于EDA的通信原理实验课程教学研究[J].电气电子教学学报,2007.10.

[3]贾雅琼,俞斌.“通信原理”实验教学的改革与探索[J].中国现代教育装备,2006(12).

[4]田克纯,覃远年.《通信原理实验》的教学内容和方法的改革与实践[J].实验技术与管理,2005(8).

第9篇:通信原理实验指导书(8个实验)(精选)

实验一 CPLD 可编程数字信号发生器实训

一、实验目的

1、熟悉各种时钟信号的特点及波形;

2、熟悉各种数字信号的特点及波形。

二、实验设备与器件

1、通信原理实验箱一台;

2、模拟示波器一台。

三、实验原理

1、CPLD 可编程模块电路的功能及电路组成

CPLD可编程模块(芯片位号:U101)用来产生实验系统所需要的各种时 钟信号和数字信号。它由 CPLD可编程器件 ALTERA公司的 EPM7128(或者是 Xilinx 公司的 XC95108)、编程下载接口电路(J104)和一块晶振(OSC1)组 成。晶振用来产生系统内的16.384MHz 主时钟。本实验要求参加实验者了解这 些信号的产生方法、工作原理以及测量方法,才可通过CPLD可编程器件的二 次开发生成这些信号,理论联系实践,提高实际操作能力,实验原理图如图1-1 所示。

2、各种信号的功用及波形

CPLD 型号为 EPM7128 由计算机编好程序从 J104 下载写入芯片,OSC1 为晶体,频率为 16.384MHz,经 8 分频得到 2.048MHz 主时钟,面板测量点与EPM7128 各引脚信号对应关系如下:

SP101 2048KHz 主时钟 方波 对应 U101EPM7128 11 脚 SP102 1024KHz 方波 对应 U101EPM7128 10 脚 SP103 512KHz 方波 对应 U101EPM7128 9 脚 SP104 256KHz 方波 对应 U101EPM7128 8 脚 SP105 128KHz 方波 对应 U101EPM7128 6 脚 SP106 64KHz 方波 对应 U101EPM7128 5 脚

SP107 32KHz 方波 对应 U101EPM7128 4 脚 SP108 16KHz 方波 对应 U101EPM7128 81 脚 SP109 8KHz 方波 对应 U101EPM7128 80脚 SP110 4KHz 方波 对应 U101EPM7128 79脚 SP111 2KHz 方波 对应 U101EPM7128 77脚 SP112 1KHz 方波 对应 U101EPM7128 76脚 SP113 PN32KHz 32KHz伪随机码 对应U101EPM7128 75脚 SP114 PN2KHz 2KHz伪随机码 对应U101EPM7128 74脚 SP115 自编码 自编码波形,波形由 对应 U101EPM7128 73 脚 J106 开关位置决定

SP116 长 0 长 1 码 码形为

1、0 连“1” 对应 U101EPM7128 70脚

、0 连“0”码

SP117 X 绝对码输入 对应 U101EPM7128 69 脚 SP118 Y 相对码输出 对应 U101EPM7128 68 脚 SP119 F80 8KHz0 时隙取样脉冲 对应 U101EPM7128 12 脚

此外,取样时钟、编码时钟、同步时钟、时序信号还将被接到需要的单元电路中。

PN32KHz、PN2KHz 伪随机码的码型均为 111100010011010,不同的是码 元宽度不一样,PN2KHz 的码元宽度 S=1/2KHz=0.5ms,PN32KHz 的码元宽 度 S=0.03125ms。

注:本实验平台中所有数字信号都是由同一个信号源 OSC1 分频产生,所 以频率相同或者频率成倍数关系的数字信号,都有相对固定的相位关系。 CPLD可编程模块电路图,如图1-1 所示:

图1-1 CPLD可编程模块电路图

四、实验内容

1、熟悉CPLD可编程数字信号发生器各测量点信号波形;

2、查阅CPLD可编程技术的相关资料,了解这些信号产生的方法。

五、实验步骤

本次实验使用了实验平台中“数字信号源模块” 。

1、打开电源总开关,电源指示灯亮,系统开始工作;

2、 用示波器测出下面所列各测量点波形, 并对每一测量点的波形加以分析;

GND为接地点,测量各点波形时示波器探头的地线夹子应先接地。

3、测量点输出的理想波形及比较,如图 1-2 所示:

图 1-2 CPLD可编程模块产生的部分信号理想波形示意图

六、实验报告

1、分析各种时钟信号及数字信号产生的方法,叙述其功用;

2、画出各种时钟信号及数字信号的波形;

七、预习要求

了解 CPLD可编程技术方面的知识

实验二 模拟信号发生器实训

一、实验目的

1、熟悉各种模拟信号的产生方法及其用途;

2、观察分析各种模拟信号波形的特点及产生原因。

二、实验设备与器件

1、通信原理实验箱一台;

2、模拟示波器一台。

三、实验原理

模拟信号发生器电路用来产生实验所需的各种音频信号:同步正弦波信号、非同步简易正弦波信号、话音信号、音乐信号等。

(一)同步信号源

1、功用

同步信号源用来产生与编码数字信号同步的2KHz 正弦波信号,可作为抽 样定理PAM、增量调制CVSD 编码、PCM 编码实验的输入音频信号。在没有 数字存贮示波器的条件下,用它作为取样及编码实验的输入信号,可在普通示 波器上观察到稳定的取样及编码数字信号波形。

2、电路原理

它由2KHz 方波经高通滤波器、低通滤波器和输出放大及跟随等电路三部 分组成,如图1-1所示:

由CPLD 可编程器件U101 产生的2KHz 方波信号,经R501 接入本电路。 SP501 为其测量点。U501A 及周边的阻容网络组成一个截止频率为234Hz 高通滤波器和截止频率为2342Hz 的低通滤波器,用以滤除2KHz 方波的各次谐波,输出2KHz 正弦波,SP502“同步输出”铜铆孔为其输出点。2KHz 正弦波通过铜铆孔输出可供PAM、PCM、CVSD(△M)模块使用。W501 用来改 5

变输出同步正弦波的幅度。

图1-1 为同步正弦信号发生器的电路图

(二)非同步信号源

非同步正弦波信号源是一个简易信号发生器,它可产生频率为0.3~10KHz 的可调正弦波信号,输出幅度为0~10V(一般使用范围0~4V)且幅度由W203 连续可调。在没有数字存贮示波器的条件下,用它作为取样及编码实验的输入 信号,可在普通示波器上观察到稳定的取样及编码数字信号波形,非同步信号 源发生模块电路原理图如图1-2 所示:

图1-2 非同步信号源发生模块电路原理图

(三)音乐信号源

音乐信号产生电路用来产生音乐信号送往音频终端电路,以检查话音信道 的开通情况及通话质量。音乐信号由U601 音乐片厚膜集成电路产生。音乐信号源发生模块电路原理图如图1-3 所示:

图1-3 音乐信号源发生模块电路原理图

(四)音频功率放大器

音频功率放大器采用LM386 单片集成功放,模拟信号从SP1202 引入, W1201 调节音量,J1202 控制与喇叭的连接,当J1202 的

1、2 连接时,喇叭接通;

2、3 连接时喇叭断开,模拟信号发生模块实物图如图1-4 所示:

图1-4 模拟信号发生模块实物图

四、实验内容

1、观察同步信号源的波形并理解它的原理;

2、观察非同步信号源的波形并理解它的原理;

3、观察音乐信号源的波形并理解它的原理。

五、实验步骤

模拟信号发生模块实验连接示意图如图2-5所示:

图 2-5 模拟信号发生模块电路连接示意图

1、打开实验箱右侧电源开关,电源指示灯亮;

2、连接 SP111 和 SP501,将 CPLD产生的 2KHz 方波信号送入同步信号电 路;

3、用示波器测量 SP20

1、SP50

2、SP601 等各点波形。

4、将各模拟信号由相应铜铆孔输出,通过连接线接入 SP1201 铜铆孔,此 时模拟信号可由喇叭输出(将 J1201 的 1-2 连通) ,学生可直观地感受各模拟信 号间的差别。

5、模拟信号源模块有关器件接口介绍:

SP201:非同步信号输出,一般使用范围 300Hz~3.4KHz; SP601:音乐信号输出,SW601 触发后产生; SP502:同步正弦波输出,频率 2KHz; SW601:音乐信号触发开关; SP1201:功放输入。

电位器调节:

W201:非同步正弦信号频率调节; W202:非同步正弦信号占空比调节; W203:非同步正弦信号幅度调节; W501:同步正弦波信号幅度调节 W305:功放放大幅度调节。

6、测量点输出的理想波形

图 2-6 同步正弦波信号波形示意图

图 2-7 非同步信号理想波形比较示意图

六、实验报告

1、画出各测量点波形,并进行分析;

2、画出各模拟信号源的电路框图,叙述其工作原理;

3、记录实验过程中遇到的问题并进行分析。

七、预习要求

理解同步信号源、非同步信号源以及音乐信号源的波形和原理。

实验三 抽样定理与PAM系统实训

一、实验目的

1、通过对模拟信号抽样的实验,加深对抽样定理的理解;

2、通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点;

3、通过对电路组成、波形和所测数据的分析,了解PAM 调制方式优缺点。

二、实验设备与器件

1、通信原理实验箱一台;

2、模拟示波器一台。

三、实验原理

抽样定理和脉冲幅度调制实验系统框图如图3-

1、电原理图如图3-

2、实物 电路如图3-3 所示,由输入电路、高速电子开关电路、脉冲发生电路、解调滤 波电路、功放输出电路等五部分组成。

图3-1 脉冲振幅调制电路原理框图

取样电路是用4066 模拟门电路实现。当取样脉冲为高电位时,取出信号样值;当取样脉冲为低电位,输出电压为0,这样便完成了取样。本电路属低通信号的自然取样。根据取样定理,取样后的信号还原为原信号要通过理想低通滤波器,本滤波电路系统用有源低通滤波器代替理想低通滤波器完成还原。

图3-2 抽样定理实验电路原理图

图3-3 抽样定理实验模块实物图

四、实验内容

1、通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点;

2、掌握抽样的全过程。

五、实验步骤

抽样定理模块实验连接方式示意图,如图3-4所示

图 3-4 抽样定理模块电路连接方式示意图

1、SP201 连接 SP111 接入 2KHz 同步方波产生 2KHz 同步正弦波。

2、连接 SP202 与 SP301,送入模拟信号。

3、SP302 接入抽样时钟信号,频率有 4KHz、8KHz、16KHz 方波可供选择,建议先接入 16KHz开始实验。

4、改变输入SP302 的抽样时钟频率,重复步骤 1-3。

5、连接 SP204 与 SP30

1、SP303 与 SP30

6、SP305与 TP207,把扬声器 J204 开关置到

1、2位置,变化 SP302 的输入采样时钟信号频率,听辨音乐信的质量。

6、抽样过程理想波形比较示意图,如图3-5 所示:

图 3-5 抽样过程理想波形比较示意图

六、实验报告

1、列出所测各点的波形、频率、电压等有关数据,验证抽样定理;

2、抽样功能实现的方法很多,请设计一个抽样电路完成功能。

七、预习要求

了解PAM 调制原理和的特点;了解抽样原理及抽样的整个过程。

实验四 PCM 编码、译码原理实训

—、实验目的

1、加深对PCM 编码过程的理解;

2、熟悉PCM 编、译码专用集成芯片的功能和使用方法;

3、了解PCM 系统的工作过程;

4、了解帧同步信号的时序状态关系;

5、掌握时分多路复用的工作过程;

6、用同步正弦波信号观察PCM 八比特编码的实验。

二、实验设备与器件

1、通信原理实验箱一台;

2、模拟示波器一台。

三、实验原理

PCM 编/译码原理框图如图4-1 所示。

图4-1 PCM 编/译码原理框图

所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。然 而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可 记作A/D,A/D 及D/A 电路框图如图4-2 所示:

图4-2(a) A→D 电路 图4-2(b) D→A 电路

图4-2 A/D 及D/A 电路框图

PCM编译码电路主要由芯片U801及外围电路构成。每个TP3067芯片U801 含有一路PCM 编码器和一路PCM 译码器。

PCM 编/译码实验电路图,如图4-3 所示:

图4-3 PCM 编/译码实验电路图

PCM 编译码模块实物图,如图4-4 所示:

图4-4 PCM 编译码模块实物图

四、实验内容

1、用同步正弦波信号观察PCM 八比特编码的实验;

2、脉冲编码调制(PCM)及系统实验;

3、PCM 八比特编码时分复用输出波形观察测量实验。

五、实验步骤

PCM 编译码模块实验连接方式示意图,如图 4-5 所示:

图 4-5 PCM 编译码模块实验连接方式示意图

1、打开实验箱右侧电源开关,电源指示灯亮;

2、编码部分:

SP111连接SP201,SP401连接 SP203 接入 2KHz 同步正弦波; SP405连接 TP101接入 2048KHz 主时钟信号; SP406连接TP119 接入8KHz 时隙脉冲信号;

SP407 连接TP106(64K)或TP103(512K)或TP101(2048K)接入可选发码时钟。

3、译码部分:SP408连接 TP119 接入8KHz 时隙脉冲信号;

TP409 连接TP106(64K)或TP103(512K)或TP101(2048K) 接入可选发码时钟。

4、测量 SP801~SP809 各点波形,示波器两通道同时测量 SP40

3、SP405 两点波形,此时能观察到稳定的 8比特PCM 数字输出信号。

5、用连接线将译码输出信号由 SP409 引出,接入到功放模块 SP408“喇 叭输入”接口;

6、改变输入的模拟信号,选择不同的编译码时钟,测量各点波形。 7. PCM 编码输入、译码输出理想波形示意图如图 4-6 所示:

图 4-6 PCM 编码输入、译码输出理想波形示意图

六、实验报告

1、画出实验电路的实验方框图,并叙述其工作过程;

2、画出实验过程中各测量点的波型图,注意对应相位、时序关系;

3、观察同步正弦波的编码波形,读出编码数据(至少12 个字节数据,注 意观测方法);

4、写出本次实验的心得体会,以及对本次实验有何改进意见。

七、预习要求

理解PCM编码、译码原理及波形特点。

21

实验五 △M 编码、译码原理实训

一、实验目的

1、掌握增量调制编译码的基本原理,并理解实验电路的工作过程;

2、了解不同速率的编译码,以及低速率编译码时的输出波形。

二、实验设备与器件

1、通信原理实验箱一台;

2、模拟示波器一台。

三、实验原理

(一)增量调制编码实验

增量调制编码每次取样只编一位码,表示抽样幅度的增量,即采用一位二 进制数码“1”或“0”来表示信号在抽样时刻的值相对于前一个抽样时刻的值 是增大还在减小,增大则输出“1”码,减小则输出“0”码。输出的“1”“0” 只是表示信号相对于前一个时刻的增减,不表示信号的幅值。图5-1 表示增量调制编码器实验结构框图,图5-1 为△M 编码电原理图。

图5-1 增量调制编码器实验结构框图

22

图5-2 △M 编码电路电原理图

23

(二)增量调制的译码实验

增量调制系统译码器电路结构方框图,如图5-3 所示:

图5-3 增量调制系统译码器电路结构方框图

由发端送来的编码数据信号加至开关的引脚,通过该开关的作用,把信号 送到(MC34115)芯片的第13 引脚,即接收数据输入端。本系统因为是译码 电路,故置低电平至(MC34115)的15 引脚,使模拟输入运算放大器与移位 寄存器断开,而数字输入运算放大器与移位寄存器接通,这样,接收数据信码 经过数字输入运算放大器整形后送到移位寄存器,后面的工作过程与编码时相 同,只是解调信号不再送回第2 引脚(ANF 端),而是直接送入后面的积分网络中,再通过接收通道低通滤波电路滤去高频量化噪声,然后送出话音信号, 推动喇叭。虽然增量调制系统的话音质量不如脉冲编码调制PCM 数字系统的 音质,但是由于增量调制电路比较简单,能从较低的数码率进行编码,通常为 16~32kbit/s,在用于单路数字电话通信时,不需要收发端同步,故增量调制系统仍然广泛应用于数字话音通信系统中,如应用在传输数码率的军事,野外及保密数字电话等方面,在军队系统中的数字卫星通信地面站设备中,其终端部分的话音编码就是应用的这种大规模集成电路MC3417,MC3418 的连续可变斜率增量调制方式。△M 译码电路原理图,如图5-4 所示:

△M 增量编码译码模块,如图5-5 所示:

24

25

△M 增量编码译码模块如图5-6 所示:

图5-6 △M 增量编码译码模块实物图

由增量调制编码部分、增量调制译码部分、增量调制整形部分组成。

四、实验内容

1、增量调制CVSD(△M)编码实验;

26

2、增量调制CVSD(△M)译码实验;

3、工作时钟可变状态下△M 编译码质量比较;

4、同等条件下的PCM 与△M 系统性能比较实验。

五、实验步骤

增量编码/译码模块实验连线示意图如图 5-7 所示:

图 5-7 增量编码译码模块电路连线示意图

1、打开实验箱右侧电源开关,电源指示灯亮;

2、SP201连接SP111;

3、SP501 连接 SP203 接入2KHz 同步正弦波。调整输入信号幅度峰峰值在 2V左右;

4、SP502 和 SP506分别输入增量编码和译码实验中各工作时钟,有三种频 率可供选择:16KHz、32KHz、64KHz; 注意:编码工作时钟应与译码工作时钟一致;

5、连接 SP503 和 SP505,将编译的数字信号送入译码电路;

27

6、测量 TP501~TP509各点波形。

7、增量调制编/译码电路信号理想波形示意图如图 5-8 所示

图 5-8 增量调制编/译码电路信号理想波形示意图

六、实验报告

1、画出实验电路的实验方框图,并作简要叙述;

2、画出各测量各点波形,结合理论分析说明所发生的各种现象;

3、在通话的质量方面,你认为该实验系统如何改进方能提高话音的质量, 及对本实验有何改进意见?

七、预习要求

了解增量调制的原理及波形特点,并在同等条件下比较PCM编码和增量调制编码的性能特点。

28

实验六 FSK 调制、解调原理实训

一、实验目的

1、掌握FSK(ASK)调制的工作原理及电路组成;

2、掌握利用锁相环解调FSK 的原理和实现方法。

二、实验设备与器件

1、通信原理实验箱一台;

2、模拟示波器一台。

三、实验原理

FSK调制/解调电原理框图如图6-1所示:

图6-1 FSK 调制/解调电原理框图

实验电路原理图如图6-2 所示:

29

图6-2 FSK 调制实验电路原理图

(二)FSK 解调

FSK 解调电路中主要由锁相环解调器组成。它锁定在FSK 的一个载频如f1上,对应输出高电平,而对另一载频f2 失锁,对应输出低电平,那么在锁相环路滤波器输出端就可以得到解调的基带信号序列,FSK 解调实验电路原理图如图6-3 所示:

30

图6-3 FSK 解调实验电路原理图

31

图6-4 FSK 调制、解调实验模块实物图

FSK 调制/解调模块由两路载频电路、FSK 调制输出 、FSK 解调输入以及FSK 基带整形电路等功能模块组成,FSK 调制、解调实验模块实物图如图6-4所示。环路对128KHz 载频锁定时输出高电平,对64KHz 载频失锁时就输出低电平。只要适当选择环路参数,使它对128KHz 锁定,对64KHz 失锁,则在解调器输出端就得到解调输出的基带信号序列。

四、实验内容

32

1、移频键控FSK 调制实验;

2、移频键控FSK 解调实验。

五、实验步骤

测试 FSK 调制电路 TP601-TP609 各测量点以及解调电路 TP701-TP704 各测量点的波形,并作详细分析。 FSK调制解调模块实验电路连线方法示意图如图6-5所示:

图 6-5 FSK调制解调模块电路连线方法示意图

1、按下实验箱右侧电源开关,电源指示灯亮;

2、连接 SP114 与 SP603:码元速率为 2KB/s 的 111100010011010 伪随机 码信号 J602 接好;

SP601和 SP602 分别接入128KHz 和 64KHz 的时钟信号; 连接SP605 和 SP701,将调制好的信号输入到解调电路中。

3、电位器调节:

VR601:调节 128KHz 正弦波幅度大小; VR602:调节 64KHz 正弦波幅度大小;

33

VR603:调节 FSK已调信号幅度大小;

VR701:调节解调电路压控振荡器时钟的中心频率。

4、调节 VR701电位器使压控振荡器工作在 128KHz;

5、注意:当基带信号的码元速率与载频信号的频率相差太近时,FSK解调端输 出测量点TP704 输出应为不稳定的输出波形;

6、观察FSK解调输出 TP701~TP704波形,并作记录,并同时观察 FSK调 制端的基带信号,比较两者波形,观察是否有失真。

7、FSK频移键控原理理想波形图,如图6-6 所示:

图 6-6 FSK频移键控原理理想波形图

六、实验报告

1、画出FSK 各主要测试点波形;

2、出改变4046 的哪些外围元件参数对其解调正确输出有影响?

3、分析其输出数字基带信号序列与发送数字基带信号序列相比有否产生延 迟,什么情况下会出现解调输出的数字基带信号序列反向的问题?

七、预习要求

了解移频键控FSK调制、解调原理,了解FSK调制波形的特点。

34

实验七 PSK/DPSK 调制、解调原理实训

一、实验目的

1、掌握二相BPSK(DPSK)调制解调的工作原理及电路组成;

2、了解载频信号的产生方法;

3、掌握二相绝对码与相对码的码变换方法。

二、实验设备与器件

1、通信原理实验箱一台;

2、模拟示波器一台。

三、实验原理

(一)PSK 调制实验:

在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是 用输入的基带信号直接控制已输入载波相位的变化来实现相移键控。本实验中PSK 调制模块原理框图如图7-1,二相PSK(DPSK)的载波为1.024MHz,数字基带信号有32Kbit/s 伪随机码、32KHz 方波、CVSD 编码信号等。

图7-1 PSK/DPSK 解调原理框图

(二)PSK 解调实验:

35

该解调器由三部分组成:载波提取电路、位定时恢复电路与信码再生整形 电路。如图7-3 解调器总方框图、图7-4 相正交解调环各点波形图。

图7-3 解调器总方框图

图7-4 相正交解调环各点波形图

36

PSK/DPSK 调制解调实验模块如图7-5 所示:

四、实验内容

1、PSK 调制实验,调整载波幅度,观察SP1101~SP1109 各测量点的波形;

2、PSK 解调实验,观察SP1110~SP1116 各测量点的波形;

3、PSK 解调载波提取实验,将PSK 的电路调整到最佳状态,逐一测量 SP1101~SP1109 各点处的波形,画出波形图并作记录,注意相位、幅度之间的关系。

图7-5 PSK/DPSK 调制解调实验模块

37

五、实验步骤

PSK/DPSK 调制解调实验连线方法,如图 7-6 所示:

图 7-6 PSK/DPSK调制解调实验连线方法

1、打开实验箱右侧电源开关,电源指示灯亮;

2、连接 SP113 与SP804,接 入2KHz 的基带信号。SP801 接入1024KHz 的方波信号;

3、连接 SP804 和 SP901,将调制好的载波信号输入到解调电路中;

4、将本实验电路调整到最佳状态,逐一测量调制电路 TP801-TP808 各点 处和解调电路TP901-TP905各点处的波形,画出波形图并作记录,注意相位、 幅度之间的关系;

5. PSK调制模块理想波形示意图如图 7-7 所示:

38

图 7-7 PSK调制模块理想波形示意图

六、实验报告

1、简述PSK 调制解调电路的工作原理及工作过程;

2、根据实验测试记录(波形、频率、相位、幅度以及时间对应关系)依此 画出调制解调器各测量点的工作波形,并给以必要的说明。

七、预习要求

1、了解二相BPSK(DPSK)调制解调的工作原理及电路组成;

2、了解载频信号的产生方法;

3、了解二相绝对码与相对码的码变换方法。

39

实验八 基带无码间串扰及眼图实训

一、实验目的

学会观察眼图及其分析方法

二、实验设备与器件

1、通信原理实验箱一台;

2、模拟示波器一台。

三、实验原理

眼图可以直观地估价系统的码间干扰和噪声的影响,衡量通信系统的传输 质量,是一种常用的测试手段。在图8-1 中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

(a) 无码间串扰时波形;无码间串扰眼图 (b) 有码间串扰时波形;有码间串扰眼图 图8-1 无失真及有失真时的波形及眼图

所谓“眼图”,就是由解调后经过低通滤波器输出的基带信号,以码元定时作为同步信号在示波器屏幕上显示的波形。干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。因为对于二进制信号波形,它很像人的眼睛的

40

过程眼图。在随机噪声的功率给定时,将使误码率增加。“眼睛”张开的大小就表明失真的严重程度。为便于说明眼图和系统性能的关系,我们将它简化成图8-2 的形状。

图8-2 眼图的重要性质

衡量眼图质量的几个重要参数有:

1、眼图开启度(U-2ΔU)/U 指在最佳抽样点处眼图幅度“张开”的程度。最佳取样时刻应选择在眼睛 张开最大的时刻,无畸变眼图的开启度应为100%。

2、“眼皮”厚度2ΔU/U 指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比,无畸变眼图的“眼皮”厚度应等于0。

3、交叉点发散度ΔT/T 指眼图过零点交叉线的发散程度,无畸变眼图的交叉点发散度应为0。

4、正负极性不对称度

指在最佳抽样点处眼图正、负幅度的不对称程度。无畸变眼图的极性不对 称度应为0。

最后,还需要指出的是:由于噪声瞬时电平的影响无法在眼图中得到完整 的反映,因此,即使在示波器上显示的眼图是张开的,也不能完全保证判决全 部正确。不过,原则上总是眼睛张开得越大,误判越小。基带无码间干扰和眼 41

图实验电路图如图8-3 所示:

图8-3 基带无码间干扰和眼图实验电路原理图

基带无码间干扰及眼图实验模块,如图8-4 所示:

图8-4 基带无码间干扰及眼图实验模块实物图

眼图观测方法:用示波器的一根探头(触发TRTIGGER 档)放在SP107 42

上(同步时钟),另一根探头放在SP1302 上(数字基带信号的升余弦波),调整示波器的扫描周期,使SP1301 的升余弦波波形的余辉反复重叠,则可观察到眼图波形,在图8-5 中给出从示波器上观察到的比较理想状态下的眼图照片。

(a) 二进制系统 (b) 随机数据输入后的二进制系统

图8-5 实验室理想状态下的眼图

四、实验内容

1、眼图观察及分析实验;

2、仿真眼图观察测量实验;

3、若是32KPN 码或PSK 解调码,也可与上相同的接法,用以观察眼图。

五、实验步骤

1、打开实验箱右侧电源开关,电源指示灯亮;

2、连接 SPA01 和 SP113或SP902,送入基带信号;

3、观察SPA01 测量点的眼图波形;

4、当连接SP902时将PSK解调模块还原的数字基带信号送入眼图电路。 眼图实验模块实验连线方法示意图如图8-6所示:

43

图 8-6 眼图实验模块电路连线方法示意图

六、实验报告

1、分析电路的工作原理,叙述其工作过程;

2、叙述眼图的产生原理以及它的作用;

3、绘出实验观察到的眼图形状。

七、预习要求

了解眼图的观察及分析方法。

44

上一篇:台风的通知下一篇:检察机关个人工作总结