测量机器人工作原理

2023-07-03 版权声明 我要投稿

第1篇:测量机器人工作原理

测量机器人简介

测量机器人又称自动全站仪,是一种集自动目标识别、自动照准、自动测角与测距、自动目标跟踪、自动记录于一体的测量平台。它的技术组成包括坐标系统、操纵器、换能器、计算机和控制器、闭路控制传感器、决定制作、目标捕获和集成传感器等八大部分。坐标系统为球面坐标系统, 望远镜能绕仪器的纵轴和横轴旋转, 在水平面360°、竖面180°范围内寻找目标;操纵器的作用是控制机器人的转动;换能器可将电能转化为机械能以驱动步进马达运动;计算机和控制器的功能是从设计开始到终止操纵系统、存储观测数据并与其他系统接口, 控制方式多采用连续路径或点到点的伺服控制系统;闭路控制传感器将反馈信号传送给操纵器和控制器, 以进行跟踪测量或精密定位;决定制作主要用于发现目标, 如采用模拟人识别图像的方法(称试探分析) 或对目标局部特征分析的方法(称句法分析) 进行影像匹配;目标获取用于精确地照准目标, 常采用开窗法、阀值法、区域分割法、回光信号最强法以及方形螺旋式扫描法等;集成传感器包括采用距离、角度、温度、气压等传感器获取各种观测值。由影像传感器构成的视频成像系统通过影像生成、影像获取和影像处理, 在计算机和控制器的操纵下实现自动跟踪和精确照准目标, 从而获取物体或物体某部分的长度、厚度、宽度、方位、2 维和3 维坐标等信息, 进而得到物体的形态及其随时间的变化。有些自动全站仪还为用户提供了一个二次开发平台,利用该平台开发的软件可以直接在全站仪上运行。利用计算机软件实现测量过程、数据记录、数据处理和报表输出的自动化,从而在一定程度上实现了监测自动化和一体化。

第2篇:乐高机器人巡线原理

一、前言

在机器人竞赛中,“巡线”特指让机器人沿着场地中一条固定线路(通常是黑线)行进的任务。作为一项搭建和编程的基本功,巡线既可以是独立的常规赛比赛项目,也能成为其他比赛项目的重要技术支撑,在机器人比赛中具有重要地位。

二、光感中心与小车转向中心

以常见的双光感巡线为例,光感的感应中心是两个光感连线的中点,也就是黑线的中间位置。而小车的转向,是以其车轮连线的中心为圆心进行的。很明显,除非将光感放置于小车转向中心,否则机器人在巡线转弯的过程中,探测线路与做出反应之间将存在一定差距。而若将光感的探测中心与转向中心重合,将大幅提升搭建难度并降低车辆灵活性。因此,两个中心的不统一是实际存在的,车辆的转向带动光感的转动,同时又相互影响,造成机器人在巡线时对黑线的反应过快或者过慢,很多巡线失误由此产生。

所以在实际操作中,一般通过程序与结构的配合,在程序中加入一定的微调动作来弥补其中的误差。而精准的微调,需要根据比赛场地的实际情况进行反复调试。

三、车辆结构

巡线任务的核心是让机器人小车按照场地中画出的路线行进,因此,根据任务需要选择合适搭建方式是完成巡线任务的第一步。

1、前轮驱动

前轮驱动的小车一般由两个动力轮和一个万向轮构成,动力轮位于车头,通过左右轮胎反转或其中一个轮胎停转来实现转向,前者的转向中心位于两轮胎连线中点,后者转向中心位于停止不动的轮胎上。由于转向中心距离光感探测中心较近,可以实现快速转向,但由于机器人反应时间的限制,转向精度有限。

2、后轮驱动

后轮驱动的小车结构和转向中心与前轮驱动小车类似,由于转向中心靠后,相对于前轮驱动的小车而言,位于车尾的动力轮需要转动较大的幅度,才能使车头的光感转动同样角度。因此,后轮驱动的小车虽转向速度较慢,但精度高于前轮驱动小车。对于速度要求不高的比赛而言,一般采用后轮驱动的搭建方式。

3、菱形轮胎分布

菱形轮胎分布是指小车的两个动力轮位于小车中部,前后各有一个万向轮作为支撑。这样的结构在一定程度上可以视为前轮驱动和后轮驱动的结合产物,转向速度和精度都介于两者之间。这种结构的优势在于转向中心位于车身中部,转弯半径很小,甚至能以自身几何中心为圆心进行原地转向,适合适用于转90°弯或数格子行进等一些比较特殊的巡线线路。 这种结构最初应用于RCX机器人足球上,居中的动力源可以让参赛选手为机器人安装更多的固定和防护装置,以适应比赛中激烈的撞击,具有很好的稳定性。而对于NXT机器人而言,由于伺服电机的形状狭长不规律,将动力轮位于车身中部的做法将大幅提升搭建难度,并使车身重心偏高,降低转弯灵活性。

4、四轮驱动

四轮驱动的小车四个轮胎都有动力,能较好地满足一些比赛中爬坡任务的需要。小车的转向中心靠近小车的几何中心,因此能进行原地转弯运动,具有较好的灵活性,特别适用于转90°弯或数格子行进等任务一些比较特殊的巡线线路。虽然与后轮驱动小车相比,转向中心比较靠前,转向精度较小,但四轮驱动小车没有万向轮,转弯需要靠四个轮胎同时与地面摩擦,加大转弯的阻力,因而转弯精度应介于菱形轮胎分布的小车和后轮驱动小车之间。 四轮驱动的小车最大优势在于具有普遍适应性,熟练掌握此结构的参赛选手能在参加FLL工程挑战赛、WRO世界机器人奥林匹克等一些比较复杂的比赛中占据一定优势。

四、编程方案

1、单光感巡线 单光感巡线是巡线任务中最基础的方式,在行进过程中,光感在黑线与白色背景间来回晃动,因此,这种巡线只能用两侧电机交替运动的方式前进,行进路线呈“之”字形。这种巡线方式结构简单易于掌握,但由于只有一个光感,对无法在完成较为复杂的巡线任务(如遇黑线停车、识别线路交叉口等),且速度较慢。

基本思路:光感放置于黑线的左侧,判黑则左轮不动右轮前进,判白则右轮不动左轮前进,如此交替循环。参考程序如下图:

2、单光感巡线+独立光感数线

在很多比赛中,机器人需要做的不仅仅是沿着黑线行进,还需要完成一些其他任务,如在循迹路线上增加垂直黑线要求停车、放置障碍物要求躲避等内容。此时,单光感巡线已不能满足要求。下面以要求定点停车为例,简要介绍单光感巡线+独立光感数线的编程模式。

基本思路:在此任务中要求在垂直黑线处停车,则需要跳出单光感巡线的循环程序体系,可以通过设置循环程序的条件实现这一功能。由于程序的设定,负责巡线的3号光感在行进时始终位于黑线的左侧,不会移动到黑线右侧的白色区域,因此在黑线右侧设置一个光感(4号)专门负责监视行进过程中黑线右侧的区域,当此光感判黑时,即可判断出小车行进到垂直黑线处,于是终止单光感巡线的循环程序,执行规定的停车任务,然后向前行进一小段距离驶过垂直黑线,继续单光感巡线任务。参考程序如下图:

上述程序只适用于停车一次的需要,在实际比赛中需以定点停车、蔽障任务为基点,将巡线赛道划分为若干个小段依次设定程序,或采用两重循环的程序,重复执行巡线→→定点停车任务:

3、双光感巡线

双光感巡线是机器人竞赛中最常见的巡线模式,两个光感分别位于黑线两侧,以夹住黑线的方式行进。根据两个光感读取的数值不同,可以将光感的探测结果分为左白右黑、左黑右白、双白和双黑四种情况,根据这四种探测结果,分别执行右转、左转、直行和停车四种动作的程序命令。由于这种方法能让两个电机同时工作,机器人运动的速度较快,同时采取两个光敏监测黑线,精度也有所提高。

基本思路:使用两重光感分支程序叠加,为四种探测结果设定与之对应的程序反应,形成循环程序结构,参考程序如下图:

、双光感巡线+独立光感数线

一般而言,一个以巡线为基础的比赛,会在巡线的基础上增加定点停车、识别交叉口、绕开障碍等多项任务,想要准确识别并完成这些任务,需要在掌握上述双光感巡线技术的基础上,以定点停车、蔽障任务为基点,将巡线赛道划分为若干个小段,使用传感器、逻辑判断等方式跳出双光感巡线的循环程序,执行与完成任务相对应的程序,然后重新进行巡线任务。

以双光感巡线+独立光感数线的模式为例,在双光感巡线的基础上,在其中一个光感的外侧再放置一个光感。由于使用双光感巡线,标记行进路线的黑线将始终位于前两个光感之间,因而第三个光感探测到黑线只会是两种情况——抵达停车地点或巡线路线交叉处,于是以第三个光感探测到黑线作为结束循环的条件进行编程,参考程序如下:

注:由于光感放置位置的原因,使得第三个光感判黑的时候,前两个光感探头必然同时处于黑线上或十分接近,完全能以第三个光感判黑代替前两个光感同时判黑的情况,因此在巡线循环部分将双光感判黑的一个分支跳过不予编程。

五、延展

上述内容为巡线任务的基础知识,仅根据光感的探测做出反应,简单地将光感探测中心与小车转向中心重合(将小车视为一个仅有重量没有体积的质点),可完成一些线路有弧度的平滑路线,对于较难的巡线弯道,如直角弯、“V”字形弯道等特殊线路,则必须考虑转向中心和探测中心的区别,需要特殊对待。 一般而言,在探测到此类弯道之后,需要先精确控制小车运行时间,将小车的转向中心移动到弯道的中心(如“V”字形弯道的定点),此时光感全部脱离黑线,再原地转动车身,当负责夹住黑线行进的光感重新探测到黑线时,则小车已完成转弯任务并回到循迹路线,然后继续执行巡线任务。 以上内容仅为本人的一些经验粗略总结,如有不当之处,敬请大家指正,希望能起到抛砖引玉的作用。

第3篇:表面粗糙度测量仪的工作原理

分析及其改进方案

阳旭东

(贵州工业大学机械系,贵州 贵阳550003) 摘 要:分析了传统表面粗糙度测量仪的基本原理,对采用计算机系统的改进方案进行了讨论,并指出其发展方向。

关键词:表面粗糙度;表面粗糙度测量仪;计算机 中图分类号:TH71 文献标识码:A

0 引 言

表面质量的特性是零件最重要的特性之一,在计量科学中表面质量的检测具有重要的地位。最早人们是用标准样件或样块,通过肉眼观察或用手触摸,对表面粗糙度做出定性的综合评定。1929年德国的施马尔茨(G.Schmalz)首先对表面微观不平度的深度进行了定量测量。1936年美国的艾卜特(E.J.Abbott)研制成功第一台车间用的测量表面粗糙度的轮廓仪。1940年英国Taylor-Hobson公司研制成功表面粗糙度测量仪“泰吕塞夫(TALYSURF)”。以后,各国又相继研制出多种测量表面粗糙度的仪器。目前,测量表面粗糙度常用的方法有:比较法、光切法、干涉法、针描法和印模法等,而测量迅速方便、测值精度较高、应用最为广泛的就是采用针描法原理的表面粗糙度测量仪。本文将详细讨论表面粗糙度测量仪的原理及其改进方案。

1 传统表面粗糙度测量仪的工作原理

1.1 针描法

针描法又称触针法。当触针直接在工件被测表面上轻轻划过时,由于被测表面轮廓峰谷起伏,触针将在垂直于被测轮廓表面方向上产生上下移动,把这种移通过电子装置把信号加以放大,然后通过指零表或其它输出装置将有关粗糙度的数据或图形输出来。 1.2 仪器的工作原理

采用针描法原理的表面粗糙度测量仪由传感器、驱动器、指零表、记录器和工作台等主要部件组成,见图1。

图1 测量系统图 图2 电感传感器工作原理图

电感传感器是轮廓仪的主要部件之一,其工作原理见图2,在传感器测杆的一端装有金刚石触针,触针尖端曲率半径r很小,测量时将触针搭在工件上,与被测表面垂直接触,利用驱动器以一定的速度拖动传感器。由于被测表面轮廓峰谷起伏,触状在被测表面滑行时,将产生上下移动。此运动经支点使磁芯同步地上下运动,从而使包围在磁芯外面的两个差动电感线圈的电感量发生变化。

图3为仪器的工作原理主框图。传感器的线圈与测量线路是直接接入平衡电桥的,线圈电感量的变化使电桥失去平衡,于是就输出一个和触针上下的位移量成正比的信号,经电子装置将这一微弱电量的变化放大、相敏检波后,获得能表示触针位移量大小和方向的信号。此后,将信号分成三路:一路加到指零表上,以表示触针的位置,一路输至直流功率放大器,放大后推动记录器进行记录;另一路经滤波和平均表放大器放大之后,进入积分计算器,进行积分计算,即可由指示表直接读出表面粗糙度Ra值。

图3 传统表面粗糙度测量仪工作原理框图

指零表的作用反映铁芯在差动电感线圈中所处的位置。当铁芯处于差动电感线圈的中间位置时,指零表指针指示出零位,即保证处于电感变化的线性范围之内。所以,在测量之前,必须调整指零表,使其处于零位。噪声滤波的目的在于剔除一些干扰信号,如电气元件的噪声所引起的虚假信号。大量的测试表明,高于400Hz的信号即不是被测表面粗糙度所引的信号,必须从总信号中加以剔除。所以噪声滤波器是一种低通(低频能通过)滤波器,它使400Hz以下的低频信号顺利通过,而将400Hz以上的高频信号迅速衰减,从而达到滤波的目的。波度滤波的目的则是用以滤掉距大于取样长度的波度,因此它是一个高通(高频能通过)滤波器,使表面粗糙度所引起的高频(相对于波度引起的低频而言)信号能自由通过。

经过噪声滤波和波度滤波以后,剩下来的就是与被测表面粗糙度成比例的信号,再经平均表放大器后,所输出的电流I与被测表面轮廓各点偏离中线的高度y的绝对值成正比,然后经积分器完成0ydx的积计算,得出Ra值,由指零表显示出来。

这种仪器适用于测定0.02-10μm的Ra值,其中有少数型号的仪器还可测定更小的参数值,仪器配有各种附件,以适应平面、内外圆柱面、圆锥面、球面、曲面、以及小孔、沟槽等形状的工件表面测量。测量迅速方便,测值精度高。

12 传统表面粗糙度测量仪的不足

传统表面粗糙度测量仪存在以下几个方面的不足:

(1)测量参数较少,一般仅能测出Ra、Rz、Ry等少量参数;

(2)测量精度较低,测量范围较小,Ra值的范围一般为0.02-10μm左右; (3)测量方式不灵活,例如:评定长度的选取,滤波器的选择等; (4)测量结果的输出不直观。

造成上述几个方面不足的主要原因是:系统的可靠性不高,模拟信号的误差较大且不便于处理等。

3 对传统表面粗糙度测量仪的改进

3.1 传统表面粗糙度测量仪的改进方案

为了克服传统表面粗糙度测量仪的不足,应该采用计算机系统对其进行改进。例如,英国兰克精密机械有限公司制造的“泰吕塞夫(TALYSURF)”10型和我国哈尔滨量具刃具厂制造的2205型表面粗糙度测量仪就采用了计算机系统,使其性能较之传统表面粗糙度测量仪有极大的提高。其基本原理如图4所示,从相敏整流输出的模拟信号,经过放大及电平转换之后进入数据采集系统,计算机自动地将其采集的数据进行数字滤波和计算,得到测量结果,测量结果及轮廓图形在显示器显示或打印输出。

图4 改进后的表面粗糙度测量仪工作原理框图

要采用计算机系统对传统的表面粗糙度测量仪进行改进,就要编制相应的计算机软件,最好采用比较直观的菜单形式。可以按如图5所示的菜单使用流程图编制软件:

图5 菜单使用流程框图

3.2 改进后的表面粗糙度测量仪的功能及使用效果

由于采用计算机系统,将模拟信号转换为数字信号进行灵活的处理,显著地提高了系统的可靠性,所以既大大增加了测量参数的数量,又提高了测量精度。例如:哈尔滨量具刃具厂制造的2205型表面粗糙度测量仪的测量参数多达二十六个,测量范围为0.001~50μm,可任选1~5倍的取样长度作为评定长度,测量结果及图形在显示器、打印机或绘图仪上非常直观地输出来。它还采用了较为先选的可选择的数字滤波器,它与模拟滤波器相比其特性更为准确,且不会有元器件参数误差带来的影响。

另一方面,若在表面粗糙度测量仪测量实验的教学过程中引入改进后的表面粗糙度测量仪,就实验的直观教学功能而言,也很有意义。改进后的电动输廓仪,通过计算机软件与硬件的结合(尤其是软件)大大加强了实验过程的直观性,这体现在以下几个方面:

(1)整个实验过程非常直观地通过软件的各级菜单进行控制。操作简单、一目了然。 (2)输入与显示同步,即在测量进行过程的同时,触针在被测表面上滑行的轨迹动态地显示在计算机屏幕上。

(3)测量结果及相关图形能非常直观地、准确地输出在显示器、打印机或绘图仪上。 很显然,以上这些直观的教学效果是其它传统的表面粗糙度测量实验方法所不具备的。它在得到正确的测量结果的同时,还充分运用了直观教学的原理,帮助学生加深对表面粗糙度的概念及其各种参数的直观理解。

4 结 语

(1)传统的表面粗糙度测量仪由传感器、驱动器、指零表、记录器和工作台等主要部件组成,从输入到输出全过程均为模拟信号。而在传统的表面粗糙度测量仪的基础上,采用计算机系统对其进行改进后,通过模-数转换将模拟量转换为数字量送入计算机进行处理,使得仪器在测量参数的数量、测量精度、测量方式的灵活性、测量结果输出的直观性等方面有了极大的提高。

(2)从前面的分析知,整个改进方案并不复杂,因此对于目前仍广泛使用的传统的表面粗糙度测量仪的改进具有一定的意义。

(3)随着电子技术的进步,某些型号的表面粗糙度测量仪还可将表面粗糙度的凹凸不平作三维处理,测量时在相互平行的多个截面上进行,通过模-数变换器,将模拟量转换为数字量,送入计算机进行数据处理,记录其三维放大图形,并求出等高线图形,从而更加合理的评定被测面的表面粗糙度。

第4篇:水准测量原理教案1

第一节

水准测量原理

▲教学目标

一、能力目标

1、能够理解水准测量的基本原理;

2、一个测站两点高差的计算方法;

3、能够合理地选择水准点、转点和分段、连续设站的方法施测。

二、知识目标

1、知道水准测量的理论依据;

2、知道水准点、转点、三种水准路线的含义和区别;

三、情感目标

1、培养理论联系实际思考的习惯; ▲教学重点

1、一个测站两点高差的计算方法,利用视线高进行高程测量的计算;

2、理解连续设站的方法施测,进行高程测量的计算。 ▲教学难点

1、水准测量原理;

2、高差的计算。 ▲教学方法 问题解答法。 ▲教学用具

课件:① 单元学习目标;② 水准测量原理图;③ 水准点标石示意图;

▲教学过程

[投影] 本节课的学习目标

第二章 水准测量 第一节 水准测量原理

高程测量:测定地面点的高程工作。

高程测量的方法按照使用的仪器和施测方法不同分为: 水准测量、三角高程测量、气压高程测量、GPS定位测量

水准测量:是利用水准仪和水准尺,根据水平视线测定两个点之间的高差,进而推算出高程。测量精度较高的一种方法。

为了统一全国的高程系统,我国采用与黄海平均海水面相吻合的大地水准面作为全国高程系统的基准面,在该面上的各点的绝对高程为0m。

1985年国家高程基准,青岛国家水准原点高程为72.2604m。

一、水准测量的原理

水准测量的原理是利用水准仪提供的水平视线,通过水准尺上的读数,采用计算方法,测定两个点之间的高差,由一点的已知高程,进而推算出另一点的高程。

水准测量的原理图:

图1 水准测量的原理图

公式推导:hAB=a-b

(2-1) 高差等于后视读数减去前视读数。

二、计算未知点高程 1.高差法

a为后视读数,b为前视读数 hab表示由已知高程的A点推算至未知高程的B点的高差.(前面的字母代表己知点点号)。——高差法

适用于仪器在两点中间一次便测得高差。

2.仪高法

用仪器的视线高计算B点的高程。——仪高法(视线高法)

B点的高程HB可按下式计算:

HB=HA+ hAB

(2-2) B点的高程也可通过视线高程HI计算:

HI=HA+ a HB=HI- b

(2-3)

适用于道路、管线等工程的高程放样工作。在施工测量中,有时安置一次仪器,需测定多个地面点的高程,采用仪高法就比较方便。 3.中间法

如果A、B两点距离较远、高差较大或遇到障碍物使视线受阻,不能安置一站仪器完成观测任务时,可采取分段、连续设站的方法施测,在线路中间设置一些转点TP(临时高程传递点,须放置尺垫)来完成测量工作。

转点:临时立尺点,作为传递高程的过渡点。(一般转点上均需使用尺垫)

测站:每安置一次仪器,称为一个测站。

如图2.1.2所示,可容易得到高程计算公式:

hiaibi(i1,2,,n)habhabHBHAhab

(2-4) 或

TP1高程:H1HAh1TP2高程:H2H1h2点B高程:HBHn1hn

(2-5)

对于精度较高的测量,必须将仪器置于前后视点之间大致等距离处DADB,利用地球曲率等距等影响hAhB的原则,使测站高差计算中自动消除曲率对前后视读数的影响,这种方法称为中间法,是精密测量中常用的方法。

第5篇:测量实习——坐标计算原理

坐标计算原理

坐标增量设直线两端点A和B的坐标分别为XA、YA、和XB、YB。两点间坐标值之差称为坐标增量,纵坐标增量以∆X表示,横坐标增量以∆Y表示。若A为始点,B为终点,则A至B的纵、横坐标增量分别为

∆XAB=XB-XA

∆YAB=YB-YA

反之,若B为始点,A为终点,则B至A的纵、横坐标增量应为

∆XBA=XA-XB

∆YBA=YA-YB

用通式表示为

∆X始-终=X终-X始

∆Y始-终=Y终-Y始

以上可以看出,A至B及B及A之坐标增量的绝对值相等,而符号相反。可见,一直线之坐标增量的符合取决于直线的方向,即取决于直线方向所指的象限,而与该直线所在的象限无关。如果已知直线AB的长度SAB,同时已知该直线的坐标方位角,那么,AB两点间的坐标增量也可以由下式求得

∆XAB=SAB.cosαaB

∆YAB=SAB.Sinα

写成通式为

∆X始-终=S .cosα

∆Y始-终=S .Sinα始-终aB始-终

已知两点坐标,求两点之间的距离为

S=[(∆X始-终)2+(∆Y始-终)2]^0.5

在测量工作中,应用坐标增量可解决两类问题

(1) 坐标正算根据直线始点的坐标、直线长度及其方位角,计算直线终

点的坐标,称为坐标正算;

(2) 坐标反算根据直线始点和终点的坐标,计算直线的边长和方位角,

称为坐标反算。

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:iwenmi@163.com。举报文章