考研高数复习计划

2023-04-17 版权声明 我要投稿

无论你是处在何种工作岗位上,书写工作计划都是一项不可或缺的通用工作技能。在新的年度,很多人又在为如何写好计划苦恼了吧!以下是小编整理的关于《考研高数复习计划》,欢迎大家借鉴与参考,希望对大家有所帮助!

第1篇:考研高数复习计划

2016考研数学高数9月至考前的复习计划

10月30日以前——补充题量,见识题型

经过了暑期的强化复习,考生应该通过一些题量来提高自己对知识点的理解和计算能力的提高,从理解知识点到会做题的层次。

11月:考生结合考研真题进行复习

考研历年真题是数学复习最好的老师。这个阶段大家必须要做10到15年的真题,先做第一遍,每天上午利用3个小时的时间,完全模拟真正的考试,完整的做一套卷子,这样下午去总结和归纳,第二天做第二套,一直下午,基本半个月一遍结束,然后重新开始再做第二遍,也从第一套开始,下午总结的时候看看是不是第一遍错的地方第二遍纠正过来了,对于两遍都错的地方要特别留意。

无论哪一种做题目的,都要求在做完题后有归纳总结。一个是总结做题技巧,一个是总结自己基础知识上的欠缺,还有一个是深入挖掘题目拓展意义。技巧是训练的结果。

12月:考生结合模拟试题进行复习

这个阶段,考生最主要的目的还是查漏补缺,可以适当做些模拟题。必须至少保证5套模拟试卷的练习,模拟的成绩不是最重要的,关键是看自己还有哪些方面没有掌握,及时学习。

第2篇:2014福州大学考研冲刺阶段高数复习计划

思远福大考研网

2014福州大学考研冲刺阶段高数复习计划

考研数学每年都是文科类考研的难点也是薄弱环节,那么针对冲刺阶段如何做好强化复习从以下几点给大家分享分享:

1.确立目标。高等数学部分的主体由函数、极限和连续、一元函数的微积分、多元函数的微积分、微分方程和级数五大模块构成(数学

一、

二、三在各个模块的要求有一定差异),从历年的试题中,高等数学的考查重点和难点更多的集中在前两个模块,他们既是考试的重点,也是学好后面模块的基础,因此,建议大家在整个寒假期间把复习高数的重点集中在这两个模块,根据个人实际情况,一步步扎实的复习,切不可囫囵吞枣,盲目图快。

2.资料选择。 考试大纲里有四种要求,分别是:掌握,理解,会,了解。这四个要求程度是不同的,是这么一种关系:掌握>会>理解>了解,所以对于掌握和会的知识点,一定要无比的透彻,往年大题的出题点一般都超不出这两个要求的范围。建议是:拿着大纲先将标有“掌握”和“会”的知识点标出来,然后尽最大努力全面掌握,比如09年考研的拉格朗日定理知识点就属于“会”的范畴,一定全面掌握,不但会用,更要会证明它。这一阶段复习建议以教材为主,数学

一、二的考生建议使用同济版高等数学、数学三同学推荐赵树嫄的《微积分》(第3版),中国人民大学出版社。当教材习题对你而言没有太大困难的时候,可以参考一本基础阶段的考研辅导讲义,比较推荐的是国家行政学院出版社出版的,李永乐的复习全书,或北京理工大学出版社出版,张宇、蔡燧林主编的辅导讲义。

3.复习任务。课本应该怎样看?课本很重要,其实从小到大老师无数遍强调要重视基础,不要只顾做题。如果你现在还在犹豫要不要再看课本,那就不用犹豫了,要想考到140分,这绝对是一个必不可少的过程。可能会有一些考研的同学来说:课本我也认真看过了,但结果依然很遭。我想说:课本不是用来看的,是用来研究的,课本学的细致了么!我们建议大家第一步先细看教材,以及结合上课内容,逐一突破每个知识点,然后通过习题去巩固检测,需要注意的是,由于考试是以题目是否作对为给分依据的,建议大家从现在开始就养成将每道题做到底的习惯,当然选题很重要,2014福大经济学综合考研模拟五套卷与解析这本书就紧贴专业课本,大眼看去感觉会做就不具体算出来这样完全没什么效果。教材习题解决后,可结合辅导书,适当增加难度。当遇到不懂得知识点,要做上记号,及时解决。

课本应该怎样看?课本很重要,其实从小到大老师无数遍强调要重视基础,不要只顾做题。如果你现在还在犹豫要不要再看课本,那就不用犹豫了,要想考到140分,这绝对是一个必不可少的过程。

可能会有一些考研的同学来说:课本我也认真看过了,但结果依然很遭。我想说:课本不是用来看的,是用来研究的,课本学的细致了么!

那什么样才叫细致呢,当课本研究完之后,上面会标记很多东西,画的比较乱,而不是崭新的像没看过一样。课本上的例题(这些题都是经典中的经典,一定弄透彻)没有不会的,课后题认真做过(哪怕只是在草纸上做,在书上标个答案,也要自己认真做一遍,这一遍就要训练自己合理利用草纸的习惯,做到对完答案发现错误后,都能很顺利找到这道题的过程然后分析为什么会做错,这个习惯很重要,如果你还有拿起草纸找个空就开始演算,就要赶紧改改这个习惯了,因为要改掉这个坏习惯真的需要平时多加练习),有些人说课本后的题实在太多了,应该挑着做,但我觉得这本2014福大经济学综合考研模拟五套卷与答案解析的习题是都贴近考题的,远远胜过市面上的参考书,它也不像你想象得那么简单,如果你觉得简单,那你能一遍做完,没有一个不会,一个都不错吗?当然了,你也可以选取一部分做,但如果课后题你一个都不做,那真的会吃亏的。定义性质定理公式,一定搞透彻了,弄清楚其中有几个点,而不是硬生生的背下来,而且要多思考下(比如说关于极大值,这个词大家一定都知道,而且高中开始就见过,你知道它的定义吗,你可能会说:定义没用。这你就错了,当你感觉一道题模糊不会做时,定义才是你根本的出发点。

第3篇:考研高数(1)复习大纲

一、函数、极限与连续

1.求分段函数的复合函数;

2.求极限或已知极限确定原式中的常数;

3.讨论函数的连续性,判断间断点的类型;

4.无穷小阶的比较;

5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

二、一元函数微分学

1.求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;

2.利用洛比达法则求不定式极限;

3.讨论函数极值,方程的根,证明函数不等式;

4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足……,此类问题证明经常需要构造辅助函数;

5.几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;

6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三、一元函数积分学

1.计算题:计算不定积分、定积分及广义积分;

2.关于变上限积分的题:如求导、求极限等;

3.有关积分中值定理和积分性质的证明题;

4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;

第4篇:文都首发2014考研数学大纲无变化-高数复习仍以基础为主

来源:文都教育

考研大纲对于考生的复习主要起到提纲挈领的作用,复习有纲可循,有的放矢。今天教育部考试中心发布了2014年全国硕士研究生入学统一考试数学考试大纲,与去年相比,考试内容和考试要求都没有变化,这样同学们就不会有复习范围的调整之忧了,这也体现了研究生考试试题的稳定性和命题的连贯性,大家可按原计划进行复习。考研数学试题最大的特点是重视“三基”(基本概念、基本理论和基本方法)的考查,会占到整个试卷的80%,因此在整个考研复习期间,始终秉着以基础为主的原则进行复习。

对于高数而言,它在考研数学中占的比例最大,是考研数学中的重中之重。在复习中,考生要认真研读大纲要求,在复习的过程中明确考试重点,充分把握重点。对于极限这块,考生们要充分掌握求不定式极限的各种方法,如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。对函数连续性的探讨也是考试的重点,这就要求考生要充分理解函数连续的定义和掌握判断连续性的方法。对于导数和微分,其重点不是给一个函数求导数,而是利用导数的定义对抽象函数进行求导或判断是否可导,明确连续、可导、可微之间的关系。对于一元函数的积分部分,在求定积分时一定要注意利用积分的奇偶性、对称性及周期性进行求解。中值定理一般每年都要考一道题的,多看看以往考试题型,研究一下考试规律和命题特点。对于多元函数微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些知识点。另外还有三重积分,曲线和曲面积分,这是数一必考的重点内容。对于微分方程,大纲中所要求的方程会进行求解。还有无穷级数要掌握判别其敛散性,以及对于幂级数的展开和求和常用的方法和技巧。

在大纲出来后期的复习中,做到以大纲为指导,夯实基础,进行全面系统的复习,做到不遗漏任何知识点。相信经过系统认真的复习后,大家也一定会取得圆满的成绩。

第5篇:考研高数大纲

2014年考研数学一考试大纲

考试形式和试卷结构:

一、试卷满分及考试时间

试卷满分为150分,考试时间为180分钟。

二、答题方式

答题方式为闭卷、笔试。

三、试卷内容结构

高等教学线性代数概率论与数理统计

四、试卷题型结构

单选题8填空题6解答题(包括证明题)9 约56% 约22% 约22% 小题,每小题4分,共32分 小题,每小题4分,共24分 小题,共94分

第6篇:考研高数知识总结1

考研数学讲座(17)论证不能凭感觉

一元微分学概念众多,非常讲究条件。讨论问题时,要努力从概念出发,积极运用规范的算法与烂熟的基本素材。绝不能凭感觉凭想象就下结论。

1. x趋于∞时,求极限 lim xsin(2x∕(x平方+1) ,你敢不敢作等价无穷小替换?

分析 只凭感觉,多半不敢。依据定义与规则,能换就换。

x 趋于∞时,α = 2x∕(x平方+1)是无穷小,sinα 是无穷小, sinα(x) ~ α(x)且 sinα 处于“因式”地位。可以换。

等价无穷小替换后,有理分式求极限,是“化零项法”处理的标准∞∕∞型,答案为 2

2.设f(x)可导,若f(x)是奇(偶)函数(周期函数,单调函数,有界函数),它的导函数fˊ(x)有什么样的奇偶性(周期性,单调性,有界性) ?

分析 有定义数学式的概念,一定要先写出其定义式。简单一点也行。比如 奇函数 f(-x)= -f(x) 周期为T的函数 f(x+T)= f(x) 等式两端分别求导,得 fˊ(-x) = fˊ(x) fˊ(x+T)= fˊ(x) (实际上,由复合函数求导法则, (f(-x))ˊ= fˊ(-x) (-x)ˊ= -fˊ(-x))

所以,奇函数的导数是偶函数;偶函数的导数是奇函数。(如果高阶可导,还可以逐阶说下去。)周期函数的导数也是周期函数。很有趣的是,因为 (x)ˊ= 1 ,有的非周期函数,比如y = x + sinx ,的导数却是周期函数。

(潜台词:周期函数的原函数不一定是周期函数。)

单调函数定义中没有等式的概念,可以先在基本初等函数中举例观察。

如y = x单增,yˊ = 1不是单调函数。y = sinx在(0,π/2)单增,yˊ = conx 单减,没有确定的结论。

有界性讨论相对较为困难。如果注意到导数的几何意义是函数图形的切线斜率。即切线倾角的正切。就可以想到,在x趋于x0时,要是导数值无限增大,相应的图形切线就趋向于与x轴垂直。显然,圆周上就有具竖直切线的点。

取 y =√(1-x的平方),它在[0,1]有界,但是 x 趋于 1 时,其导数的绝对值趋于正无穷。 这个反例说明有界函数的导数不一定有界。

(画外音:写出来很吓人啊。 x → 1 时 ,lim f (x) = 0 ,而 lim fˊ(x)= -∞ )

3. 连续函数的复合函数一定连续。有间断点的函数的复合函数就一定间断吗?

分析 连续函数的复合,花样更多。原因在于复合函数f(g(x))的定义域,是f(x)的定义域与g(x)值域的交。有“病”的点可能恰好不在“交”内。因而,有间断点的函数的复合函数不一定间断。比如:

取分段函数 g(x)为,x > 0 时 g =1 , x ≤ 0 时 g = -1,0是其间断点。 取 f(u)=√u ,则 f(g(x))= 1 在 x > 0 时有定义且连续。 还有一些原因让“病态点”消失。

如果只图简单,你可以取 f(u)为常函数。以不变应万变。

取 f(u)= u的平方 ,则 f(g(x))= 1 ,显然是个连续函数。

4.设 f (x)可导,若x趋于 +∞ 时 ,lim f (x) = +∞ ,是否必有lim fˊ(x)= +∞ 分析 稍为一想,就知为否。 例如 y = x 更复杂但颇为有趣的是 y = ln x ,x 趋于 +∞ 时 ,它是无穷大。但是 yˊ = 1∕x 趋于0 ,这就是对数函数异常缓慢增长的原因。 5.设f(x)可导,若 x 趋于+∞时,lim fˊ(x) = +∞ , 是否必有 lim f(x) = +∞ 分析 用导数研究函数,这是微积分的正道。首先要体念极限(见指导(3)。): 因为 lim fˊ(x) = +∞,所以当 x 充分大时,不仿设 x > x0 时,总有 fˊ(x)>1 用拉格朗日公式给函数一个新的表达式

f (x)= f (x0)+ fˊ(ξ)(x-x0) , x0 <ξ< x (潜台词: ξ=ξ(x) 。你有这种描述意识吗?) 进而就有, x >x0 时, f (x) >f (x0) + 1(x-x0) (画外音:这一步是高级动作。) 因为 f (x0)是个常数,x0是我们选择的定点,所以上式表明,必有 lim f (x) = +∞ 6 。 设 f (x)可导,若 x 趋于 -∞ 时,lim fˊ(x)=-∞ , 是否必有 lim f (x)= -∞ 分析 否。你如果与上述问题5对比,认为情形相仿,结论必有。那就太想当然了。 请你还是老老实实地象5中那样写出推理吧。结论是

若 x 趋于 -∞ 时,lim fˊ(x)= -∞ , 则必有 lim f (x) = +∞

7.设 f (x)可导,若x 趋于+∞时,lim f (x) = c(常数,)是否必有lim f ˊ(x) = 0 分析 否。lim fˊ(x) 有可能不存在。

这是最容易凭感觉想当然的一个题目。我读本科时,最初的想法就是,“lim f(x) = c 表示函数图形有水平渐近线,函数又可导,当然在 x 趋于+∞时,切线就趋于水平了。”

想当然的原因之一是我们见识太少,脑子里的函数都较简单,图形很光滑漂亮。之二则是对于渐近线的初等理解有惯性。

由极限定义的水平渐近线,并不在乎曲线中途是否与其相交。比如, 曲线可以以渐近线为轴震荡,最终造成 lim fˊ(x) 不存在的后果。 对比条件强化 —— 如果 lim fˊ(x) 存在,则必有 lim fˊ(x) = 0 用反证法证明。且不仿设 x 趋于 +∞ 时 lim fˊ(x) = A >0 与前述5中同样,可以选定充分大的正数 x0,使 x>x0 时,总有 fˊ(x)>A/2 ,然后用拉格朗日公式给函数一个新的表达式,导数条件管住ξ,从而有

f (x) >f (x0) + A(x-x0) /2 —→+∞ 矛盾。

8.函数在一点可导,且导数大于0 ,能说函数在这一点单增吗?

分析 不能。函数的单调性是宏观特征,背景是区间。函数在一点可导,且导数大于0,其间所蕴含的信息只能通过可导的定义去挖掘。即先把条件还原成定义算式,即 x 趋于x0 时,lim ( f (x)-f(x0))/ (x-x0)> 0 如果没有别的条件,下一步就试试体念符号。即在x0邻近,分子分母同号。进而在其右侧邻近,分子分母皆为正,f (x) > f(x0) 。但是,我们不知道函数值相互间的大小。

*9 设f (x)可导,若fˊ(a)·fˊ(b) < 0 ,则(a,b)内必有点c ,fˊ(c) = 0

分析 对。尽管可导函数的导函数不一定连续。但是,导函数天然地满足介值定理。这个结论在微积分中叫“达布定理”。

在本篇问题8中,我们讲了“一点导数大于0”的逻辑推理。现在不仿设 fˊ(a) > 0 而 fˊ(b) < 0 分别在a , b两点处写出导数定义式,体念极限符号,(本篇问题8。)可以综合得到结论:

函数的端值 f (a),f (b) 都不是 f (x)在[a,b] 上的最大值。 最大值只能在(a,b)内一点实现,该点处导数为0 好啊,多少意外有趣事,尽在身边素材中。要的是脚踏实地,切忌空想。 考研数学讲座(18)泰勒公式级数连

中值定理是应用函数的导数研究函数变化特点的桥梁。中值定理运用函数在选定的中心点x0的函数值、导数值以及可能的高阶导数值,把函数表示为一个多项式加尾项的形式。再利用已知导函数的性质来处理尾项,对函数做进一步讨论。

中值定理的公式(可微分条件,有限增量公式,泰勒公式)都是描述型的数学公式。 描述型的数学公式并不难学。什么条件下可以用什么样的公式描述,你记住公式,完整地写出来不就行了。公式中的“点ξ”理解为客观存在的点。

在选定的中心点x0,函数的已知信息越丰富,相应的泰勒多项式与函数越贴近。 1.“微分是个新起点” —— 若函数 f(x)在点x0可微,

Δy = f ′(x0)Δx +ο(Δx) ;其中,ο(Δx)表示“比Δx高阶的无穷小。” 则函数实际上就有了一个新的(微局部的)表达式:

f(x)= f (x0) + f ′(x0)(x-x0) + ο(Δx) ( ο(Δx) 尾项,比Δx高阶的无穷小)

(潜台词:只有|Δx |充分小,“高阶无穷小”才有意义。)

历史上,这个表达式称为,“带皮阿诺余项的一阶泰勒公式”。

2. 拉格郎日公式 —— 若 函数f (x)在闭区间 [a,b] 上连续,在(a,b)内可导,则(a,b)内至少有一点ξ,使得 f (b)-f (a) = f ′(ξ)(b-a)

定理说的是区间,应用时不能太死板。在满足条件的区间内取任意两点,实际上也组成一个(子)区间。比如,在区间内任意选定一点x0,对于区间内任意一点x,(任给一点,相对不变。)也可以有 f (x)-f (x0) = f ′(ξ)(x-x0),ξ 在 x 与 x0之间,

(潜台词:任意一点x,对应着一个客观存在的“点ξ”, ξ=ξ(x) ) 即 f(x)= f(x0)+ f ′(ξ)(x-x0) ,ξ 在 x 与 x0之间, 3. 泰勒公式 —— 如果函数在点x0 邻近有二阶导数

f(x)= f(x0)+ f ′(x0)(x-x0)+ (f ″(ξ) /2)(x-x0)² ,ξ 在x与x0之间 式中的尾项叫拉格郎日尾项。有时也把 ξ 表示为 x0 +θ(x-x0) ,0<θ<1 一般情况下,我们无法知道

ξ=ξ(x)的结构、连续性等,只能依靠已知导函数的性质来限定尾项,实现应用目的。

如果函数仅在点x0二阶可导,我们可以用高阶无穷小尾项(皮阿诺余项)

f(x)= f(x0)+ f ′(x0)(x-x0)+ (f ″(x0) /2)(x-x0)²+ ο(|Δx| ²) 泰勒系数 —— 如果在点x0 邻近f(x)n+1 阶可导,则有泰勒系数 f(x0) ,f ′(x0) , f ″(x0) / 2! ,f ′ ″(x0) / 3! ,„„

可以写出, f(x)= n 次泰勒多项式 + 拉格朗日尾项

4. 泰勒级数 —— 如果在点x0邻近f(x)无穷阶可导,不妨取x0 = 0,则利用泰勒系数可以写出一个幂级数

f(x)= f(0)+ f ′(0) x +(f ″(0) /2)x²+(f ′ ″(0 ) / 3!)x³ + „„ 这个幂级数的和函数是否就是f(x)呢?不一定!

(画外音:太诡异了,f(x)产生了泰勒系数列,由此泰勒系数列生成一个幂级数 ,它的和函数却不一定是 f(x)。就象鸡下的蛋,蛋孵出的却不一定是鸡。)

关键在余项。当且仅当 n → ∞ 时,泰勒公式尾项的极限为 0 ,f(x)一定是它的泰勒系数列生成的幂级数的和函数。称为 f(x)的泰勒展开式。 验证这个条件是否成立,往往十分困难。故通常利用五个常用函数的泰勒展开式,依靠唯一性定理,用间接法求某些别的函数的泰勒展开式。

美国的学生特别轻松,他们的大学数学教材很有创意,早在极限部分就要求他们,当成定义记住指数函数与正弦函数的泰勒展开式。

exp(x)= 1 + x + x²/2!+ x³/3!+ „„ -∞

(逐项求导, cos x = 1- x²/2!+ „„

-∞

泰勒公式基本应用(1)—— 等价无穷小相减产生高阶无穷小。 关键在于低阶项相互抵消。应用泰勒公式直接有 ,x → 0 时, exp(x)- 1 ~ x , exp(x)-1-x ~ x² / 2

sin x ~ x , sin x - x ~ - x³ / 3! , cos x -1 ~ - x²/2 ln(1+x)~ x , ln (1+x)-x ~ -x²/2 (1+x)的μ次方- 1 ~ μ x 例87 已知x→ 1时,lim(√(x³+3) -A-B(x -1)-(x -1) ² )/(x -1) ² = 0 ,试确定常数,A,B,C 分析

已知表明 x → 1 时,分子是较分母高阶的无穷小。

题面已暗示,应将函数y =√(x³+3)在点 x = 1 表示为带皮阿诺余项的泰勒公式,且必有

常数项 = A 一次项系数 = B 二次项系数 = C 这些低阶项相互抵消,分子才能成为高于二次方级的无穷小。

于是 A = y(1) = 2 ,B = y ′(1) = 3/4 , C = y″(1) / 2 = 39/64 (画外音:有的人一遇上这类题就想用洛必达法则,这在逻辑上是错的。不懂得无穷小的变化机理。 如果只有两个参数,可看讲座(9)。)

泰勒公式基本应用(2)—— 带皮阿诺余项的泰勒公式用于求极限

例88 若 x→ 0 时 ,极限 lim ( sin6 x+ f(x))/ x³ = 0 ,则

x→ 0 时,极限 l im ( 6 + f(x))/ x² = ? 分析

分子有两项。决不能把 sin6 x 换为 6x , (潜台词:sin6 x不是分子的因式,是分子的一项。)

这时正好用“带皮阿诺余项的一阶泰勒公式”, sin 6x = 6 x - ( 6x)³/3!+ ο(|Δx| ³) 代入已知极限,移项得 lim ( 6 + f(x))/ x² = 36

例89 设函数 f (x) 在 x = 0 的某邻域内有连续的二阶导数,且 f (0)≠0 ,f ′(0)≠0, 记 F(h) = λ1 f (h) + λ2 f (2h) + λ

f (3h) 一 f (0),

试证,存在唯一的实数组 λ1,λ2,λ3 ,使 h → 0 时,F(h) 是比 h ² 高阶的无穷小。

3 分析 讨论极限问题,有高阶导数信息,先写带皮亚诺余项的泰勒公式 f(x)= f(0)+ f ′(0)x + (f ″(0) /2)x²+ ο(|x| ²)

这是函数 f(x)的一个新的(微局部的)表达式,当然可以表示 f (h) , f (2h), f (3h) f (h) = f(0)+ f ′(0) h + (f ″(0) /2)h ²+ ο(| h | ²)

f (2h) = f(0)+ f ′(0)2 h + (f ″(0) /2)(2h)²+ ο(| h | ²) f (3h) = f(0)+ f ′(0)3 h + (f ″(0) /2)(3h)²+ ο(| h | ²) (潜台词:常数因子不影响尾项。) 将各式代入F(h),整理得

F(h) = ( λ1+λ2+λ3一1) f(0)+ ( λ1+2λ2 + 3λ3) f ′(0) h + ( λ1+ 4λ2 + 9λ3) f ″(0) h ²/2 + ο(| h | ²)

要让 h → 0 时,F(h) 是比 h ²高阶的无穷小。,只需令上式中的常数项及 h 和 h ²项的系数全为 0 ,这就得到未知量

λ1,λ2,λ3 的一个齐次线性方程组,它的系数行列式是三阶的范德蒙行列式,其值不为 0 ,故可以相应算得唯一的一组 λ1,λ2,和 λ3 泰勒公式基本应用(3)——带拉格郎日尾项的泰勒公式用于一般讨论 例90 —— 凸函数不等式

如果函数 f (x) 二阶可导且二阶导数定号,(称为凸函数),则应用泰勒公式可以得到不等式

f (x)≥ f(x0)+ f ′(x0)(x-x0) (或≤)

实际上 f(x)= f(x0 )+ f ′(x0)(x-x0)+ (f ″(ξ) /2 ) (x-x0)² ,ξ 在 x 与 x0之间

设 f ″(x)> 0 ,自然有(f ″(ξ) /2 ) (x-x0)² > 0 ,舍掉此项就得到不等式。

*例91 函数 f (x) 在 [-1,1] 上有连续的三阶导数,且 f (-1) = 0 ,f (1) =1,f ′(0) = 0,试证明在区间 内至少有一点 ξ ,使得 f ″′(ξ) = 3 分析 选中心点 x0 = 0,在区间内讨论,写出带拉格郎日尾项的泰勒公式

f(x)= f(0)+(f ″(0) /2)x²+(f ′ ″(η ) / 3!)x³ , η在0与x之间 既然这是 f (x) 的又一个表达式,当然可以代入x = -1 , 1 ,它们分别相应有 ξ 1,ξ 2 0 = f(-1)= f(0)+(f ″(0) /2)(-1)²+(f ′ ″(ξ 1 ) / 3!)(-1)³ , -1<ξ 1<0 1 = f(1)= f(0)+(f ″(0) /2)1² +(f ′ ″(ξ 2) / 3!)1³ , 0 <ξ 2 < 1 到了这一步,仔细观察发现,两式相减,能得到只剩下有关三阶导数值的表达式。 f ′″(ξ 2) + f ′″(ξ 1 ) = 6 或着两个三阶导数值都等于3 ,本题得证。或者它们一大于3 ,一小于3 ,而函数 f ″′(x) 连续,可以应用介值定理完成本题证明。

上一篇:以案促改工作会讲话稿下一篇:无偿献血情况