增材制造项目申请书

2022-06-12 版权声明 我要投稿

第1篇:增材制造项目申请书

山东增材制造项目申报材料(申请报告)

山东增材制造项目

申报材料

仅供参考

报告说明—

增材制造(又称 3D 打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。

该增材项目计划总投资 13997.66 万元,其中:固定资产投资 10820.72万元,占项目总投资的 77.30%;流动资金 3176.94 万元,占项目总投资的22.70%。

达产年营业收入 24530.00 万元,总成本费用 18730.16 万元,税金及附加 266.03 万元,利润总额 5799.84 万元,利税总额 6865.85 万元,税后净利润 4349.88 万元,达产年纳税总额 2515.97 万元;达产年投资利润率41.43%,投资利税率 49.05%,投资回报率 31.08%,全部投资回收期 4.72年,提供就业职位 482 个。

2018 年我国增材制造产业规模有望达到 18.3 亿美元左右。另据中国增材制造产业联盟统计,2018 年中国增材制造产业增速维持在 25%以上,同时提供增材制造服务的企业数量已经超过 500 家。

目录

第一章

概况

第二章

项目建设单位基本情况

第三章

项目建设背景及必要性分析

第四章

项目市场分析

第五章

项目建设内容分析

第六章

项目选址说明

第七章

土建方案

第八章

项目工艺先进性

第九章

环境保护分析

第十章

项目安全卫生

第十一章

风险防范措施

第十二章

项目节能情况分析

第十三章

项目实施进度

第十四章

项目投资计划方案

第十五章

项目经济效益

第十六章

评价结论

第十七章

项目招投标方案

第一章

概况

一、项目提出的理由

增材制造(AdditiveManufacturing,AM)俗称 3D 打印,融合了计算机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造方式的约束,而无法实现的复杂结构件制造变为可能。

3D 打印技术,又称增材制造技术,是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。

二、项目概况

(一)项目名称

山东增材制造项目

(二)项目选址

xxx 产业基地

山东省,中国华东地区的一个沿海省份,简称鲁,省会济南。位于中国东部沿海北纬 34°22.9′-38°24.01′,东经 114°47.5′-122°42.3′

之间,自北而南与河北、河南、安徽、江苏 4 省接壤。山东中部山地突起,西南、西北低洼平坦,东部缓丘起伏,地形以山地丘陵为主,东部是山东半岛,西部及北部属华北平原,中南部为山地丘陵,形成以山地丘陵为骨架,平原盆地交错环列其间的地貌,类型包括山地、丘陵、台地、盆地、平原、湖泊等多种类型;地跨淮河、黄河、海河、小清河和胶东五大水系;属暖温带季风气候。截至 2019 年 9 月,山东省辖 16 个地级市,共 57 个市辖区、27 个县级市、53 个县,合计 137 个县级行政区。664 个街道、1092个镇、68 个乡,合计 1824 个乡级行政区。截至 2019 年末,山东省常住人口 10070.21 万人,地区生产总值 71067.5 亿元,人均生产总值 70653 元。

投资项目对其生产工艺流程、设施布置等都有较为严格的标准化要求,为了更好地发挥其经济效益并综合考虑环境等多方面的因素,根据项目选址的一般原则和项目建设地的实际情况,该项目选址应遵循以下基本原则的要求。项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。

(三)项目用地规模

项目总用地面积 42507.91 平方米(折合约 63.73 亩)。

(四)项目用地控制指标

该工程规划建筑系数 78.59%,建筑容积率 1.32,建设区域绿化覆盖率6.07%,固定资产投资强度 169.79 万元/亩。

(五)土建工程指标

项目净用地面积 42507.91 平方米,建筑物基底占地面积 33406.97 平方米,总建筑面积 56110.44 平方米,其中:规划建设主体工程 42780.17平方米,项目规划绿化面积 3407.92 平方米。

(六)设备选型方案

项目计划购置设备共计 94 台(套),设备购置费 3559.59 万元。

(七)节能分析

1、项目年用电量 1347665.06 千瓦时,折合 165.63 吨标准煤。

2、项目年总用水量 14595.50 立方米,折合 1.25 吨标准煤。

3、“山东增材制造项目投资建设项目”,年用电量 1347665.06 千瓦时,年总用水量 14595.50 立方米,项目年综合总耗能量(当量值)166.88吨标准煤/年。达产年综合节能量 47.07 吨标准煤/年,项目总节能率22.73%,能源利用效果良好。

(八)环境保护

项目符合 xxx 产业基地发展规划,符合 xxx 产业基地产业结构调整规划和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明显的影响。

(九)项目总投资及资金构成

项目预计总投资 13997.66 万元,其中:固定资产投资 10820.72 万元,占项目总投资的 77.30%;流动资金 3176.94 万元,占项目总投资的 22.70%。

(十)资金筹措

该项目现阶段投资均由企业自筹。

(十一)项目预期经济效益规划目标

预期达产年营业收入 24530.00 万元,总成本费用 18730.16 万元,税金及附加 266.03 万元,利润总额 5799.84 万元,利税总额 6865.85 万元,税后净利润 4349.88 万元,达产年纳税总额 2515.97 万元;达产年投资利润率 41.43%,投资利税率 49.05%,投资回报率 31.08%,全部投资回收期4.72 年,提供就业职位 482 个。

(十二)进度规划

本期工程项目建设期限规划 12 个月。

对于难以预见的因素导致施工进度赶不上计划要求时及时研究,项目建设单位要认真制定和安排赶工计划并及时付诸实施。

三、项目评价

1、本期工程项目符合国家产业发展政策和规划要求,符合 xxx 产业基地及 xxx 产业基地增材行业布局和结构调整政策;项目的建设对促进 xxx产业基地增材产业结构、技术结构、组织结构、产品结构的调整优化有着积极的推动意义。

2、xxx 实业发展公司为适应国内外市场需求,拟建“山东增材制造项目”,本期工程项目的建设能够有力促进 xxx 产业基地经济发展,为社会提供就业职位 482 个,达产年纳税总额 2515.97 万元,可以促进 xxx 产业基地区域经济的繁荣发展和社会稳定,为地方财政收入做出积极的贡献。

3、项目达产年投资利润率 41.43%,投资利税率 49.05%,全部投资回报率 31.08%,全部投资回收期 4.72 年,固定资产投资回收期 4.72 年(含建设期),项目具有较强的盈利能力和抗风险能力。

国家发改委出台《关于鼓励和引导民营企业发展战略性新兴产业的实施意见》,对各地、各部门在鼓励和引导民营企业发展战略性新兴产业方面提出了十条要求,包括清理规范现有针对民营企业和民间资本的准入条件、战略性新兴产业扶持资金等公共资源对民营企业同等对待、支持民营企业充分利用新型金融工具,等等。这一系列的措施,目的是鼓励和引导民营企业在节能环保、新一代信息技术、生物、高端装备制造、新能源、新材料、新能源汽车等战略性新兴产业领域形成一批具有国际竞争力的优势企业。

在推动传统产业优化升级方面,工信部将开展钢铁产能置换方案专项抽查,持续推进落后产能依法依规退出。与此同时,实施新一轮重大技术改造升级工程,大力推动工业互联网创新发展,推动制造业加快数字化转型。

四、主要经济指标

主要经济指标一览表

序号 项目 单位 指标 备注 1

占地面积

平方米

42507.91

63.73 亩

1.1

容积率

1.32

1.2

建筑系数

78.59%

1.3

投资强度

万元/亩

169.79

1.4

基底面积

平方米

33406.97

1.5

总建筑面积

平方米

56110.44

1.6

绿化面积

平方米

3407.92

绿化率 6.07%

2

总投资

万元

13997.66

2.1

固定资产投资

万元

10820.72

2.1.1

土建工程投资

万元

4074.28

2.1.1.1

土建工程投资占比

万元

29.11%

2.1.2

设备投资

万元

3559.59

2.1.2.1

设备投资占比

25.43%

2.1.3

其它投资

万元

3186.85

2.1.3.1

其它投资占比

22.77%

2.1.4

固定资产投资占比

77.30%

2.2

流动资金

万元

3176.94

2.2.1

流动资金占比

22.70%

3

收入

万元

24530.00

4

总成本

万元

18730.16

5

利润总额

万元

5799.84

6

净利润

万元

4349.88

7

所得税

万元

1.32

8

增值税

万元

799.98

9

税金及附加

万元

266.03

10

纳税总额

万元

2515.97

11

利税总额

万元

6865.85

12

投资利润率

41.43%

13

投资利税率

49.05%

14

投资回报率

31.08%

15

回收期

4.72

16

设备数量

台(套)

94

17

年用电量

千瓦时

1347665.06

18

年用水量

立方米

14595.50

19

总能耗

吨标准煤

166.88

20

节能率

22.73%

21

节能量

吨标准煤

47.07

22

员工数量

482

第二章

项目建设单位基本情况

一、项目承办单位基本情况

(一)公司名称

xxx 有限公司

(二)公司简介

展望未来,公司将围绕企业发展目标的实现,在“梦想、责任、忠诚、一流”核心价值观的指引下,围绕业务体系、管控体系和人才队伍体系重塑,推动体制机制改革和管理及业务模式的创新,加强团队能力建设,提升核心竞争力,努力把公司打造成为国内一流的供应链管理平台。

公司是强调项目开发、设计和经营服务的科技型企业,严格按照高新技术企业规范财务制度。截止 2017 年底,公司经济状况无不良资产发生,并严格控制企业高速发展带来的高资产负债率。同时,为了创新需要及时的资金作保证,公司对研究开发经费的投入和使用制定了相应制度,每季度审核一次开发经费支出情况,适时平衡各开发项目经费使用,最大限度地保证开发项目的资金落实。

二、公司经济效益分析

上一年度,xxx 实业发展公司实现营业收入 22360.38 万元,同比增长29.50%(5094.34 万元)。其中,主营业业务增材生产及销售收入为17954.60 万元,占营业总收入的 80.30%。

上年度营收情况一览表

序号 项目 第一季度 第二季度 第三季度 第四季度 合计 1

营业收入

4695.68

6260.91

5813.70

5590.10

22360.38

2

主营业务收入

3770.47

5027.29

4668.20

4488.65

17954.60

2.1

增材(A)

1244.25

1659.01

1540.50

1481.25

5925.02

2.2

增材(B)

867.21

1156.28

1073.69

1032.39

4129.56

2.3

增材(C)

640.98

854.64

793.59

763.07

3052.28

2.4

增材(D)

452.46

603.27

560.18

538.64

2154.55

2.5

增材(E)

301.64

402.18

373.46

359.09

1436.37

2.6

增材(F)

188.52

251.36

233.41

224.43

897.73

2.7

增材(...)

75.41

100.55

93.36

89.77

359.09

3

其他业务收入

925.21

1233.62

1145.50

1101.45

4405.78

根据初步统计测算,公司实现利润总额 5412.82 万元,较去年同期相比增长 1291.11 万元,增长率 31.32%;实现净利润 4059.61 万元,较去年同期相比增长 545.00 万元,增长率 15.51%。

上年度主要经济指标

项目 单位 指标 完成营业收入

万元

22360.38

完成主营业务收入

万元

17954.60

主营业务收入占比

80.30%

营业收入增长率(同比)

29.50%

营业收入增长量(同比)

万元

5094.34

利润总额

万元

5412.82

利润总额增长率

31.32%

利润总额增长量

万元

1291.11

净利润

万元

4059.61

净利润增长率

15.51%

净利润增长量

万元

545.00

投资利润率

45.58%

投资回报率

34.18%

财务内部收益率

20.11%

企业总资产

万元

23555.73

流动资产总额占比

万元

29.57%

流动资产总额

万元

6965.56

资产负债率

21.76%

第三章

项目建设背景及必要性分析

一、增材项目背景分析

2018 年我国增材制造产业规模有望达到 18.3 亿美元左右。另据中国增材制造产业联盟统计,2018 年中国增材制造产业增速维持在 25%以上,同时提供增材制造服务的企业数量已经超过 500 家。

事实上,中国增材制造技术经过近三十年的发展,从基础理论研究到关键设备的自主研发再到应用领域的不断拓展,都取得了较为丰硕的成果。

在我国,增材制造技术经过多年的发展,已经形成了一条完整的生态链。经过相关查阅资料,当下业界对增材制造技术的生态链有两种表述,一种是增材制造技术的生态链主要涉及逆向工程、软件提供商、服务提供商、系统提供商和材料五个部分;另一种是将增材制造技术的生态链概括为上游、中游、下游三层。其中,上游为增材制造

材料与软件的研发制造层,中游为增材制造设备研发制造层,下游为面向消费者和企业的应用层。

材料是增材制造技术发展的重要物质基础,材料的性能决定了增材制造能否有更广泛的应用。发展至今,增材制造的材料种类已从过去的塑料成型扩展到了树脂、石墨、陶瓷、金属以及有机生物材料。根据 3D 科学谷的市场调研,当前中国增材制造市场在树脂、尼龙、PLA、钛合金、不锈钢等材料的需求上占主导地位。

总体上,我国增材制造材料发展较为迅速,生产商大都围绕增材制造设备以及应用展开对材料体系的研制,另外还有一些从事化工龙头的企业加入。

目前,国内从事增材制造材料生产的代表企业有银禧科技(塑料)、瑞熙钛业(钛及钛合金)、铂力特(金属)、飞而康(金属)、华曙高科(尼龙和金属)、联泰科技(树脂)、极光尔沃(PLA)、闪铸科技(ABS 和 PLA)、金石三维(光敏树脂和 ABS)、盈普(高分子粉体)、中瑞科技(树脂、金属、尼龙、陶瓷、覆膜砂等)、迅实科技(光敏树脂和光固化蜡)、长朗科技(热塑性塑料)、敬业增材(金属粉末)、赛隆金属(金属粉末及粉末冶金制品)、光华伟业(PLA)、万华化学(光敏树脂和 TPU)、捷诺飞(生物材料)等。

与国外发达国家相比,增材制造软件依然是我国整个增材制造技术生态链发展的短板。尽管我国已经意识到软件在增材制造过程中的重要性,但我国的增材制造软件开发,在学术方面,更多是集中在科研课题和国家重点项目上;商业方面,通用型的增材制造软件我国依然匮乏,期待未来能有国有软件厂商能打破这一僵局。

当前光固化的设备占据中国市场主流,占比为 39.8%,其次是选择性激光熔化及材料挤出设备。事实上,自 20 世纪 80 年代中期 SLA 成型技术发展以来,国内外已经出现了十几种不同的增材制造成型技术,目前在我国主流的增材制造技术包括 SLA 技术、SLM 技术、SLS 技术、DLP 技术、FDM 技术、LMD 技术等。

具体而言,国内 SLM 设备制造的厂商主要包括铂力特、永年激光、汉邦科技、金石三维、易加三维、数造科技、西帝摩等;SLS 设备制造厂商以银禧科技、华曙高科、华科三维、盈普、中瑞科技、隆源成型、易博三维等为代表;SLA 设备制造厂商主要有联泰科技、极光尔沃、中瑞科技、金石三维、数造科技、长朗三维等;DLP 设备制造厂商则以黑格科技、创必得、大族激光、闪铸科技、迅实科技、先临三维、恒通等为代表;FDM 设备制造的典型厂商有弘瑞、创必得、西通电子、德迪、

先临三维、长朗三维等;LMD 设备制造的厂商代表有煜宸激光、鑫精合、辉锐集团、天弘激光等。

中国增材制造技术正处于快速发展初期,整个行业“小而散、同质化”的现象较为严重,即企业数量越来越多,但真正上规模的少,大部分企业都是在靠卖设备生存。与发达国家相比,我国的增材制造生态链建设在材料、软件、成型技术、服务等指标上还有很大差距。

因此,我国增材制造技术的规模化应用,还有很长的路要走。围绕增材制造技术的生态链,接下来几年会有更多的企业通过不断攻克新技术、建立新的合作伙伴关系,引导增材制造技术进一步向生产制造方向演化。同时,随着物联网、机器学习和人工智能等技术的发展,未来增材制造有望真正以附加值创造的方式与传统制造业深度结合,重塑企业的竞争力。

二、增材项目建设必要性分析

增材制造(又称 3D 打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。

3D 打印的工作原理是以计算机三维设计模型为蓝本,通过软件将其离散分解成若干层平面切片,由数控成型系统利用激光束、热熔喷嘴等方式将材料进行逐层堆积黏结,叠加成型,制造出实体产品。

3D 打印行业产业链从上中下游来看,上游为塑料、金属、蜡、石膏、砂等其他各种材料。中游为 3D 打印设备及技术,下游则为制造、医疗、建筑、军事等应用领域。

上游:塑料、金属、蜡、石膏、砂等其他各种材料。不同的 3D 打印技术,对材料的要求也有所不同,例如光聚合成型主要以液态光敏树脂为主要材料;颗粒物成型的主要材料为金属、塑料、陶瓷等;而熔融层积型的适用材料为塑料等混合物。

中游:3D 打印的中游为设备研发及制造。目前,3D 打印设备主要分为桌面级和工业级两种。桌面级是 3D 打印技术的初级阶段,可以直观地阐述 3D 打印技术的工艺原理;工业级的 3D 打印设备主要分为快速原型制造和直接产品制造,两者在打印速度、精确度、尺寸等方面各有不同。

下游:主要是 3D 打印服务,延伸到各个细分的实际应用方向,其中包括制造、医疗、军事、建筑等领域均有所应用。随着 3D 打印行业的快速发展,3D 打印技术应用场景将不断拓展。

2018 年中国 3D 打印市场规模达到 23.6 亿元,同比增长近 42%。伴随着中国 3D 打印技术的相应成熟,在航天航空,汽车等行业需求将持续增加,预计 2019 年中国 3D 打印市场规模将近 30 亿元。

3D 打印机主要分为消费级和工业级。工业级 3D 打印机速度更快、精度更高,在航空航天、汽车制造、医疗等领域广泛应用。目前,工业级 3D 打印机在国内 3D 打印市场结构中,从销售收入来看占比远超消费级 3D 打印机。

我国高度重视增材制造产业,计划到 2020 年,增材制造产业年销售收入超过 200 亿元,年均增速在 30%以上。关键核心技术达到国际同步发展水平,工艺装备基本满足行业应用需求,生态体系建设显著完善,在部分领域实现规模化应用,国际发展能力明显提升。

第四章

项目市场分析

一、增材行业分析

增材制造(AdditiveManufacturing,AM)俗称 3D 打印,融合了计算机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体

物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造方式的约束,而无法实现的复杂结构件制造变为可能。

自 1986 年,美国科学家 CharlesHull 获得 SLA 技术发明专利,并成立全球首家增材制造公司 3DSystems 开始,3D 打印产业拉开了帷幕。

3D 打印是集材料、3D 打印设备研发以及下游应用的产业。上游为3D 打印材料研发制造层,包括辅助运行(三维扫描仪、控制软件等)、基础配套(步进电机、芯片等)和打印材料(钛合金、金属粉、尼龙材料等)。中游为 3D 打印设备研发制造,下游为应用领域,3D 打印主要应用场景于航空航天、模具铸造、生物医疗、汽车领域等。

3D 打印设备主要分为桌面级和工业级两种。桌面级是 3D 打印技术的初级阶段和入门阶段,能够很直观地阐述 3D 打印技术的工艺原理。工业级的 3D 打印机主要分为快速原型制造和直接产品制造两种。两者在打印精度、速度、尺寸等各方面都有不同,其中,打印支撑和打印实体可分参数打印的设计是区分工业机和桌面机的最重要标志。

3D 打印存在着许多不同的技术。它们的不同之处在于以可用的材料的方式,并以不同层构建创建部件。3D 打印常用材料有尼龙玻纤、

耐用性尼龙材料、石膏材料、铝材料、钛合金、不锈钢、镀银、镀金、橡胶类材料。

由于我国近年才引入 3D 打印技术,与国外相比差距非常大,目前全球已经发展至金属 3D 打印、高分子 3D 打印、陶瓷 3D 打印以及生物3D 打印技术,我国则主要在层压、激光灯。不过近年来我国生物 3D 打印技术不断获得突破,推进了 3D 打印医疗器械、人工组织器官的临床转化进程。

我国 3D 打印从 1988 年发展至今,呈现出不断深化、不断扩大应用的态势。2015-2017 年的 3 年间,中国 3D 打印产业规模实现了翻倍增长,年均增速超过 25%。2017 年,中国 3D 打印领域相关企业超过500 家,产业规模已达 100 亿元,增速略微放缓至 25%左右,但仍高于全球 4 个百分点。2018 年上半年,中国 3D 打印产业维持 25%以上增速,2018 年整体规模有望达到 18.3 亿美元。

3D 打印应用领域广泛,其在下游应用行业和具体用途领域的分布反映了这一技术具有的优势和特点,同时也反映了这一技术的局限和在发展过程中尚需完善的地方。3D 打印机需求量较大的行业包括政府、航天和国防、医疗设备、高科技、教育业以及制造业。目前,应用领

域排名前三的是工业机械、航空航天和汽车,分别占市场份额的 20.0%、16.6%和 13.8%。

从 3D 打印机类型来看,2017 年,国内桌面 3D 打印机出货量增长27%,其中约 95%是个人或桌面打印机,工业级 3D 打印机出货量虽只增加了 5%。但从销售收入来看,工业级 3D 打印机占总收入的 80%。所以,虽然消费级设备支撑了出货量,但工业级设备支撑了整个行业的销售收入,未来工业级 3D 打印设备是行业收入增长的主力军。

近几年来,我国 3D 打印市场呈现出稳中向好的态势。因此,越来越多的企业想要分这块大蛋糕,纷纷进入该领域,目前中国所有 3D 打印相关企业中,约有 46.9%是 2016 年以后进入 3D 打印市场的。当前中国市场的主流设备品牌包括联泰、EOS、华曙、铂力特、3DSystems、GE、Stratasys、惠普等,多为国外品牌。

我国 3D 打印产业虽然取得了长足的发展,但发达国家还有较大差距,关键技术滞后、关键装备与核心器件严重依赖进口的问题依然较为突出。此外,中国的专用材料发展滞后,目前国内只开发出钛合金、高强钢等几十种金属,材料成形品性能普遍不高。而行业领军企业及巴斯夫等材料企业纷纷布局专用材料领域,突破一批新型高分子复合材料、高性能合金材料、生物活性材料、陶瓷材料等专用材料。

二、增材市场分析预测

3D 打印技术,又称增材制造技术,是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。

与传统铸造技术相比,3D 打印技术最大的优势在于不需要模具即可实现各种形状产品的制造。因此,3D 打印技术特别适合应用于利用模具铸造困难、形状复杂、个性化强的产品。传统制造技术中,单个模具价格很高、加工周期长,但使用模具有助于提高产品的一致性,便于流水线生产,降低批量生产的成本。另一方面,由于研发阶段产品外形常需多次调试,研发阶段所用模具无法应用于随后的生产中,故模具的使用也大大提高研发成本。3D 打印技术特别适合此类产品的研发,大大缩短研发周期,降低研发成本。

对于一切外形定制化、个性化的产品,3D 打印技术均显示出巨大优势。目前,3D 打印技术已被应用于医疗、模型制造、复杂零件制造、航空航天等领域,表现出巨大潜力。从以上意义上讲,3D 打印技术的出现,首先是一种生产方式的创新,解决了传统铸造弊端及其无法解决的问题。

从更广阔的层面思考,3D 打印技术更是一种革命。3D 打印技术的应用可满足消费者的定制化需求,将其与互联网、物联网、智能物流结合,则有可能催化产生全新的生产模式和商业模式。

在传统生产方式的前提下,每个产业存在从原材料供应商→生产商→品牌商→分销商→零售商→消费者的价值链条,在这样的链条中,每一个节点满足其下一个节点的需求,最终由零售商满足消费者的需求,由消费者产生的消费需求无法直接传导至生产商。随着互联网技术和理念的成熟,目前已允许消费者将消费需求直接传导给生产商、品牌商,甚至原材料供应商。3D 打印的广泛应用,恰能帮助上述信息的直接传导产生直接的价值,即每个节点可能直接为消费需求负责,从而形成有别于传统“价值链”的“价值网”。

由价值链向价值网转变,是在当今市场、科技等大背景下的必然趋势,而缺少了 3D 打印技术,此转变无法实现。

目前,3D 打印技术仍处于技术发展阶段;也由于受到技术的限制,3D 打印对新的商业模式参与仍较少。整个 3D 打印市场可分为上游 3D打印原材料、中游 3D 打印机制造、下游 3D 打印服务、以及外围技术培训等。

对于一个较成熟的产业,往往是由下游需求带动上游的供应,继而带动周边产品;而对于技术仍处于发展当中、市场仍待发育的 3D 打印产业来讲,境况有所不同,即:目前 3D 打印的发展仍然受到 3D 打印原材料发展及 3D 打印机技术发展的制约。可用的原材料,在很大程度上决定了对应可用的 3D 打印技术,进而决定了相关产品可应用于何种领域;某些领域虽然也符合定制化、个性化等特征,但由于其对应的原材料无法在现有的 3D 打印技术下进行加工,市场就无法放开。例如,铝合金是目前使用最广泛的结构材料,但目前可用于 3D 打印的铝合金仅 1-2 种。

原材料的发展仍是制约 3D 打印技术广泛应用的主要因素。按照所使用的原材料不同,可将 3D 技术分为金属 3D 打印、高分子 3D 打印、陶瓷 3D 打印、生物 3D 打印等。其中金属 3D 打印技术多属于工业级,其壁垒远高于高分子 3D 打印;而陶瓷、生物 3D 打印技术仍多处于研发状态。

目前无论是 3D 打印技术,还是相关市场都处于急速发展期。2011年全球 3D 打印行业整体收入约 17.14 亿美元,到 2015 年行业整体收入已达到 51.65 亿美元,近五年年均增速超过 30%。未来几年高增速有望持续,到 2018 年,全球 3D 打印行业整体收入将超过 100 亿美元,

我国 3D 打印市场有望超过 100 亿人民币;目前正是布局 3D 打印产业的最佳时期。

从整个产业链来看,上游 3D 打印材料和中游 3D 打印设备制造的产值分别占整个 3D 打印市场的 37%和 39%,远高于 3D 打印服务 24%。这一分布特征也表现了材料和技术发展先于市场培育的特征。

在我国产业升级的大变革背景下,3D 打印技术自然而然得到国家层面的重视。特别是 2015 年工信部发布《国家增材制造(3D 打印)产业发展推进计划(2015-2016)》,首次明确将 3D 打印列入了国家战略层面,指出对 3D 产业的发展做出了整体计划。到 2016 年,初步建立较为完善的增材制造产业体系,整体技术水平保持与国际同步,在航空航天等直接制造领域达到国际先进水平,在国际市场上占有较大的市场份额。

目前来看,3D 打印发展迅速,但也受到一定的制约,产业发展规模仍较小。根据我们的分析,原材料开发壁垒远高于提供 3D 打印服务的壁垒,原材料的发展仍是主要的 3D 打印技术发展的主要制约因素。发力原材料,特别是金属原材料,将有可能获得产业链中的最厚利润。《国家增材制造(3D 打印)产业发展推进计划(2015-2016)》也指出,3D 打印产业的发展,应“以材料研发作为突破口,鼓励优势材料企业

从事 3D 打印专用材料研发和生产,针对航空航天、汽车、文化创意、生物医疗等领域的重大需求,突破一批 3D 打印专用材料。”为此,我们认为应首先看好上游材料的发展;对于下游,我们看好 3D 打印技术在附加价值更高的航空航天、医疗等领域的应用。

第五章

项目建设内容分析

一、产品规划

项目主要产品为增材,根据市场情况,预计年产值 24530.00 万元。

进入二十一世纪以来,随着我国国民经济的快速持续发展,经济建设提出了走新型工业化发展道路的目标,国家出台并实施了加快经济发展的一系列政策,对于相关行业来说,调整产业结构、提高管理水平、筹措发展资金、参与国际分工,都将起到积极的推动作用,尤其是随着我国国民经济逐渐融入全球经济大循环,各行各业面临市场国际化,相应企业将面对极具技术优势、管理优势、品牌优势的竞争对手,市场份额将会形成新的分配格局。随着全球经济一体化格局的形成,相关行业的市场竞争愈加激烈,要想在市场上站稳脚跟、求得突破,就要聘请有营销经验的营销专家领衔组织一定规模的营销队伍,创新机制建立起一套行之有效的营销策略。通过对国内外市场需求预测可以看出,我国项目产品将以内销为主并

扩大外销,随着产品宣传力度的加大,产品价格的降低,产品质量的提高和产品的多样化,项目产品必将更受欢迎;通过对市场需求预测分析,国内外市场对项目产品的需求量均呈逐年增加的趋势,市场销售前景非常看好。

二、建设规模

(一)用地规模

该项目总征地面积 42507.91 平方米(折合约 63.73 亩),其中:净用地面积 42507.91 平方米(红线范围折合约 63.73 亩)。项目规划总建筑面积 56110.44 平方米,其中:规划建设主体工程 42780.17 平方米,计容建筑面积 56110.44 平方米;预计建筑工程投资 4074.28 万元。

(二)设备购置

项目计划购置设备共计 94 台(套),设备购置费 3559.59 万元。

(三)产能规模

项目计划总投资 13997.66 万元;预计年实现营业收入 24530.00 万元。

第六章

项目选址说明

一、项目选址

该项目选址位于 xxx 产业基地。

山东省,中国华东地区的一个沿海省份,简称鲁,省会济南。位于中国东部沿海北纬 34°22.9′-38°24.01′,东经 114°47.5′-122°42.3′之间,自北而南与河北、河南、安徽、江苏 4 省接壤。山东中部山地突起,西南、西北低洼平坦,东部缓丘起伏,地形以山地丘陵为主,东部是山东半岛,西部及北部属华北平原,中南部为山地丘陵,形成以山地丘陵为骨架,平原盆地交错环列其间的地貌,类型包括山地、丘陵、台地、盆地、平原、湖泊等多种类型;地跨淮河、黄河、海河、小清河和胶东五大水系;属暖温带季风气候。截至 2019 年 9 月,山东省辖 16 个地级市,共 57 个市辖区、27 个县级市、53 个县,合计 137 个县级行政区。664 个街道、1092个镇、68 个乡,合计 1824 个乡级行政区。截至 2019 年末,山东省常住人口 10070.21 万人,地区生产总值 71067.5 亿元,人均生产总值 70653 元。

园区鼓励标准厂房建设。深入推进实施 135 工程,合理确定产业园区标准厂房建设总体布局、规模以及有关配套设施。紧紧围绕产业特性、行业特点、企业特征进行规划建设,突出标准厂房建设的实用性。完善标准厂房集中区域内道路、电力、通讯、给排水及污水处理等基础配套设施,满足入驻企业生产经营基本需要。坚持谁投资、谁所有、谁受益的原则,鼓励和引导各类企业、组织及自然人投资建设产业园区标准厂房。园区建立重大项目滚动发展机制。围绕我市“十三五”规划和“五个一百”三年行动计划,以民间投资为重点,谋划重大项目库,精心组织实施一批发展前景好、投资效益高的标杆性重大项目。开展重大项目前期攻坚行动,建

立市、县(市、区)协同推进重大项目前期攻坚计划机制,市级主抓 50 个左右重大项目前期,各县(市、区)政府和各开发主体同步启动编制本地重大项目前期攻坚计划,全市协同推进实施 500 个左右重大项目前期。

投资项目对其生产工艺流程、设施布置等都有较为严格的标准化要求,为了更好地发挥其经济效益并综合考虑环境等多方面的因素,根据项目选址的一般原则和项目建设地的实际情况,该项目选址应遵循以下基本原则的要求。项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。

近年来,项目承办单位培养了一大批精通各个工艺流程的优秀技术工人;企业的人才培养和建设始终走在当地相关行业的前列,具有显著的人才优势;项目承办单位还与多家科研院所建立了长期的紧密合作关系,并建立了向科研开发倾斜的奖励机制,每年都拿出一定数量的专项资金用于对重点产品及关键工艺开发的奖励。项目承办单位自成立以来始终坚持“自主创新、自主研发”的理念,始终把提升创新能力作为企业竞争的最重要手段,因此,积累了一定的项目产品技术优势。项目承办单位在项目产品开发、设计、制造、检测等方面形成了一套完整的质量保证和管理体系,通过了 ISO9000 质量体系认证,赢得了用户的信赖和认可。

二、用地控制指标

该项目均按照项目建设地建设用地规划许可证及建设用地规划设计要求进行设计,同时,严格按照项目建设地建设规划部门与国土资源管理部门提供的界址点坐标及用地方案图布置场区总平面图。

三、地总体要求

本期工程项目建设规划建筑系数 78.59%,建筑容积率 1.32,建设区域绿化覆盖率 6.07%,固定资产投资强度 169.79 万元/亩。

土建工程投资一览表

序号 项目 单位 指标 备注 1

占地面积

平方米

42507.91

63.73 亩

2

基底面积

平方米

33406.97

3

建筑面积

平方米

56110.44

4074.28 万元

4

容积率

1.32

5

建筑系数

78.59%

6

主体工程

平方米

42780.17

7

绿化面积

平方米

3407.92

8

绿化率

6.07%

9

投资强度

万元/亩

169.79

四、节约用地措施

在项目建设过程中,项目承办单位根据项目建设地的总体规划以及项目建设地对投资项目地块的控制性指标,本着“经济适宜、综合利用”的原则进行科学规划、合理布局,最大限度地提高土地综合利用率。投资项

目依托项目建设地已有生活设施、公共设施、交通运输设施,建设区域少建非生产性设施,因此,有利于节约土地资源和节省建设投资。

五、总图布置方案

1、同时考虑用地少、施工费用节约等要求,沿围墙、路边和可利用场地种植花卉、树木、草坪及常绿植物,改善和美化生产环境。undefined

2、投资项目绿化的重点是场区周边、办公区及主要道路两侧的空地,美化的重点是办公区,场区周边以高大乔木为主,办公区以绿色草坪、花坛为主,道路两侧以观赏树木、绿篱、草坪为主,适当结合花坛和垂直绿化,起到环境保护与美观的作用,创造一个“环境优美、统一协调”的建筑空间。场区绿化设计要达到“营造严谨开放的交流环境,催人奋进的工作环境,舒适宜人的休闲环境,和谐统一的生态环境”之目的。

投资项目采用雨、污分流制排水系统,分别汇集后排入项目建设区不同污水管网。undefined

3、项目用水由项目建设地市政管网给水干管统一提供,供水管网水压大于 0.40Mpa 可以满足项目用水需求;进厂总管径选用 DN300?L,各车间分管选用 DN50?L-DN100?L,给水管道在场区内形成完善的环状给水管网,各单体用水从场区环网上分别接出支管,以满足各单体的生产、生活、消防用水的需要;室外给水主管道采用 PP-R 给水管,消防管道采用热镀锌钢管。

投资项目生活给水主要是员工工作及休息期间的个人饮用及卫生用水,生活给水水压 0.35Mpa。

4、

工业电视部分:在场内主要场所进行重点监视,适时录像并存储图像,不仅可以了解工作人员及场内来往人员的情况,还可通过查询录像资料,为事故鉴定、责任划分提供法律认可的视频图像证据。项目承办单位设计提供监控系统的基本要求和配置;选用系统设备时,各配套设备的性能及技术要求应协调一致,系统配置的详细清单及安装、辅助材料待确定系统成套供货商后,按技术要求由成套厂商提供;系统应由资信地位可靠、具有相关资质、有一定业绩、服务良好、具有现场安装调试、开车运行经验、能做到“交钥匙”工程的成套厂商配套供货,并应对项目承办单位操作人员进行相关的技术培训。

六、选址综合评价

投资项目用地位于项目建设地,用地周边交通便利,由于规划科学合理,项目与相邻大型建筑物有一定安全距离,与周围建筑物群体及城市规划要求协调一致,项目施工过程中及建成运营后不会对附近居民的生活、工作和学习构成任何影响,是投资项目最为理想、最为合适的建设场所。项目承办单位通过对可供选择的建设地区进行缜密比选后,充分考虑了项目拟建区域的交通条件、土地取得成本及职工交通便利条件,项目经营期

所需的内外部条件:距原料产地的远近、企业劳动力成本、生产成本以及拟建区域产业配套情况、基础设施条件等,通过建设条件比选最终选定的项目最佳建设地点―项目建设地,投资项目建设区域供电、供水、道路、照明、供汽、供气、通讯网络、施工环境等条件均较好,可保证项目的建设和正常经营,所选区域完善的基础设施和配套的生活设施为项目建设提供了良好的投资环境。

第七章

土建方案

一、建筑工程设计原则

项目承办单位本着“适用、安全、经济、美观”的原则并遵照国家建筑设计规范进行项目建筑工程设计;在满足投资项目生产工艺设备要求的前提下,力求布局合理、造型美观、色彩协调、施工方便,努力建设既有时代感又有地方特色的工业建筑群的新形象。

功能分区合理,人流、车流、物流路线清楚,避免或减少交叉。建筑布局紧凑、交通便捷、管理方便。应留有发展或改、扩建余地。应有完整的绿化规划。

二、土建工程设计年限及安全等级

根据《建筑结构可靠度设计统一标准》(GB50068)的规定,投资项目中所有建(构)筑物均按永久性建筑要求设计,使用年限为 50.00 年。

三、建筑工程设计总体要求

项目承办单位的建筑设计应遵守国家现行技术规范、规定,特殊建筑物按专门的技术规范、标准执行。根据需要,积极采用经过验证的新技术和经过国家或省、部级鉴定的新材料,并尽可能利用地方建设材料;在生产工艺允许的条件下,尽可能采用联合厂房,并考虑开敞与半开敞甚至露天装置以节约项目建设投资。

四、土建工程建设指标

本期工程项目预计总建筑面积 56110.44 平方米,其中:计容建筑面积56110.44 平方米,计划建筑工程投资 4074.28 万元,占项目总投资的29.11%。

第八章

项目工艺先进性

一、技术管理特点

原材料仓库按品种分类存储;库内原辅材料的保管应按批号分存,建立严格的入库、分发制度,坚决杜绝分发差错,坚决杜绝因混批错号、混用原材料而造成的质量事故。

二、项目工艺技术设计方案

工艺技术生态效益与清洁生产原则:项目建设与地方特色经济发展相结合,将项目建设与区域生态环境综合整治相结合,纳入当地的社会经济发展规划,并与区域环境保护规划方案相协调一致;投资项目建设应与当地区域自然生态系统相结合;按照可持续发展的要求进行产业结构调整和传统产业的升级改造,大幅度提高资源利用效率,减少污染物产生和对环境的压力,项目选址应充分考虑建设区域生态环境容量。工艺技术节能环境保护与安全生产原则:项目建设中所采用的工艺技术必须体现“以人为本”的原则,确保安全生产和清洁生产的需要;项目产品生产工艺技术要有利于环境保护,不会对生产区域内外环境质量构成危险性或威胁性影响;尽量采用节能、污染少的生产工艺和技术装备,从源头上消除和控制污染源,严格贯彻“三同时”原则,搞好“三废”治理;项目承办单位要大力采用现代化的生态技术、节能技术、节水技术、循环技术和信息技术,采纳国际上先进的生产过程管理和环境管理标准,要求经济效益和环境效益实现最佳平衡。

技术设备投资和产品生产成本低,具有较强的经济合理性;投资项目采用本技术方案建设其主要设备多数可按通用标准在国内采购。投资项目采用国内先进的产品技术,该技术具有资金占用少、生产效率高、资源消耗低、劳动强度小的特点,其技术特性属于技术密集型,该技术具备以下优势:

三、设备选型方案

项目承办单位在选择设备时,要着眼高起点、高水平、高质量,最大限度地保证产品质量的需要,努力提高产品生产过程中的自动化程度,降低劳动强度提高劳动生产率,节约能源降低生产成本和检测成本。

项目拟选购国内先进的关键工艺设备和国内外先进的检测设备,预计购置安装主要设备共计 94 台(套),设备购置费 3559.59 万元。

第九章

环境保护分析

按照用地集约化、生产洁净化、废物资源化、能源低碳化原则,重点在电力、煤炭、化工、冶金、建材、装备制造、农畜产品加工、医药、战略性新兴产业等重点行业选择一批工作基础好、代表性强的企业开展绿色工厂创建。鼓励企业采用绿色建筑技术建设改造厂房,预留可再生能源应用场所,合理布局厂区内能量流、物质流路径,推广绿色设计和绿色采购,开发生产绿色产品。采用先进适用的清洁生产工艺技术和高效末端治理装备,淘汰落后设备,推广余热回收、水循环利用、重金属污染减量化、有毒有害原料替代、废渣资源化等绿色工艺路线,建立资源回收循环利用机制,降低资源和能源消耗,提高资源利用效率,减少污染排放,实现工厂的绿色生产。鼓励企业建立能源管理中心,开展电力需求侧管理工作。

一、建设区域环境质量现状

投资项目所在地大气环境质量功能区划定为Ⅱ类区,执行《环境空气质量标准》(GB3095-2012)Ⅱ级标准,大气环境质量现状较好,符合功能区划要求。投资项目建设地点―项目建设地主要大气污染物为二氧化硫、二氧化碳和 PM10,根据当地环境监测部门连续 5.00 天监测数据显示,项目建设区域监测到的二氧化硫、PM10 和二氧化碳浓度较低,达到《环境空气质量标准》Ⅱ级标准要求,未出现超标现象,环境空气质量本底值较好。

二、建设期环境保护

(一 )建设期大气环境影响防治对策

运输车辆不应装载过满并尽量采取遮盖、密闭措施,减少沿途抛洒,同时,及时清扫散落在地面上的泥土和建筑材料;冲洗轮胎并定时洒水抵尘,以减少运输过程中的扬尘。

(二)建设期噪声环境影响防治对策

项目建设承包单位应加强施工管理,合理安排施工作业时间,午间(12:00-14:00)及晚间(22:00-6:00)严禁高噪设备施工,降低人为噪声,合理布局施工现场,严格按照施工噪声管理的有关规定执行,在施工过程中,施工单位应严格执行《建筑施工场界噪声限值》(GB12523)中的有关规定,避免施工噪声扰民事件的发生。施工机械产生的噪声往往具有突发、无规则、不连续和高强度等特点,施工单位应采取合理安排施工机械操作

时间的方法加以缓解,并减少同时作业的高噪施工机械的数量,尽可能减轻声源叠加影响。

(三)建设期水环境 影响防治对策

施工现场因地制宜建造沉淀池、隔油池等污水临时处理设施,对含油量较高的施工机械冲洗水或悬浮物含量较高的其他施工废水需经处理后方可排放;砂浆、石灰等废液宜集中处理,干燥后与固体废弃物一起处置。

(四)建设期固体废弃物环境影响防治对策

由于建筑垃圾是土建工程中不可避免的,因此,要求项目承办单位和施工单位必须做好施工垃圾管理,采取积极有效的措施,避免建设期间产生的固体废弃物对周围环境造成的影响。对施工现...

第2篇:内蒙古增材制造项目申报材料(申请报告)

内蒙古增材制造项目

申报材料

规划设计/ / 投资分析/ / 产业运营

报告说明—

增材制造(AdditiveManufacturing,AM)俗称 3D 打印,融合了计算机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自下而上”通过材料累加的制造方法,从无到有。这使得过去受到传统制造方式的约束,而无法实现的复杂结构件制造变为可能。

该增材项目计划总投资 2371.11 万元,其中:固定资产投资 1734.03万元,占项目总投资的 73.13%;流动资金 637.08 万元,占项目总投资的26.87%。

达产年营业收入 5365.00 万元,总成本费用 4101.60 万元,税金及附加 48.18 万元,利润总额 1263.40 万元,利税总额 1485.84 万元,税后净利润 947.55 万元,达产年纳税总额 538.29 万元;达产年投资利润率53.28%,投资利税率 62.66%,投资回报率 39.96%,全部投资回收期 4.00年,提供就业职位 116 个。

增材制造(又称 3D 打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。

目录

第一章

项目概论

第二章

项目单位概况

第三章

建设必要性分析

第四章

产业分析

第五章

产品规划分析

第六章

项目选址研究

第七章

土建工程设计

第八章

工艺可行性分析

第九章

环境保护概况

第十章

项目安全管理

第十一章

项目风险评价分析

第十二章

节能可行性分析

第十三章

实施安排方案

第十四章

投资方案

第十五章

经济效益可行性

第十六章

总结及建议

第十七章

项目招投标方案

第一章

项目概论

一、项目提出的理由

3D 打印技术,又称增材制造技术,是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。

2018 年我国增材制造产业规模有望达到 18.3 亿美元左右。另据中国增材制造产业联盟统计,2018 年中国增材制造产业增速维持在 25%以上,同时提供增材制造服务的企业数量已经超过 500 家。

二、项目概况

(一)项目名称

内蒙古增材制造项目

(二)项目选址

xxx 保税区

内蒙古自治区,简称内蒙古,中华人民共和国省级行政区,首府呼和浩特。地处中国北部,地理上位于北纬 37°24′-53°23′,东经97°12′-126°04′之间,东北部与黑龙江、吉林、辽宁、河北交界,南部与山西、陕西、宁夏相邻,西南部与甘肃毗连,北部与俄罗斯、蒙古接壤,属于四大地理区划的西北地区。内蒙古自治区地势由东北向西南斜伸,呈狭长形,全区基本属一个高原型的地貌区,全区涵盖高原、山地、丘陵、

平原、沙漠、河流、湖泊等地貌,气候以温带大陆性气候为主,地跨黄河、额尔古纳河、嫩江、西辽河四大水系。截至 2019 年末,内蒙古总面积118.3 万平方公里,辖 9 个地级市、3 个盟,共有 23 个市辖区、11 个县级市、17 个县、49 个旗,3 个自治旗;常住人口 2539.6 万人;实现地区生产总值 17212.5 亿元,第一产业增加值 1863.2 亿元,增长 2.4%;第二产业增加值 6818.9 亿元,增长 5.7%;第三产业增加值 8530.5 亿元,增长 5.4%。

项目建设区域以城市总体规划为依据,布局相对独立,便于集中开展科研、生产经营和管理活动,并且统筹考虑用地与城市发展的关系,与项目建设地的建成区有较方便的联系。场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。

(三)项目用地规模

项目总用地面积 6816.74 平方米(折合约 10.22 亩)。

(四)项目用地控制指标

该工程规划建筑系数 68.64%,建筑容积率 1.38,建设区域绿化覆盖率5.67%,固定资产投资强度 169.67 万元/亩。

(五)土建工程指标

项目净用地面积 6816.74 平方米,建筑物基底占地面积 4679.01 平方米,总建筑面积 9407.10 平方米,其中:规划建设主体工程 6738.74 平方米,项目规划绿化面积 533.45 平方米。

(六)设备选型方案

项目计划购置设备共计 87 台(套),设备购置费 677.52 万元。

(七)节能分析

1、项目年用电量 629772.84 千瓦时,折合 77.40 吨标准煤。

2、项目年总用水量 3214.94 立方米,折合 0.27 吨标准煤。

3、“内蒙古增材制造项目投资建设项目”,年用电量 629772.84 千瓦时,年总用水量 3214.94 立方米,项目年综合总耗能量(当量值)77.67 吨标准煤/年。达产年综合节能量 19.42 吨标准煤/年,项目总节能率 20.77%,能源利用效果良好。

(八)环境保护

项目符合 xxx 保税区发展规划,符合 xxx 保税区产业结构调整规划和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明显的影响。

(九)项目总投资及资金构成

项目预计总投资 2371.11 万元,其中:固定资产投资 1734.03 万元,占项目总投资的 73.13%;流动资金 637.08 万元,占项目总投资的 26.87%。

(十)资金筹措

该项目现阶段投资均由企业自筹。

(十一)项目预期经济效益规划目标

预期达产年营业收入 5365.00 万元,总成本费用 4101.60 万元,税金及附加 48.18 万元,利润总额 1263.40 万元,利税总额 1485.84 万元,税后净利润 947.55 万元,达产年纳税总额 538.29 万元;达产年投资利润率53.28%,投资利税率 62.66%,投资回报率 39.96%,全部投资回收期 4.00年,提供就业职位 116 个。

(十二)进度规划

本期工程项目建设期限规划 12 个月。

三、项目评价

1、本期工程项目符合国家产业发展政策和规划要求,符合 xxx 保税区及 xxx 保税区增材行业布局和结构调整政策;项目的建设对促进 xxx 保税区增材产业结构、技术结构、组织结构、产品结构的调整优化有着积极的推动意义。

2、xxx(集团)有限公司为适应国内外市场需求,拟建“内蒙古增材制造项目”,本期工程项目的建设能够有力促进 xxx 保税区经济发展,为社会提供就业职位 116 个,达产年纳税总额 538.29 万元,可以促进 xxx 保税区区域经济的繁荣发展和社会稳定,为地方财政收入做出积极的贡献。

3、项目达产年投资利润率 53.28%,投资利税率 62.66%,全部投资回报率 39.96%,全部投资回收期 4.00 年,固定资产投资回收期 4.00 年(含建设期),项目具有较强的盈利能力和抗风险能力。

国家支持民营经济发展,是明确的、一贯的,而且是不断深化的,不是一时的权宜之计,更不是过河拆桥式的策略性利用。对于非公有制经济的地位和作用,“三个没有变”的判断:“非公有制经济在我国经济社会发展中的地位和作用没有变,我们毫不动摇鼓励、支持、引导非公有制经济发展的方针政策没有变,我们致力于为非公有制经济发展营造良好环境和提供更多机会的方针政策没有变。”同时,公有制为主体、多种所有制经济共同发展,是写入党章和宪法的基本经济制度,这是不会变的,也是不能变的。进入新时代,中国的民营经济只会壮大、不会离场,只会越来越好、不会越来越差。中共中央、国务院发布《关于深化投融资体制改革的意见》,提出建立完善企业自主决策、融资渠道畅通,职能转变到位、政府行为规范,宏观调控有效、法治保障健全的新型投融资体制。改善企业投资管理,充分激发社会投资动力和活力,完善政府投资体制,发挥好政府投资的引导和带动作用,创新融资机制,畅通投资项目融资渠道。在我国国民经济和社会发展中,制造业领域民营企业数量占比已达 90%以上,民间投资的比重超过 85%,成为推动制造业发展的重要力量。近年来,受多重因素影响,制造业民间投资增速明显放缓,2015 年首次低于 10%,2016年继续下滑至 3.6%。党中央、国务院高度重视民间投资工作,近年来部署出台了一系列有针对性的政策措施并开展了专项督查,民间投资增速企稳回升,今年 1-10 月,制造业民间投资增长 4.1%,高于去年同期 1.5 个百分点。

加快创新发展,实施人才驱动。坚持把发展的基点放在创新上,大力推进以科技创新为核心的全面创新,着力增强自主创新能力,破除体制机制障碍,最大程度地解放和激发创新活力,加快形成以创新为主要引领和支撑的经济体系和发展方式。大力强化“人才是第一资源”的思想,围绕发展需要和创新方向,着力夯实科教基础,优化人才环境,打造高水平创新人才队伍,为经济社会持续健康发展提供有力支撑。

四、主要经济指标

主要经济指标一览表

序号 项目 单位 指标 备注 1

占地面积

平方米

6816.74

10.22 亩

1.1

容积率

1.38

1.2

建筑系数

68.64%

1.3

投资强度

万元/亩

169.67

1.4

基底面积

平方米

4679.01

1.5

总建筑面积

平方米

9407.10

1.6

绿化面积

平方米

533.45

绿化率 5.67%

2

总投资

万元

2371.11

2.1

固定资产投资

万元

1734.03

2.1.1

土建工程投资

万元

831.93

2.1.1.1

土建工程投资占比

万元

35.09%

2.1.2

设备投资

万元

677.52

2.1.2.1

设备投资占比

28.57%

2.1.3

其它投资

万元

224.58

2.1.3.1

其它投资占比

9.47%

2.1.4

固定资产投资占比

73.13%

2.2

流动资金

万元

637.08

2.2.1

流动资金占比

26.87%

3

收入

万元

5365.00

4

总成本

万元

4101.60

5

利润总额

万元

1263.40

6

净利润

万元

947.55

7

所得税

万元

1.38

8

增值税

万元

174.26

9

税金及附加

万元

48.18

10

纳税总额

万元

538.29

11

利税总额

万元

1485.84

12

投资利润率

53.28%

13

投资利税率

62.66%

14

投资回报率

39.96%

15

回收期

4.00

16

设备数量

台(套)

87

17

年用电量

千瓦时

629772.84

18

年用水量

立方米

3214.94

19

总能耗

吨标准煤

77.67

20

节能率

20.77%

21

节能量

吨标准煤

19.42

22

员工数量

116

第二章

项目单位概况

一、项目承办单位基本情况

(一)公司名称

xxx 投资公司

(二)公司简介

本公司秉承“以人为本、品质为本”的发展理念,倡导“诚信尊重”的企业情怀;坚持“品质营造未来,细节决定成败”为质量方针;以“真诚服务赢得市场,以优质品质谋求发展”的营销思路;以科学发展观纵观全局,争取实现行业领军、技术领先、产品领跑的发展目标。

本公司秉承“顾客至上,锐意进取”的经营理念,坚持“客户第一”的原则为广大客户提供优质的服务。公司坚持“责任+爱心”的服务理念,将诚信经营、诚信服务作为企业立世之本,在服务社会、方便大众中赢得信誉、赢得市场。“满足社会和业主的需要,是我们不懈的追求”的企业观念,面对经济发展步入快车道的良好机遇,正以高昂的热情投身于建设宏伟大业。通过持续快速发展,公司经济规模和综合实力不断增长,企业贡献力和影响力大幅提升。

本公司集研发、生产、销售为一体。公司拥有雄厚的技术力量,先进的生产设备以及完善、科学的管理体系。面对科技高速发展的二十一世纪,本公司不断创新,勇于开拓,以优质的产品、广泛的营销网络、优

良的售后服务赢得了市场。产品不仅畅销国内,还出口全球几十个国家和地区,深受国内外用户的一致好评。

公司在管理模式、组织结构、激励制度、科技创新等方面严格按照科技型现代企业要求执行,并根据公司所具优势定位于高技术附加值产品的研制、生产和营销,以新产品开拓市场,以优质服务参与竞争。强调产品开发和市场营销的科技型企业的组织框架已经建立,主要岗位已配备专业学科人员,包括科技奖励政策在内的企业各方面管理制度运作效果良好。管理制度的先进性和创新性,极大地激发和调动了广大员工的工作热情,吸引了较多适用人才,并通过科研开发、生产经营得以释放,因此,项目承办单位较好的经济效益和社会效益。公司是按照现代企业制度建立的有限责任公司,公司最高机构为股东大会,日常经营管理为总经理负责制,企业设有技术、质量、采购、销售、客户服务、生产、综合管理、后勤及财务等部门,公司致力于为市场提供品质优良的项目产品,凭借强大的技术支持和全新服务理念,不断为顾客提供系统的解决方案、优质的产品和贴心的服务。公司拥有优秀的管理团队和较高的员工素质,在职员工约 600人,80%以上为技术及管理人员,85%以上人员有大专以上学历。

二、公司经济效益分析

上一,xxx(集团)有限公司实现营业收入 5792.53 万元,同比增长 15.13%(761.03 万元)。其中,主营业业务增材生产及销售收入为

5074.57 万元,占营业总收入的 87.61%。

上营收情况一览表

序号 项目 第一季度 第二季度 第三季度 第四季度 合计 1

营业收入

1216.43

1621.91

1506.06

1448.13

5792.53

2

主营业务收入

1065.66

1420.88

1319.39

1268.64

5074.57

2.1

增材(A)

351.67

468.89

435.40

418.65

1674.61

2.2

增材(B)

245.10

326.80

303.46

291.79

1167.15

2.3

增材(C)

181.16

241.55

224.30

215.67

862.68

2.4

增材(D)

127.88

170.51

158.33

152.24

608.95

2.5

增材(E)

85.25

113.67

105.55

101.49

405.97

2.6

增材(F)

53.28

71.04

65.97

63.43

253.73

2.7

增材(...)

21.31

28.42

26.39

25.37

101.49

3

其他业务收入

150.77

201.03

186.67

179.49

717.96

根据初步统计测算,公司实现利润总额 1280.44 万元,较去年同期相比增长 274.71 万元,增长率 27.31%;实现净利润 960.33 万元,较去年同期相比增长 156.30 万元,增长率 19.44%。

上主要经济指标

项目 单位 指标 完成营业收入

万元

5792.53

完成主营业务收入

万元

5074.57

主营业务收入占比

87.61%

营业收入增长率(同比)

15.13%

营业收入增长量(同比)

万元

761.03

利润总额

万元

1280.44

利润总额增长率

27.31%

利润总额增长量

万元

274.71

净利润

万元

960.33

净利润增长率

19.44%

净利润增长量

万元

156.30

投资利润率

58.61%

投资回报率

43.96%

财务内部收益率

27.63%

企业总资产

万元

5539.07

流动资产总额占比

万元

31.73%

流动资产总额

万元

1757.45

资产负债率

42.34%

第三章

建设必要性分析

一、增材项目背景分析

增材制造(又称 3D 打印)是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,将对传统的工艺流程、生产线、工厂模式、产业链组合产生深刻影响,是制造业有代表性的颠覆性技术。

3D 打印的工作原理是以计算机三维设计模型为蓝本,通过软件将其离散分解成若干层平面切片,由数控成型系统利用激光束、热熔喷嘴等方式将材料进行逐层堆积黏结,叠加成型,制造出实体产品。

3D 打印行业产业链从上中下游来看,上游为塑料、金属、蜡、石膏、砂等其他各种材料。中游为 3D 打印设备及技术,下游则为制造、医疗、建筑、军事等应用领域。

上游:塑料、金属、蜡、石膏、砂等其他各种材料。不同的 3D 打印技术,对材料的要求也有所不同,例如光聚合成型主要以液态光敏树脂为主要材料;颗粒物成型的主要材料为金属、塑料、陶瓷等;而熔融层积型的适用材料为塑料等混合物。

中游:3D 打印的中游为设备研发及制造。目前,3D 打印设备主要分为桌面级和工业级两种。桌面级是 3D 打印技术的初级阶段,可以直观地阐述 3D 打印技术的工艺原理;工业级的 3D 打印设备主要分为快速原型制造和直接产品制造,两者在打印速度、精确度、尺寸等方面各有不同。

下游:主要是 3D 打印服务,延伸到各个细分的实际应用方向,其中包括制造、医疗、军事、建筑等领域均有所应用。随着 3D 打印行业的快速发展,3D 打印技术应用场景将不断拓展。

2018 年中国 3D 打印市场规模达到 23.6 亿元,同比增长近 42%。伴随着中国 3D 打印技术的相应成熟,在航天航空,汽车等行业需求将持续增加,预计 2019 年中国 3D 打印市场规模将近 30 亿元。

3D 打印机主要分为消费级和工业级。工业级 3D 打印机速度更快、精度更高,在航空航天、汽车制造、医疗等领域广泛应用。目前,工业级 3D 打印机在国内 3D 打印市场结构中,从销售收入来看占比远超消费级 3D 打印机。

我国高度重视增材制造产业,计划到 2020 年,增材制造产业年销售收入超过 200 亿元,年均增速在 30%以上。关键核心技术达到国际同步发展水平,工艺装备基本满足行业应用需求,生态体系建设显著完善,在部分领域实现规模化应用,国际发展能力明显提升。

二、增材项目建设必要性分析

增材制造(AdditiveManufacturing,AM)俗称 3D 打印,融合了计算机辅助设计、材料加工与成形技术、以数字模型文件为基础,通过软件与数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品的制造技术。相对于传统的、对原材料去除-切削、组装的加工模式不同,是一种“自下而上”通过材料累加的制造方法,从无到有。

这使得过去受到传统制造方式的约束,而无法实现的复杂结构件制造变为可能。

自 1986 年,美国科学家 CharlesHull 获得 SLA 技术发明专利,并成立全球首家增材制造公司 3DSystems 开始,3D 打印产业拉开了帷幕。

3D 打印是集材料、3D 打印设备研发以及下游应用的产业。上游为3D 打印材料研发制造层,包括辅助运行(三维扫描仪、控制软件等)、基础配套(步进电机、芯片等)和打印材料(钛合金、金属粉、尼龙材料等)。中游为 3D 打印设备研发制造,下游为应用领域,3D 打印主要应用场景于航空航天、模具铸造、生物医疗、汽车领域等。

3D 打印设备主要分为桌面级和工业级两种。桌面级是 3D 打印技术的初级阶段和入门阶段,能够很直观地阐述 3D 打印技术的工艺原理。工业级的 3D 打印机主要分为快速原型制造和直接产品制造两种。两者在打印精度、速度、尺寸等各方面都有不同,其中,打印支撑和打印实体可分参数打印的设计是区分工业机和桌面机的最重要标志。

3D 打印存在着许多不同的技术。它们的不同之处在于以可用的材料的方式,并以不同层构建创建部件。3D 打印常用材料有尼龙玻纤、耐用性尼龙材料、石膏材料、铝材料、钛合金、不锈钢、镀银、镀金、橡胶类材料。

由于我国近年才引入 3D 打印技术,与国外相比差距非常大,目前全球已经发展至金属 3D 打印、高分子 3D 打印、陶瓷 3D 打印以及生物3D 打印技术,我国则主要在层压、激光灯。不过近年来我国生物 3D 打印技术不断获得突破,推进了 3D 打印医疗器械、人工组织器官的临床转化进程。

我国 3D 打印从 1988 年发展至今,呈现出不断深化、不断扩大应用的态势。2015-2017 年的 3 年间,中国 3D 打印产业规模实现了翻倍增长,年均增速超过 25%。2017 年,中国 3D 打印领域相关企业超过500 家,产业规模已达 100 亿元,增速略微放缓至 25%左右,但仍高于全球 4 个百分点。2018 年上半年,中国 3D 打印产业维持 25%以上增速,2018 年整体规模有望达到 18.3 亿美元。

3D 打印应用领域广泛,其在下游应用行业和具体用途领域的分布反映了这一技术具有的优势和特点,同时也反映了这一技术的局限和在发展过程中尚需完善的地方。3D 打印机需求量较大的行业包括政府、航天和国防、医疗设备、高科技、教育业以及制造业。目前,应用领域排名前三的是工业机械、航空航天和汽车,分别占市场份额的 20.0%、16.6%和 13.8%。

从 3D 打印机类型来看,2017 年,国内桌面 3D 打印机出货量增长27%,其中约 95%是个人或桌面打印机,工业级 3D 打印机出货量虽只增加了 5%。但从销售收入来看,工业级 3D 打印机占总收入的 80%。所以,虽然消费级设备支撑了出货量,但工业级设备支撑了整个行业的销售收入,未来工业级 3D 打印设备是行业收入增长的主力军。

近几年来,我国 3D 打印市场呈现出稳中向好的态势。因此,越来越多的企业想要分这块大蛋糕,纷纷进入该领域,目前中国所有 3D 打印相关企业中,约有 46.9%是 2016 年以后进入 3D 打印市场的。当前中国市场的主流设备品牌包括联泰、EOS、华曙、铂力特、3DSystems、GE、Stratasys、惠普等,多为国外品牌。

我国 3D 打印产业虽然取得了长足的发展,但发达国家还有较大差距,关键技术滞后、关键装备与核心器件严重依赖进口的问题依然较为突出。此外,中国的专用材料发展滞后,目前国内只开发出钛合金、高强钢等几十种金属,材料成形品性能普遍不高。而行业领军企业及巴斯夫等材料企业纷纷布局专用材料领域,突破一批新型高分子复合材料、高性能合金材料、生物活性材料、陶瓷材料等专用材料。

第四章

产业分析

一、增材行业分析

3D 打印技术,又称增材制造技术,是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。

与传统铸造技术相比,3D 打印技术最大的优势在于不需要模具即可实现各种形状产品的制造。因此,3D 打印技术特别适合应用于利用模具铸造困难、形状复杂、个性化强的产品。传统制造技术中,单个模具价格很高、加工周期长,但使用模具有助于提高产品的一致性,便于流水线生产,降低批量生产的成本。另一方面,由于研发阶段产品外形常需多次调试,研发阶段所用模具无法应用于随后的生产中,故模具的使用也大大提高研发成本。3D 打印技术特别适合此类产品的研发,大大缩短研发周期,降低研发成本。

对于一切外形定制化、个性化的产品,3D 打印技术均显示出巨大优势。目前,3D 打印技术已被应用于医疗、模型制造、复杂零件制造、航空航天等领域,表现出巨大潜力。从以上意义上讲,3D 打印技术的

出现,首先是一种生产方式的创新,解决了传统铸造弊端及其无法解决的问题。

从更广阔的层面思考,3D 打印技术更是一种革命。3D 打印技术的应用可满足消费者的定制化需求,将其与互联网、物联网、智能物流结合,则有可能催化产生全新的生产模式和商业模式。

在传统生产方式的前提下,每个产业存在从原材料供应商→生产商→品牌商→分销商→零售商→消费者的价值链条,在这样的链条中,每一个节点满足其下一个节点的需求,最终由零售商满足消费者的需求,由消费者产生的消费需求无法直接传导至生产商。随着互联网技术和理念的成熟,目前已允许消费者将消费需求直接传导给生产商、品牌商,甚至原材料供应商。3D 打印的广泛应用,恰能帮助上述信息的直接传导产生直接的价值,即每个节点可能直接为消费需求负责,从而形成有别于传统“价值链”的“价值网”。

由价值链向价值网转变,是在当今市场、科技等大背景下的必然趋势,而缺少了 3D 打印技术,此转变无法实现。

目前,3D 打印技术仍处于技术发展阶段;也由于受到技术的限制,3D 打印对新的商业模式参与仍较少。整个 3D 打印市场可分为上游 3D

打印原材料、中游 3D 打印机制造、下游 3D 打印服务、以及外围技术培训等。

对于一个较成熟的产业,往往是由下游需求带动上游的供应,继而带动周边产品;而对于技术仍处于发展当中、市场仍待发育的 3D 打印产业来讲,境况有所不同,即:目前 3D 打印的发展仍然受到 3D 打印原材料发展及 3D 打印机技术发展的制约。可用的原材料,在很大程度上决定了对应可用的 3D 打印技术,进而决定了相关产品可应用于何种领域;某些领域虽然也符合定制化、个性化等特征,但由于其对应的原材料无法在现有的 3D 打印技术下进行加工,市场就无法放开。例如,铝合金是目前使用最广泛的结构材料,但目前可用于 3D 打印的铝合金仅 1-2 种。

原材料的发展仍是制约 3D 打印技术广泛应用的主要因素。按照所使用的原材料不同,可将 3D 技术分为金属 3D 打印、高分子 3D 打印、陶瓷 3D 打印、生物 3D 打印等。其中金属 3D 打印技术多属于工业级,其壁垒远高于高分子 3D 打印;而陶瓷、生物 3D 打印技术仍多处于研发状态。

目前无论是 3D 打印技术,还是相关市场都处于急速发展期。2011年全球 3D 打印行业整体收入约 17.14 亿美元,到 2015 年行业整体收

入已达到 51.65 亿美元,近五年年均增速超过 30%。未来几年高增速有望持续,到 2018 年,全球 3D 打印行业整体收入将超过 100 亿美元,我国 3D 打印市场有望超过 100 亿人民币;目前正是布局 3D 打印产业的最佳时期。

从整个产业链来看,上游 3D 打印材料和中游 3D 打印设备制造的产值分别占整个 3D 打印市场的 37%和 39%,远高于 3D 打印服务 24%。这一分布特征也表现了材料和技术发展先于市场培育的特征。

在我国产业升级的大变革背景下,3D 打印技术自然而然得到国家层面的重视。特别是 2015 年工信部发布《国家增材制造(3D 打印)产业发展推进计划(2015-2016)》,首次明确将 3D 打印列入了国家战略层面,指出对 3D 产业的发展做出了整体计划。到 2016 年,初步建立较为完善的增材制造产业体系,整体技术水平保持与国际同步,在航空航天等直接制造领域达到国际先进水平,在国际市场上占有较大的市场份额。

目前来看,3D 打印发展迅速,但也受到一定的制约,产业发展规模仍较小。根据我们的分析,原材料开发壁垒远高于提供 3D 打印服务的壁垒,原材料的发展仍是主要的 3D 打印技术发展的主要制约因素。发力原材料,特别是金属原材料,将有可能获得产业链中的最厚利润。

《国家增材制造(3D 打印)产业发展推进计划(2015-2016)》也指出,3D 打印产业的发展,应“以材料研发作为突破口,鼓励优势材料企业从事 3D 打印专用材料研发和生产,针对航空航天、汽车、文化创意、生物医疗等领域的重大需求,突破一批 3D 打印专用材料。”为此,我们认为应首先看好上游材料的发展;对于下游,我们看好 3D 打印技术在附加价值更高的航空航天、医疗等领域的应用。

二、增材市场分析预测

2018 年我国增材制造产业规模有望达到 18.3 亿美元左右。另据中国增材制造产业联盟统计,2018 年中国增材制造产业增速维持在 25%以上,同时提供增材制造服务的企业数量已经超过 500 家。

事实上,中国增材制造技术经过近三十年的发展,从基础理论研究到关键设备的自主研发再到应用领域的不断拓展,都取得了较为丰硕的成果。

在我国,增材制造技术经过多年的发展,已经形成了一条完整的生态链。经过相关查阅资料,当下业界对增材制造技术的生态链有两种表述,一种是增材制造技术的生态链主要涉及逆向工程、软件提供商、服务提供商、系统提供商和材料五个部分;另一种是将增材制造技术的生态链概括为上游、中游、下游三层。其中,上游为增材制造

材料与软件的研发制造层,中游为增材制造设备研发制造层,下游为面向消费者和企业的应用层。

材料是增材制造技术发展的重要物质基础,材料的性能决定了增材制造能否有更广泛的应用。发展至今,增材制造的材料种类已从过去的塑料成型扩展到了树脂、石墨、陶瓷、金属以及有机生物材料。根据 3D 科学谷的市场调研,当前中国增材制造市场在树脂、尼龙、PLA、钛合金、不锈钢等材料的需求上占主导地位。

总体上,我国增材制造材料发展较为迅速,生产商大都围绕增材制造设备以及应用展开对材料体系的研制,另外还有一些从事化工龙头的企业加入。

目前,国内从事增材制造材料生产的代表企业有银禧科技(塑料)、瑞熙钛业(钛及钛合金)、铂力特(金属)、飞而康(金属)、华曙高科(尼龙和金属)、联泰科技(树脂)、极光尔沃(PLA)、闪铸科技(ABS 和 PLA)、金石三维(光敏树脂和 ABS)、盈普(高分子粉体)、中瑞科技(树脂、金属、尼龙、陶瓷、覆膜砂等)、迅实科技(光敏树脂和光固化蜡)、长朗科技(热塑性塑料)、敬业增材(金属粉末)、赛隆金属(金属粉末及粉末冶金制品)、光华伟业(PLA)、万华化学(光敏树脂和 TPU)、捷诺飞(生物材料)等。

与国外发达国家相比,增材制造软件依然是我国整个增材制造技术生态链发展的短板。尽管我国已经意识到软件在增材制造过程中的重要性,但我国的增材制造软件开发,在学术方面,更多是集中在科研课题和国家重点项目上;商业方面,通用型的增材制造软件我国依然匮乏,期待未来能有国有软件厂商能打破这一僵局。

当前光固化的设备占据中国市场主流,占比为 39.8%,其次是选择性激光熔化及材料挤出设备。事实上,自 20 世纪 80 年代中期 SLA 成型技术发展以来,国内外已经出现了十几种不同的增材制造成型技术,目前在我国主流的增材制造技术包括 SLA 技术、SLM 技术、SLS 技术、DLP 技术、FDM 技术、LMD 技术等。

具体而言,国内 SLM 设备制造的厂商主要包括铂力特、永年激光、汉邦科技、金石三维、易加三维、数造科技、西帝摩等;SLS 设备制造厂商以银禧科技、华曙高科、华科三维、盈普、中瑞科技、隆源成型、易博三维等为代表;SLA 设备制造厂商主要有联泰科技、极光尔沃、中瑞科技、金石三维、数造科技、长朗三维等;DLP 设备制造厂商则以黑格科技、创必得、大族激光、闪铸科技、迅实科技、先临三维、恒通等为代表;FDM 设备制造的典型厂商有弘瑞、创必得、西通电子、德迪、

先临三维、长朗三维等;LMD 设备制造的厂商代表有煜宸激光、鑫精合、辉锐集团、天弘激光等。

中国增材制造技术正处于快速发展初期,整个行业“小而散、同质化”的现象较为严重,即企业数量越来越多,但真正上规模的少,大部分企业都是在靠卖设备生存。与发达国家相比,我国的增材制造生态链建设在材料、软件、成型技术、服务等指标上还有很大差距。

因此,我国增材制造技术的规模化应用,还有很长的路要走。围绕增材制造技术的生态链,接下来几年会有更多的企业通过不断攻克新技术、建立新的合作伙伴关系,引导增材制造技术进一步向生产制造方向演化。同时,随着物联网、机器学习和人工智能等技术的发展,未来增材制造有望真正以附加值创造的方式与传统制造业深度结合,重塑企业的竞争力。

第五章

产品规划分析

一、产品规 划

项目主要产品为增材,根据市场情况,预计年产值 5365.00 万元。

采取灵活的定价办法,项目承办单位应当依据原辅材料的价格、加工内容、需求对象和市场动态原则,以盈利为目标,经过科学测算,确定项

目产品销售价格,为了迅速进入市场并保持竞争能力,项目产品一上市,可以采取灵活的价格策略,迅速提升项目承办单位的知名度和项目产品的美誉度。

二、建设规模

(一)用地规模

该项目总征地面积 6816.74 平方米(折合约 10.22 亩),其中:净用地面积 6816.74 平方米(红线范围折合约 10.22 亩)。项目规划总建筑面积 9407.10 平方米,其中:规划建设主体工程 6738.74 平方米,计容建筑面积 9407.10 平方米;预计建筑工程投资 831.93 万元。

(二)设备购置

项目计划购置设备共计 87 台(套),设备购置费 677.52 万元。

(三)产能规模

项目计划总投资 2371.11 万元;预计年实现营业收入 5365.00 万元。

第六章

项目选址研究

一、项目选址

该项目选址位于 xxx 保税区。

内蒙古自治区,简称内蒙古,中华人民共和国省级行政区,首府呼和浩特。地处中国北部,地理上位于北纬 37°24′-53°23′,东经97°12′-126°04′之间,东北部与黑龙江、吉林、辽宁、河北交界,南部与山西、陕西、宁夏相邻,西南部与甘肃毗连,北部与俄罗斯、蒙古接壤,属于四大地理区划的西北地区。内蒙古自治区地势由东北向西南斜伸,呈狭长形,全区基本属一个高原型的地貌区,全区涵盖高原、山地、丘陵、平原、沙漠、河流、湖泊等地貌,气候以温带大陆性气候为主,地跨黄河、额尔古纳河、嫩江、西辽河四大水系。截至 2019 年末,内蒙古总面积118.3 万平方公里,辖 9 个地级市、3 个盟,共有 23 个市辖区、11 个县级市、17 个县、49 个旗,3 个自治旗;常住人口 2539.6 万人;实现地区生产总值 17212.5 亿元,第一产业增加值 1863.2 亿元,增长 2.4%;第二产业增加值 6818.9 亿元,增长 5.7%;第三产业增加值 8530.5 亿元,增长 5.4%。

园区是 1999 月被省政府批准的省级园区。园区规划面积 15 平方公里。全区工业企业 300 家,其中“三资”企业 65 家,骨干企业 20 家,工业总产值 80 亿元,比上年增长 11.3%。园区始终把招商引资工作放在首位,2016 年利用外资 6000 万元,今年到位境外资金 8500 万元,建成和正在建设的合资项目 25 个。通过几年发展,我市装备制造业规模不断扩大、产品种类逐步增多、产品档次不断提升,初步形成了以乘用车、重型汽车、专用车及零部件为主的汽车制造,以煤炭综采设备为主的煤矿及矿用设备制造,以风机整机组装及叶片、塔筒等零部件制造为主的风力发电设备制造

和以压力容器为主的化工设备制造的装备制造产业体系。园区规划面积 50平方公里,启动区面积为 10 平方公里,处于多条高速公路交织地带,是贵州省东西、南北交通节点城市,也是陆路出海通道必经之地。铁路与公路交通极其便利。目前园区内已成为全省重要的经济增长极,是发挥自身资源优势与产业集群效应的重要平台。

项目建设区域以城市总体规划为依据,布局相对独立,便于集中开展科研、生产经营和管理活动,并且统筹考虑用地与城市发展的关系,与项目建设地的建成区有较方便的联系。场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。

项目周边市场存在着巨大的项目产品需求空间,与此同时,项目建设地也成为资本市场追逐的热点,而且项目已经列入当地经济总体发展规划和项目建设地发展规划,符合地区规划要求。

二、用地控制指标

投资项目占地税收产出率符合国土资源部发布的《工业项目建设用地控制指标》(国土资发【2008】24 号)中规定的产品制造行业占地税收产出率≥150.00 万元/公顷的规定;同时,满足项目建设地确定的“占地税收产出率≥150.00 万元/公顷”的具体要求。建设项目平面布置符合行业厂房建设和单位面积产能设计规定标准,达到《工业项目建设用地控制指标》(国土资发【2008】24 号)文件规定的具体要求。投资项目土地综合利用

率 100.00%,完全符合国土资源部发布的《工业项目建设用地控制指标》(国土资发【2008】24 号)中规定的产品制造行业土地综合利用率≥90.00%的规定;同时,满足项目建设地确定的“土地综合利用率≥95.00%”的具体要求。

三、地总体要求

本期工程项目建设规划建筑系数 68.64%,建筑容积率 1.38,建设区域绿化覆盖率 5.67%,固定资产投资强度 169.67 万元/亩。

土建工程投资一览表

序号 项目 单位 指标 备注 1

占地面积

平方米

6816.74

10.22 亩

2

基底面积

平方米

4679.01

3

建筑面积

平方米

9407.10

831.93 万元

4

容积率

1.38

5

建筑系数

68.64%

6

主体工程

平方米

6738.74

7

绿化面积

平方米

533.45

8

绿化率

5.67%

9

投资强度

万元/亩

169.67

四、节约用地措施

土地既是人类赖以生存的物质基础,也是社会经济可持续发展必不可少的条件,因此,项目承办单位在利用土地资源时,严格执行国家有关行

业规定的用地指标,根据建设内容、规模和建设方案,按照国家有关节约土地资源要求,合理利用土地。投资项目建设认真贯彻执行专业化生产的原则,除了主要生产过程和关键工序由项目承办单位实施外,其他附属商品采取外协(外购)的方式,从而减少重复建设,节约了资金、能源和土地资源。

五、总图布置方案

1、按照建(构)筑物的生产性质和使用功能,项目总体设计根据物流关系将场区划分为生产区、办公生活区、公用设施区等三个功能区,要求功能分区明确,人流、物流便捷流畅,生产工艺流程顺畅简捷;这样布置既能充分利用现有场地,有利于生产设施的联系,又有利于外部水、电、气等能源的接入,管线敷设短捷,相互联系方便。按照建(构)筑物的生产性质和使用功能,项目总体设计根据物流关系将场区划分为生产区、办公生活区、公用设施区等三个功能区,要求功能分区明确,人流、物流便捷流畅,生产工艺流程顺畅简捷;这样布置既能充分利用现有场地,有利于生产设施的联系,又有利于外部水、电、气等能源的接入,管线敷设短捷,相互联系方便。

场区道路布置满足安装、检修、运输和消防的要求,使货物运输顺畅,合理分散物流和人流,尽量避免或减少交叉,使主要人流、物流路线短捷、运输安全。

2、场区绿化设计要达到“营造严谨开放的交流环境,催人奋进的工作环境,舒适宜人的休闲环境,和谐统一的生态环境”之目的。

消防水源采用低压制,同一时间内按火灾一次考虑,室内外均设环状消防管网,室外消火栓间距不大于 100.00 米,消火栓距道路边不大于 2.00米。场内供水采用生活供水系统、消防供水系统、生产补给水系统,消防供水系统在场区内形成供水管网。

3、投资项目消防对象主要是厂房、库房、办公场地等;因此,室外消防用水量按 25.00L/S,火灾延续时间按 2.00 小时计,同一时间发生火灾次数按一次考虑;室内消防栓用水量 15.00L/S,火灾延续时间按 2.00 小时计,室内外的消防栓均按规范间距要求布置。

投资项目供电负荷等级为Ⅲ级,场区降压站电源取自国家电网,电源符合国家标准《供配电系统设计规范》(GB50052)的规定。

4、短距离的运输任务将利用社会运力解决,基本可以满足各类运输需求,因此,投资项目不考虑增加汽车运输设备。场内运输系统的设计要注意物料支撑状态的选择,尽量做到物料不落地,使之有利于搬运;运输线路的布置,应尽量减少货流与人流相交叉,以保证运输的安全。外部运输应尽量依托社会运输力量,从而减少固定资产投资;主要产成品、大宗原材料的运输,应避免多次倒运,从而降低运输成本且提高运输效率。

车间采用传统的热水循环取暖形式,其他厂房及办公室采用燃气辐射采暖形式。有空调要求的办公室和生活间夏季设置空调,空调温度范围要求为 26.00℃-28.00℃,空调设备采用分体式空调控制器。

六、选址综合评价

该项目拟选址在项目建设地,所选区域土地资源充裕,而且地理位置优越、地形平坦、土地平整、交通运输条件便利、配套设施齐全,符合项目选址要求。项目承办单位通过对可供选择的建设地区进行缜密比选后,充分考虑了项目拟建区域的交通条件、土地取得成本及职工交通便利条件,项目经营期所需的内外部条件:距原料产地的远近、企业劳动力成本、生产成本以及拟建区域产业配套情况、基础设施条件等,通过建设条件比选最终选定的项目最佳建设地点―项目建设地,投资项目建设区域供电、供水、道路、照明、供汽、供气、通讯网络、施工环境等条件均较好,可保证项目的建设和正常经营,所选区域完善的基础设施和配套的生活设施为项目建设提供了良好的投资环境。

第七章

土建工程设计

一、建筑工程设计原则

建筑物平面设计以满足生产工艺要求为前提,力求生产流程布置合理,尽量做到人货分流,功能分区明确,符合《建筑设计防火规范》(GB50016)要求。项目承办单位本着“适用、安全、经济、美观”的原则并遵照国家建筑设计规范进行项目建筑工程设计;在满足投资项目生产工艺设备要求的前提下,力求布局合理、造型美观、色彩协调、施工方便,努力建设既有时代感又有地方特色的工业建筑群的新形象。

应留有发展或改、扩建余地。应有完整的绿化规划。功能分区合理,人流、车流、物流路线清楚,避免或减少交叉。建筑布局紧凑、交通便捷、管理方便。本次设计融入了全新的设计理念,以建设和谐企业为前提条件,以建筑“功能、美观、经济”三要素前提为出发点,全盘考虑场区可持续发展、建筑节能等各方面要素,极力打造一个功能先进、生产高效的现代化企业。

二、土建工程设计年限及安全等级

建筑结构的安全等级是根据建筑物结构破坏可能产生的后果(危及人的生命、造成经济损失)的严重性来划分的,本工程结构安全等级设计为Ⅰ级。根据《建筑抗震设计规范》(GB50011)的规定,投资项目建筑物结构设计符合根据《建筑抗震设计规范》(GB50011)的规定,投资项目建筑物结构设计符合Ⅷ度抗震设防的要求,基本地震加速度值为 0.20g,设计地震分组为第一组,抗震设防类别为乙类,各建筑物均采取相应抗震构造设计。

三、建筑工程设计总体要求

建筑设计是根据生产工艺提出的设计条件结合总图位置,进行平面布局,空间组合,结构选型,全面考虑施工、安装及检修要求,既要充分满足生产经营要求,又要注重建筑的形象。该项目建筑设计及结构设计在满足生产工艺要求的前提下,尽量贯彻工业厂房联合化、露天化、结构轻型化原则,并注意因地制宜。对采光通风、保温隔热、防火、防腐、抗震等均按国家现行规范、规程和规定执行,努力做到场房设计保障安全、技术先进、经济合理、美观适用,同时方便施工、安装和维修。

四、土建工程建设指标

本期工程项目预计总建筑面积 9407.10 平方米,其中:计容建筑面积9407.10 平方米,计划建筑工程投资 831.93 万元,占项目总投资的 35.09%。

第八章

工艺可行性分析

一、技术管理特点

按目前市场的需求情况,原料存储时间约为 20-30 天,存放在原料仓库内;投资项目将建设原料仓库和辅助材料仓库,以满足投资项目生产的需要。验收材料应根据领料单或原始凭证进行清点实测验收,发现规格、质量、数量不符等问题应及时与有关人员联系处理;做好原辅材料原始记

录和资料积累,及时准确地做好月报、季报和各种统计报表工作。所需原料应经济易得,就不同原料的投资、成本、生产效率进行比较,选择最为适合、最经济的原料。

项目产品流程化设计:在设计阶段引入 CAE 分析,避免过多的“设计―分析循环”,明显减少设计总费用和设计周期。产品的流程化设计包括从三维的几何造型设计、ANSYS 分析到产品实验,通过 CAD 和 CAE 的平滑过度双向互动,进而避免 CAD 与 CAE 的重复工作,提高设计效率,通过流程化控制提高设计制造质量的稳定性。投资项目原材料采购和使用均由产品数据管理技术(PDM)软件支持,并且完整地与企业资源计划(ERP)软件结合起来,在相关行业实现较高程度的技术信息化管理。项目产品制造执行系统(MES):制造执行系统的作用是在项目承办单位信息系统中承上启下,在生产过程与管理之间架起了一座信息沟通的桥梁,对生产过程进行及时响应,使用准确的数据对生产过程进行控制和调整。

二、项目工艺技术设计方案

工艺技术先进性与适用性相结合的原则:项目产品生产技术含量较高而产品质量的稳定性、可靠性却取决于其生产技术及采用工艺是否先进;为适应市场竞争要求,根据项目项目产品生产纲领、生产特性并结合项目承办单位的自身条件,本着高起点、高效率的设计原则,采用先进、可靠、适用技术,制订合理、简捷、科学先进的生产工艺,确保产品质量稳定可靠。对于项...

第3篇:“增材制造与激光制造”重点专项2017项目(编制大纲)

“增材制造与激光制造”重点专项

2016项目申报指南

项目申报全流程指导单位:北京智博睿投资咨询有限公司

— 1 —

依据《国家中长期科学和技术发展规划纲要(2006-2020年)》和《中国制造2025》,科技部会同有关部门组织开展了《国家重点研发计划增材制造与激光制造重点专项实施方案》编制工作,在此基础上启动增材制造与激光制造重点专项2016项目,并发布本指南。

本专项总体目标是:突破增材制造与激光制造的基础理论,取得原创性技术成果,超前部署研发下一代技术;攻克增材制造的核心元器件和关键工艺技术,研制相关重点工艺装备;突破激光制造中的关键技术,研发高可靠长寿命激光器核心功能部件、国产先进激光器,研制高端激光制造工艺装备;到2020年,基本形成我国增材制造与激光制造的技术创新体系与产业体系互动发展的良好局面,促进传统制造业转型升级,支撑我国高端制造业发展。

本专项按照“围绕产业链,部署创新链”的要求,围绕增材制造与激光制造的基础理论与前沿技术、关键工艺与装备、创新应用与示范设置任务。

按照突出重点、分步实施的原则,2016年首批在增材制造与激光制造2个方向上启动29个项目。

1.增材制造

1.1高性能金属结构件激光增材制造控形控性研究(基础前沿类) 研究内容:针对激光熔覆沉积大型金属结构件和激光选区熔 — 2 —

化成形复杂金属结构件,研究激光/金属热交互作用及熔池冶金动力学行为和超高温移动熔池非平衡凝固行为,揭示增材制造构件成形的几何特征和沉积态组织形成规律;研究成形过程的应力应变和变形开裂规律,提出预防变形开裂的工艺准则;研究增材制造过程及后续热处理过程材料组织形成规律,形成优化的热处理制度;研究增材制造工艺条件下合金成分与材料组织和性能的关系,形成增材制造专用合金的设计原则;研究金属结构件增材制造的质量控制与评价方法,形成质量评价规范与标准。

考核指标:熔覆沉积成形结构件最大方向成形尺寸≥3m,变形量≤0.5mm/100mm;选区熔化成形构件最大方向成形尺寸≥400mm,变形量≤0.2mm/100mm;成形结构件的综合力学性能接近或相当于同种金属合金的锻件水平;成形构件实现工程试用。

实施年限:5年 拟支持项目数:2项

有关说明:优先支持紧密围绕国家重大工程应用需求的产学研合作研究。

1.2高效高精度激光增材制造熔覆喷头的研发(重大共性关键技术类)

研究内容:研究送粉式激光增材制造喷头的粉末输送特性、影响因素以及粉末输送质量的评价方法,提出高效、高精度制造的粉末输送与增材制造工艺的匹配原则;研究送粉激光增材制造

— 3 —

熔覆喷头结构的优化设计方法,包括模块化设计、送粉通道结构优化设计、水冷结构优化设计;研究喷头工作距离自动调控装置及喷头工作距离变化条件下的工艺技术。

考核指标:匹配激光器功率范围100~20000W,连续开光熔覆时间≥8h,温升≤200℃,可自动调节工作距离处的光斑直径。

实施年限:5年 拟支持项目数:1-2项

1.3高性能大型金属结构件激光同步送粉增材制造工艺与装备(重大共性关键技术类)

研究内容:分层处理、路径规划及工艺过程等全流程控制软件;高效高精度增材制造工艺特性及精度和效率匹配控制策略;防污染、防反射光路设计,长程高精度多路粉体同步送进技术及增材制造过程气氛控制技术;成形过程实时可视监控技术与成形质量参数的特征辨识与智能处理技术;大跨度高精度激光束/数控工作台或机器手的联合运动控制技术。研制高性能大型金属构件激光同步送粉高效高精度增材制造工艺装备,在开展工艺试验基础上,形成工艺数据库以及工艺、装备、制件的相关标准规范。

考核指标:装备最大成形尺寸≥3500mm,成形效率≥450cm3/h(以Ti-6Al-4V合金沉积为参考),连续工作时间≥240h。

实施年限:5年 拟支持项目数:2项

— 4 —

有关说明:企业牵头,优先支持紧密围绕国家重大工程应用需求的产学研合作研究。

1.4粉末床激光选区熔化增材制造工艺与装备(重大共性关键技术类)

研究内容:高精度成形的装备设计原理与实现方法(包括成形平台定位精度、光斑定位精度、粉末预热温度的设计与控制方法等);高效率成形的装备设计原理与实现方法(包括多激光束、多振镜的应用,更高效的铺粉方式等);先进成形软件设计(包括分层厚度、填充策略等);装备运行的高稳定性和可靠性设计与制造;高可靠性气氛控制;制造过程的温度、几何、气氛等参数的实时监测、诊断与智能处理;研制相应的成形装备,在工程中开展试用,建立相关装备的工艺数据库和标准规范。

考核指标:(1)高稳定性粉末床激光选区熔化增材制造工艺与装备的指标:支持钛合金、高强合金钢、高强铝合金、高温合金等4类金属材料复杂构件的高精度成形;单激光器成形效率≥45cm3/h(以钛合金为参考);成形尺寸范围≥250mm×250mm ×350mm;成形几何精度≤±50μm,表面粗糙度≤Ra6(以成形标准试块为参考);装备的无故障运行时间≥2000h。(2)大尺寸粉末床激光选区熔化增材制造工艺与装备:支持钛合金、高强合金钢、高强铝合金、高温合金等4类金属复杂构件的高效率成形;制造效率达到≥120cm3/h(以钛合金为参考);成形尺寸范围

— 5 —

≥500mm×500mm ×500mm;成形几何精度≤±100μm,表面粗糙度≤Ra12(以成形标准试块为参考);装备的无故障运行时间≥500h。

实施年限:5年 拟支持项目数:2项

有关说明:企业牵头,优先支持紧密围绕国家重大工程应用需求的产学研合作研究;高稳定性粉末床激光选区熔化增材制造工艺与装备、大尺寸粉末床激光选区熔化增材制造工艺与装备可以单独申报。

1.5高效高精非金属增材制造工艺与装备(重大共性关键技术类)

研究内容:面成形光固化增材制造技术;高性能树脂及其复合材料的高精度和大型构件增材制造技术;大尺寸铸造砂型高效3D打印技术;研制相应的工艺装备,建立相应工艺装备的适应材料、设备可靠性、环保安全等标准规范。

考核指标:(1)面成形光固化增材制造装备的成形效率≥2×106 mm3/h, 成形精度≤±0.02mm;(2)高性能树脂及其复合材料大型构件增材制造装备,最大成形方向尺寸≥2m,成形精度≤±0.1mm,制件强度性能≥100MPa;(3)大尺寸铸造砂型高效增材制造装备最大方向打印尺寸≥2m,层厚0.2mm~0.8mm可调,成形效率≥250L/h,砂芯抗压强度≥6MPa,抗拉强度≥1.4MPa。

实施年限:5年

— 6 —

拟支持项目数:3项

有关说明:企业牵头。面成形光固化增材制造工艺与装备、高性能树脂及其复合材料大型构件增材制造工艺与装备、大尺寸铸造砂型高效增材制造工艺与装备可以单独申报。

1.6个性化植入假体增材制造关键技术(重大共性关键技术类) 研究内容:针对植入假体和精准诊疗辅助装置个性化制造的需求,研发符合临床诊疗需要的个性化假体的快速建模、分析软件和增材制造工艺软件;研制支持良好生物相容性材料的增材制造装备;开展医学临床应用研究,建立增材制造个性化假体的质量标准规范。

考核指标:工艺装备支持3种以上个性化假体的成形;个性化假体的设计制造时间不超过72h;不少于50例的临床试用或应用。

实施年限:5年 拟支持项目数:5项

有关说明:临床应用单位牵头、产学研联合申报,强化各主体的优势作用。

1.7基于互联网的3D打印制造创新应用(应用示范) 研究内容:针对创新创意设计和产品快速原型设计的需求,研究基于Web的三维轻量化建模技术,开发大众参与的3D打印创新创意设计软件,开发支持产品个性定制化设计、设计师协同创意设计以及3D打印的云服务应用平台;针对教育、文化创意、

— 7 —

消费品等领域的需求,开发低成本、网络化、智能化多材质彩色3D打印设备,并实现产业化应用。

考核指标:(1)面向3D打印的云服务平台指标:支持在线个性化定制、创新创意设计、订单交易等功能,提供20种以上相关云服务,支持1万人以上同时在线,实现初期注册用户10万人以上用户规模,形成不少于500个应用案例。(2)普及型智能彩色3D打印机研制及其产业化指标:自主研制低成本、多用途、网络化、智能彩色3D打印设备,实现市场销售2000台以上。

实施年限:5年

拟支持项目数:面向3D打印的云服务平台3项、普及型智能彩色3D打印机研制及其产业化5项。

经费配套:其他经费与中央财政经费比例不低于2:1 有关说明:面向3D打印的云服务平台和普及型智能彩色3D打印机研制及其产业化可以单独申报;企业牵头申报。

2.激光制造

2.1 大功率激光焊接机理研究(基础前沿类)

研究内容:面向国家重大需求,研究激光焊接能量耦合机理,探索羽辉形成机制及其对光束传输与吸收的影响规律,揭示厚壁构件超窄间隙大功率激光焊接的焊缝熔池熔体非平衡凝固过程及接头组织特征与形成规律;研究激光焊接冶金特性,发展超厚超窄间隙激光焊接优质焊缝凝固组织控制新方法及焊缝组织性能同 — 8 —

步调控新技术。

考核指标:突破厚度≥100mm厚板超窄间隙焊接;高强钢、铝合金等典型材料焊态接头强度系数≥90%;完成2项以上工业应用。

实施年限:5年 拟支持项目数:1-2项

有关说明:优先支持结合国家重大工程需求,开展产学研合作研究。

2.2 高性能激光晶体制造工艺与装备(重大共性关键技术类) 研究内容:面向制造用先进激光器的重大需求,研究激光晶体/光学晶体与激光器性能参数的关联性,掌握以过氧化物为代表的高熔点激光晶体生长工艺、制备技术及制造装备集成技术;研究晶体加工表面损伤机理、表面完整性加工新工艺、控制技术以及加工技术;发展激光晶体/光学晶体高效低损伤超精密磨削、抛光等装备集成技术。

考核指标:研发高熔点过氧化物激光晶体制备工艺与装备,支持最高可生长晶体熔点不低于2400°,可生长激光晶体尺寸大于30mm×30mm;研发激光晶体/光学晶体加工工艺与装备,加工粗糙度Ra≤1nm、面型精度pv≤λ/6。

实施年限:5年 拟支持项目数:1-2项

2.3制造用工业化皮秒/飞秒激光器技术(重大共性关键技术类)

— 9 —

研究内容:针对精细增材制造与激光制造需求,研究高重复频率皮秒/飞秒激光的产生、放大、传输、操控等技术,探索激光时间、空间分布变换等关键物理机制和过程;研发关键功能器件,开展激光振荡输出、功率提升、光束质量控制、频率变换等关键技术研究,提出功率和稳定性提升的方案;发展工业化皮秒/飞秒激光器系统集成和模块化组装技术。

考核指标:开发出高可靠性120W皮秒激光器与40W飞秒激光器,单脉冲能量大于50μJ;解决80W皮秒激光器与30W飞秒激光器产品化问题;项目验收时实现制造用的皮秒激光器200套/飞秒激光器100套以上的销售量。

实施年限:5年 拟支持项目数:1-2项 有关说明:企业牵头申报。

2.4复杂构件表面的激光精细制造工艺与装备(重大共性关键技术类)

研究内容:面向国家重大需求,突破激光光束路径规划及高速扫描、激光制造装备在线监测与补偿、光学检测辅助柔性夹持定位等关键技术;研制激光光束空间高速传输定位、光束空间指向/功率实时校正等机构;研究面向航天典型零件表面图案激光精密加工、航空复杂构件的激光修理及环型薄壁化铣件激光刻型等技术与工艺;研究成套多轴光、机制造装备系统集成。

— 10 —

考核指标:研制复杂图案精密加工、构件修理、环型薄壁化铣件刻型等不少于3类高端激光制造工艺与装备。图案制造尺寸误差小于0.02mm(以1m2全复杂图案考核);零件特征结构修理尺寸误差小于0.005mm;第2次重复刻型精度误差小于0.06mm(以直径1m以上环型薄壁件考核);在工程中得到实际应用。

实施年限:5年 拟支持项目数:1-2项

有关说明:优先支持紧密围绕航空航天等国家重大工程需求的产学研用合作研发。

2.5激光强化技术重大工业示范应用(应用示范类) 研究内容:面向航空航天、交通等关键部件长寿命及其它高性能需求,研究激光光路控制、加工过程的多自由度运动规划、关键零件激光扫描基准面的三维坐标定位、激光扫描跟踪、质量在线检测等关键技术;研究零件强化过程工艺参数优化的控制方法,进行高可靠性激光强化装备集成研发,建立激光强化工艺数据库,形成工艺规范和标准。

考核指标:针对至少2个应用领域,研发不少于2类激光强化处理的成套工艺与装备,典型构件硬度提升20%以上、疲劳强度提高15-30%及以上、强化结构件压应力层深度最大1.5mm、叶片表面最大残余压应力800MPa,提高寿命80%以上;轨道激光强化处理最大速度不低于50m/h,激光强化后提高铁轨道耐磨寿命

— 11 —

10 倍以上。在典型企业示范应用。

实施年限:5年 拟支持项目数:2项

经费配套:其他经费与中央财政经费比例不低于2:1 有关说明:企业牵头申报;优先支持与航空航天、交通等领域国家重大需求紧密结合的产学研团队;企业牵头申报。

— 12 —

第4篇:增材制造资料

关于“增材制造”相关信息

1、2012年8月,美国增材制造创新研究所成立,联合了宾夕法尼亚州西部、俄亥俄州东部和弗吉尼亚州西部的14所大学、40余家企业、11家非营利机构和专业协会。

2、英国工程与物理科学研究委员会中设有增材制造研究中心,参与机构包括拉夫堡大学、伯明翰大学、英国国家物理实验室、波音公司以及德国EOS公司等15家知名大学、研究机构及企业。

3、德国建立了直接制造研究中心, 主要研究和推动增材制造技术在航空航天领域中结构轻量化方面的应用;法国增材制造协会致力于增材制造技术标准的研究

4、神户大学教授Shirase Keiichi领导的一群研究人员开发出一种机床原型,该机型能够像3D打印机那样制造精密部件。与大多数3D打印机或者机加工切削工具所不同的是,它可以根据一个加工信息和切削条件的数据库,自动制订优化加工流程。

5、欧洲航天局和伯明翰大学研发的金属增材制造新技术:不用激光,也不用电子束,而是一个由一组反射镜聚焦的光束;

6、2014年,台湾清华大学动力机械工程学系与纳米工程研究所教授傅建中及其团队参与了台湾科技部工程司当年全力推动的一项增材制造跨领域研究项目计划,并成功开发一套纳米级3D打印系统,这套平台可以为科研人员提供快速低成本的3D微结构,精度可达150纳米。这项技术将可对先进科技在生物医学、材料工程及物理光学领域的研发产生重大影响。

7、西北工大凝固技术国家重点实验室黄卫东,已经建立了系列激光熔覆成形与修复装备,可满足大型机械装备的大型零件及难拆卸零件的原位修复和再制造。

8、北航突破了钛合金、超高强度钢等难加工大型整体关键构件激光成形工艺、成套装备和应用关键技术,解决了大型整体金属构件激光成形过程零件变形与开裂"瓶颈难题"和内部缺陷和内部质量控制及其无损检验关键技术,飞机构件综合力学性能达到或超过钛合金模锻件. 中国工程院院士、北京航空航天大学教授,中航工业北京航空制造工程研究所研究员、工程院院士关桥; 北京航空航天大学教授王华明。

9、西安交大以研究光固化快速成型(SL)技术为主快速成形制造工程研究中心和快速制造国家工程研究中心,建立了一套支撑产品快速开发的快速制造系统,研制、生产和销售多种型号的激光快速成型设备、快速模具设备及三维反求设备,产品远销印度、俄罗斯、肯尼亚等国,成为具有国际竞争力的快速成型设备制造单位。西安交通大学的卢秉恒院士为代表。

西安交大在新技术研发方面主要开展了LED紫外快速成型机技术、陶瓷零件光固化制造技术,铸型制造技术、生物组织制造技术、金属熔覆制造技术和复合材料制造技术的研究。在陶瓷零件制造的研究中,研制了一种基于硅溶胶的水基陶瓷浆料光固化快速成型工艺,实现了光子晶体、一体化铸型等复杂陶瓷零件的快速制造。 西安交大与中国空气动力研究与发展中心及成都飞机设计研究所合作开展了风洞模型制造技术的研究,围绕测压模型、测力模型、颤振模型和气弹模型等方面进行了研究工作。设计了树脂-金属复合模型的结构方案,采用有限元方法计算校核树脂-金属复合模型的强度、刚度以及固有频率。通过低速风洞试验,研究了复合模型的气动特性,并与金属模型试验数据相对比。强度校核试验显示,模型的整体性能良好,满足低速风洞的试验要求,研制的复合模型在低速风洞试验下具有良好的前景。

复合材料构件是航空制造技术未来的发展方向,西安交大研究了大型复合材料构件低能电子束原位固化纤维铺放制造设备与技术,将低能电子束固化技术与纤维自动铺放技术相结合,研究开发了一种无需热压罐的大型复合材料构件高效率绿色制造方法,可使制造过程能耗降低70%,节省原材料15%,并提高了复合材料成型制造过程的可控性、可重复性,为我国复合材料构件绿色制造提供了新的自动化制造方法与工艺。

10、“南京增材制造(3D打印)研究院”是在江苏省政府领导下,由南京市江宁区政府与卢秉恒院士共同发起创建的一个专门从事“3D打印技术、装备及应用”的科研和成果转化机构,成立于2013年12月8日,位于“南京紫金(江宁)科技创业特别社区”园区内,实行企业化运作。“南京增材制造研究院发展有限公司”是“南京增材制造(3D打印)研究院”的依托公司,注册资本金1亿元人民币。目前已经建成或者正在建设的机构和平台主要包括:西安交通大学-南京江宁区2011协同创新中心“高端制造装备协同创新中心”合作基地、快速制造国家工程研究中心-南京示范中心、中国航天3D打印研究中心、南京市3D打印科技公共技术平台、全国增材制造(3D打印)产业技术创新战略联盟。

11、重庆大学机械学院张正文教授在机械传动国家重点实验室217会议室作了题为“增材制造(3D打印)的现状与发展”的讲座,

12、山东大学增材制造研究中心、山东矿机集团股份有限公司3D打印联合实验室

13、由南京理工大学、德国ConCEPT Laser有限公司和上海福斐科技发展有限公司共同主办的中德金属增材制造技术联合实验室正式挂牌运行。这也是迄今该行业内国内高校中最高水平的国际化联合实验室。3D打印门类众多。从材料上分,有树脂、塑料、金属、陶瓷等;从能源上分,有激光、电子束、紫外光等;从方法上分,有同轴送粉、立体平版印刷、激光分层实体制造、选择性激光烧结/熔融等。德国ConCEPT Laser有限公司一直被视为最具前景的金属激光熔铸领域的先锋,同时也是该领域的顶级供应商之一。上海福斐科技发展有限公司则始终活跃于国内三维扫描,并迅速成为该行业的国内领导者。

14、被誉为“中国立体打印机第一人”的华中科技大学材料科学与工程学院副院长、3D打印研究专家、滨湖机电董事长史玉升,湖北3D打印产业技术创新战略联盟理事长。华中科技大学教授史玉升团队研发世界最大激光快速制造装备入选。目前,全球3D打印,原理都是薄型层面堆叠,国内以华中科技大学、西安交通大学、清华大学为代表,运用技术各有侧重。华科侧重于金属材料打印的研究,用金属粉末为材料,靠激光烧结成型,这种技术难度大,但好处多。

15、西安交通大学卢秉恒院士、北京航空航天大学王华明教授、清华大学林峰教授分别针对非金属类、金属类、生物类增材制造技术作了主题报告,海尔集团、北京隆源自动化成型系统有限公司代表企业界作了主题报告。

16、2013年2月25日,澳大利亚莫纳什大学增材制造中心挂牌成立,中心主任是莫纳什大学材料工程系吴鑫华教授,吴鑫华教授同时还担任澳大利亚联邦轻金属研究中心主任。莫纳什大学增材制造中心的吴新华与同事们以其合作单位法国公司“赛峰微透博”的一款引擎为基础,用3D打印技术制造了被称为辅助动力组件的装置,它能发电,但不产生推力,有众多用途,包括可辅助启动飞机的主发动机。空客公司、BAE系统公司、赛峰集团微型涡轮公司、欧洲宇航局、NASA兰利实验室等企业和研究机构与吴鑫华教授以及澳大利亚联邦轻金属研究中心长期进行轻金属材料领域的合作,它们对轻金属材料的增材制造技术表现出浓厚的兴趣,而且也是莫纳什大学增材制造中心未来的重要合作伙伴。莫纳什大学增材制造中心主要从事轻金属粉末激光增材制造技术的研究,包括选区激光熔融(SLM)以及直接激光制造(DLF)工艺。吴教授任教于莫纳什大学材料工程系,她是在航空航天和轻金属领域具有国际声誉的顶尖科学家,很显然,她也是一位华人,最早是中科院金属研究所毕业的。据天工社了解,之前她从英国来到澳洲专门负责ARC卓越中心。

17、李建军华中科技大学材料成形与模具技术国家重点实验室主任、教授; 邵新宇华中科技大学副校长、教授。华中科技大学武汉光电国家实验室教授曾晓雁领导的激光先进制造研究团队,完成的“大型金属零件高效激光选区熔化增材制造关键技术与装备(俗称激光3D打印技术)”顺利通过了湖北省科技厅成果鉴定,解决了航空航天复杂精密金属零件在材料结构功能一体化及减重等“卡脖子”关键技术难题。

18、云集中国工程院卢秉恒、关桥、李培根等八位院士,吸引英国增材制造协会主席Graham Tromans,美国机械工程师学会理事长Marc Goldsmith,清华大学、北京航空航天大学、西安交通大学等高校、科研机构以及来自英国、美国、德国、新加坡等国家的200多位增材制造专家学者,第154场中国工程科技论坛——2012年增材制造技术国际论坛暨第六届全国增材制造技术学术会议在武汉隆重召开。

19、上海大学增材制造与组织修复专业

20、西安交通大学的卢秉恒院士、清华大学的颜永年教授、华中科技大学的王树槐教授等是我国快速原型技术研究的先行者,并且都取得了卓著的成就。而黄卫东在国内首先创造性地发展的激光立体成形技术,把快速成形技术从制造“原型”发展到直接制造具有极高力学性能的致密金属零件。

21、国内快速成型系统的科研团队主要包括清华大学颜永年团队、北京航空航天大学王华明团队、华中科技大学史玉升研究团队、西安交通大学卢秉恒团队和西北工业大学黄卫东团队等。

一、颜永年团队(清华大学)

涉及上市公司:海源机械(002529)、科达机电(600499)、南通锻压(300280)。号称“中国3D打印第一人”的颜永年教授曾作为总设计师完成了5台套世界级的我国重装行业和国防上急需的重型液压机设计,包括:中国最大的换热器板片成形压机--4万吨板料成型压机(广州)、世界最大的重型厚壁钢管垂直挤压机--3.6万吨垂直钢管挤压机(包头)、我国最大的精密航空模锻液压机4万吨航空精密模锻压机(西安)、远东地区最大的具有挤压功能的模锻液压机--3万吨核电精密模锻压机(昆山)。2012年4月至今,颜永年为昆山永年先进制造技术有限公司董事长。

早在2003年,科达机电(600499)便与颜永年共同投资设立佛山市科达机电科技开发有限公司,该公司注册资本为50万元人民币,其中公司与颜永年出资比例分别为60%、40%。采用颜永年团队转让的技术,科达机电仅于2010年就生产了1200台4800~7800吨压机,其中许多为出口产品,创造产值约20亿元,为世界压机业界之最。

隶属南通锻压(300280)的"永年重型锻压设备设计研究院"正式揭牌后,成功吸引我国著名工程专家、清华大学教授颜永年团队整体加盟,是南通锻压(300280)近年转型升级一大举措,将进一步加快公司大型液压机和机械压力机研究与开发,加速相关品种升级换代。

1月31日,海源机械(002529)公告正式承认联手昆山永年先进制造技术有限公司,参与建立"3D打印制造实验室"。海源机械称,截至公告发布之日,"3D打印制造实验室"正在筹建中。

二、王华明团队(北京航空航天大学)

涉及上市公司:中航重机(600765)、ST航投(600705)、南风股份(300004)

资料显示,王华明是航空材料与结构研究部"首席科学家",国内激光制造的学术带头人,"北航团队"领头人,在钛合金结构激光快速成型工艺、成套工艺装备及工程化的研究方面有十多年的研究经验。北航材料科学与工程学院王华明教授带领他的创新团队,围绕大飞机等国家重大专项及重大装备制造业发展的战略需求,研制出代表着先进制造技术发展方向、在重大装备制造中具有重大应用价值的“高性能难加工大型复杂整体关键构件激光直接制造技术”,使我国成为目前世界上唯一突破飞机钛合金大型主承力结构件激光快速成形技术,并实现装机应用的国家。在2012国家科技奖励大会上,该项成果荣获国家技术发明一等奖,这也是北航9年来获得的第八项国家科技奖励一等奖。多年来,团队一直与沈阳飞机设计研究所、第一飞机设计研究院、航天一院等单位有着紧密的合作,取得了一系列的成绩。如今,学校在北京市的大力支持下,和中航工业集团公司合作,在北京组建了中航天地激光科技有限公司成果产业化基地。

南风股份子公司所投资的3D打印项目中,也出现了王华明的身影。根据南风股份2012年8月发布的公告,其子公司南方风机研究所将投资"重型金属构件电熔精密成型技术项目",总投资1.68亿元,资金由南方风机研究所自筹。值得注意的是,风机研究所的二股东、持股31%的王华明就是国内3D打印领域最权威的专家之一。据公司内部人士介绍,目前该项目处于研发阶段,南方风机研究所已经在工程化关键技术上已经取得了一定的突破性,并制成了相关样件。一旦研发成功,公司将在技术加工、以及加工过程中所运用的设备生产方面都具备领先优势。

三、史玉升团队(华中科技大学)

涉及上市公司:华工科技(000988)、华中数控(300161)

史玉升现任华中科技大学材料科学与工程学院副院长、材料成形与模具技术国家重点实验室副主任、华中科技大学快速制造中心主任、中国特种加工学会常务理事、中国快速成形委员会副主任委员等,长期从事快速制造(3D打印)、新型农业节水产品开发等方面的研究。2011年,史玉升教授牵头研发的世界最大激光快速制造装备(3D打印机)曾入选"2011年中国十大科技进展新闻"。该团队正力图通过武汉滨湖机电技术产业有限公司使研究成果商业化,滨湖机电的股东中就有资本市场声名显赫的深圳创新投资集团。

2012年在武汉举行的增材制造技术国际论坛上透露,我国首个3D打印工业园将落户武汉东湖高新区。该项目由华中科技大学主导,规划首期用地500亩。相关渠道消息,华中科大旗下公司华中数控(300161)参与了技术研发。

值得注意的是,华中科大未来推动这一产业规模化的平台目前仍未明了,相关各方均拒绝予以置评。该校目前作为实际控制人的上市公司有华工科技(000988)、华中数控(300161)和天喻信息(300205)三家。

四、卢秉恒团队(西安交通大学)

涉及上市公司:昆明机床(600806)、秦川发展(000837)、沈阳机床(000410)、轴研科技(002046)

西安交通大学教授卢秉恒,被视为国内3D打印业的另一先驱人物。他1992年赴美做高级访问学者,发现了快速成形技术在汽车制造业中的应用,回 国后随即转向研究这一领域,1994年成立先进制造技术研究所。卢秉恒现为中国工程院院士,西安交通大学教授,博士生导师。现任西安交通大学机械工程学院院长快速制造国家工程研究中心(筹建)负责人,国务院机械学科评议组召集人,国家基金委工材部第二届咨询委员会委员,国家基金委机械学科评议组负责人,中国机械工程学会生物制造分会副理事长,中国机械制造工艺协会副理事长,全国高校金属切削机床学会理事长,"高档数控机床与基础制造装备重大专项"总体组组长。

快速制造国家工程研究中心(NERC-RM)是一个依托西安交通大学的人才与技术优势建立的国家级先进制造技术创新平台。西安瑞特快速制造工程研究有限公司是工程中心的依托公司,由西安交通大学、昆明机床(600806)、秦川发展(000837)、陕西工业技术研究院、中新苏州工业园区创业投资有限公司共同出资创建,注册资本为6000万元。而西安瑞特的董事长正是卢秉恒。

公开资料显示,卢秉恒院士是轴研科技(002046)和沈阳机床(000410)这两家上市公司的独立董事。事实上,西安交大、昆明机床和沈阳机床存在渊源。

西安交通大学产业(集团)总公司曾是昆明机床(600806)第一大股东,后于2005年将所持昆明机床股权转让给沈阳机床集团,后者成为昆机的控制人。

五、黄卫东团队(西北工业大学) 涉及上市公司:中航飞机(000768)

1995年,西北工业大学教授黄卫东,产生了一个关于快速成型技术的新构思:把3D打印技术和同步送粉激光熔覆相结合,形成一种新技术,用于直接制造可以承载高强度力学载荷的致密金属零件。2001年,黄卫东团队申请了中国第一批关于激光立体成型的源头创新专利。至今已获授权激光立体成形的材料、工艺和装备相关的国家发明和实用新型专利12项。

西北工业大学凝固技术国家重点实验室,是我国3D打印技术研发最出色的单位之一,主要发展名为“激光立体成形”的3D打印技术。该技术通过激光融化金属粉末,几乎可以“打印”任何形状的产品。其最大的特点是,使用的材料为金属,“打印”的产品具有极高的力学性能,能满足多种用途。

为国产大飞机C919制造中央翼缘条,是3D打印技术在航空领域应用的典型。黄卫东教授介绍,作为机翼的关键部件,以我国现有制造能力无法满足需求,如果向国外采购,势必影响大飞机的国产化率。西工大与中航飞机(000768)公司合作,应用激光立体成形技术解决了C919飞机钛合金结构件的制造问题。"目前,激光立体成形制造成本与国外锻压制造成本差不多,最重要的是形成了具有自主知识产权的特色新技术。"黄卫东说,这项技术在航空航天发动机等关键部件的制造上也得到了运用,并为多家航空航天企业提供了达到国际先进水平的制造装备。

第5篇:增材制造产业介绍

增材制造(又称“3D打印”)是以数字模型为基础,将材料逐层堆积制造出实体物品的新兴制造技术,体现了信息网络技术与先进材料技术、数字制造技术的密切结合,是先进制造业的重要组成部分。近二十年来,增材制造技术取得了快速的发展,“快速原型制造”、“三维打印”、“实体自由制造”之类各异的叫法分别从不同侧面表达了这一技术的特点。

国内增材制造产业现状

经过多年的发展,我国增材制造技术与世界先进水平基本同步,在高性能复杂大型金属承力构件增材制造等部分技术领域已达到国际先进水平。但是,我国增材制造产业化仍处于起步阶段,与先进国家相比存在较大差距,尚未形成完整的产业体系,离实现大规模产业化、工程化应用还有一定距离。

当前,增材制造技术已经从研发转向产业化应用,其与信息网络技术的深度融合,或将给传统制造业带来变革性影响。加快增材制造技术发展,尽快形成产业规模,对于推进我国制造业转型升级具有重要意义。为此,我国应把握机遇,整合行业资源,营造良好发展环境,努力实现增材制造产业跨越式发展。

为落实国务院关于发展战略性新兴产业的决策部署,抢抓新一轮科技革命和产业变革的重大机遇,加快推进我国增材制造(又称“3D打印”)产业健康有序发展,国家工业和信息化部制定国家增材制造产业发展推进计划(2015-2016年)。

我市增材制造产业现状与未来

以假乱真地3D打印已逐渐走进了百姓的生活中,精美的工艺品、文物,精细的汽车、飞机、医疗、建筑的零部件都能用3D打印神奇的“克隆”出来。目前,3D打印技术已应用于多个领域,医学上已实现用3D打印技术打印骨头、血管、胆管等简单的人体组织器官。在航空制造领域,3D打印技术已广泛应用于新机设计试制过程,我国2012年首飞成功的歼-15机型的整个前起落架及钛合金主承力部分就是以3D打印技术完成。2014年第六届连云港文博会期间,我市唯一一家3D打印定制机构连云港兆轩三维科技有限公司携高质量的3D打印机入驻文博会现场,为港城人民展示FDM 3D打印,彩色石膏打印,水晶内雕,Q版彩色人像等高精尖技术。

我市增材制造产业技术还处于产业化初期阶段,发展面临诸多挑战。首先连云港具有3d打印技术的企业数较少、规模较小,不具备打印复杂结构物件的技术;二是技术创新体系不健全,标准、试验检测、研发等公共服务平台缺失;三是市级产业政策体系尚未建立;四是我市没有专门从事3d打印技术方面科研攻关的研究机构或者院校。

为尽快推动我市增材制造技术研发和产业化,未来需要从以下几个方面提前部署,统筹推进。

一是加强上层设计和统筹规划。制定市级层面的增材制造行动计划;由相关单位或者科研机构专家制定增材制造技术路线图、技术引进方案图、增材制造中长期发展战略,促进产业健康可持续发展。

二是加大财政支持力度。加大财税政策引导力度,加大对增材制造技术研发和产业化的支持力度,研究制定支持增材制造产业发展的专项财税政策。

三是组建增材制造行业组织。要加大宣传力度,积极组织行业力量开展产业政策研究,创新体制机制,推动增材制造技术研发和产业化。

四是建立增材制造应用示范基地。根据我市增材制造技术的发展水平与现有的水平,立足装备制造业,重点选择在生物医疗、农用机械、电子制造等领域推广应用,分步骤、分层次开展应用示范,形成通用性、标准化、自主知识产权的应用平台,加快推进产业、技术和应用协同发展。

第6篇:增材制造技术在高职铸造教学中的应用探索与实践

摘 要:3D打印技术(又名增材制造技术)是一项日趋成熟的数字化成型技术,许多行业积极发展3D打印技术的结合利用。本文概述了3D打印技术及其在教育教学中的应用现状,分析了铸造专业特点和3D打印技术应用于铸造教学的作用,以教学实例的方式探索了3D打印技术融入铸造实践教学的方式方法。

关键词:3D打印;铸造实训;识图;教学

《教育部党组关于教育系统学习贯彻总书记教师节重要讲话精神的通知》中指出,引导支持广大教师“善于运用新技术提高教学设计、教学实施、教学评价的专业能力”、“始终为学生提供最有效的指导和最好的教育”。笔者在高职铸造教学中进行了增材制造技术的应用探索与实践,有效解决了高职铸造学生在校学习积极性不高、教师教学效果不好的问题。

一、研究意义和背景

铸造是一门工程性很强的专业。在学习机械制图、材料成型原理等理论先修课程时,需要很多实体的教具(如机械零部件或模型)来进行演示,而实际上很多学校由于经费的原因,教具数量极为有限且更新慢,使教师在讲解知识时有无米之炊的尴尬。在进行砂型铸造生产实训、特种铸造生产实训等实践课程时,铸造实训车间工作环境较差,使铸造专业的学生产生一种失落感,学生的学习积极性受挫。通过丰富教具和教学形式,可以有效解决上述环节的困境。

3D打印技术起源于上世纪八十年代,经过三十年的发展,这项快速成形技术取得了长足的发展,能够利用多种材料打印出精度较高的产品,开始在各个行业发挥作用。近年来,3D打印已成为一项热门的技术,在全世界范围内掀起了一场3D打印的学习和应用热潮[1]。为了激发学生的学习兴趣,调动学生的积极性,增强学生的动手能力和创新思维,许多发达国家已经进行了3D打印技术应用于教育事业的探索,欧美一些学校设立了3D打印相关教育基金,购买3D打印设备开展教学试点。在我国,3D打印技术也于近几年走进了校园,部分学校开始有了3D打印相关课程[2]。随着3D打印技术的学习和应用热潮日渐升温,该技术必将得到不断提升,其设备与打印材料的价格必然呈逐渐降低的趋势,为3D打印机走进越来越多的校园,走向课堂创造了现实条件。

二、探索与实践

3D打印区别于传统的“模具―毛坯―机加工”等模式的“减材制造”技术,通过材料的逐层堆积方式来构造物体,又被称作“增材制造”技术,它以数字模型文件为基础、粉末状金属或塑料等可粘合材料为打印原料,具有节约材料、高效率和自由化设计等优点,被称作是一项革命性技术,是“第三次工业革命”到来的重要标志[3]。

目前,主流的3D打印技术有:熔融沉积造型技术(FDM)、光固化立体造型技术(SLA)、薄材叠层成型技术(LOM)、选择性激光烧结技术(SLS)、三维喷涂粘成型技术(3DP)等,其中FDM技术,操作简便,生产成本低,应用最为广泛。[4]

1.3D打印在机械制图中的应用

机械制图作为铸造专业的先修课程,目的是使学生增强识图制图能力。识图制图能力的增强依赖于多看、多想以建立空间思维,这就要求学校拥有足够数量的教具,如各类金属零部件、塑料模型等,而许多学校由于教学经费的限制,拥有的教学用模型数量有限,特别是复杂零部件模型(价格较贵)很缺乏,且很少更新。教师只能利用少量的简单模型进行讲解,大大限制了学生识图能力的提升。在工作后遇到的零部件图纸各式各样,有很多会比较复杂,铸造专业的学生往往难以很快适应。

3D打印的一大优势就是可以快速地打印出形状与结构复杂的模型,若选择合适的材料,打印成本也较低。如果将3D打印机引入课堂,可以在低成本的条件下,大大丰富教具的种类和数量,并且可以随时增补新式零部件模型,可极大提升学生的见识和空间想象力,使学生将来进入工作岗位后能够快速适应,同时也使教师讲课时有更多的、更复杂的教具辅助,事半功倍。

2.3D打印在特种铸造生产实训中的应用

无论是砂型铸造生产实训、特种铸造生产实训,为了验证学生工艺设计质量,都应该先制造出学生工艺设计的模样,然后才能进行造型、浇注。但这无论是从时间还是经济上讲都是难以实现的。以下是结合了3D打印进行的新型特种铸造生产实训流程图。

如图1所示,当学生进入铸造生产实训阶段后,首先由教师布置生产任务,向学生讲解任务大致流程,学生自由组合成立研究小组,分析任务产品特点,完成铸造工艺方案的制定。学生在教师的辅助下完成3D打印机软、硬件学习,开始产品试制,通过三维建模导出STL格式文件输入3D打印机,打印出3D模型,以三维模型的尺寸为基准对3D打印模型进行尺寸检测,若合格则进入熔模铸造后续流程,若不合格,分析尺寸超差的原因,返回上一步,对三维模型进行检查、对3D打印参数进行调整,再次打印模型。利用合格的3D打印模型进行熔模铸造生产,得到铸件,对铸件进行尺寸和缺陷检测,合格则得到铸件成品,不合格则利用检测数据对铸件结构和铸造工艺进行优化,用优化后的方案返回到三维建模步骤进行产品再试制。

以上流程中通过3D打印技术的引入免去了模样的加工周期,进行该试生产的时间可缩短为2至4周,与高职院校铸造生产实训周期较为吻合;又省去了制作模样的费用,节约了成本。

3.3D打印技术融入铸造教学的其他积极作用

3D打印技术给铸造领域注入了创新动力,各地、各院校可以利用铸造与3D打印技术相结合开展创新创业活动,如基于3D打印技术的新型铸造工艺方法设计比赛和铸造工艺品创意制作比赛等,为学生积极创造实战机会,提高学生理论联系实际及开拓创新的能力,同时通过竞赛与奖励的方式提升铸造专业学生的行业荣誉感。

三、结束语

在理论教学中引入3D打印,实现了教师教具的极大丰富,教学效果得到改善,学生识图水平显著提高;在铸造生产实训中引入3D打印,加强了学生在实训教学中的主动参与度,挖掘了学生自主分析、专研的能力和兴趣。学生成立了研究小组,进行了产品试生产,不仅使其切身体会了铸造生产的真实流程,得到了“岗前培训”,而且培养了团队协作精神。迎着3D打印技术的发展热潮,各教育机构应该积极研究并扩展3D打印在多学科教学上的应用范围,利用此类人工智能化技术为教育教学带来更多革新性的变化。

参考文献:

[1]傅骏,王泽忠,方辉.3D打印技术及其在铸造中应用现状与发展展望[J].中小企业管理与科技,2014(9):299-300.

[2]朱阁,莫蔚靖.3D打印技术在教学中的应用与探索[J].价值工程,2015(32):178-181.

[3]童宇阳.3D打印技术在中小学教学中的应用研究[J].现代教育技术,2013,23(12):16-19.

[4]王嘉.3D打印技术及其发展现状[J].包头职业技术学院学报,2015,16(2):18-20.

(作者单位:曾舟:四川工程职业技术学院,四川大学;傅骏:四川工程职业技术学院,四川大学;吴代健:四川工程职业技术学院;蔺虹宾:四川工程职业技术学院)

上一篇:财务管理人员培训通知下一篇:英语期末测试质量分析