接地系统规范要求

2022-05-22 版权声明 我要投稿

第1篇:接地系统规范要求

简议煤矿井下接地保护系统的安装及要求

摘 要:煤矿井下电气设备的接地保护是保证井下安全的必要条件,其保护作用的有效发挥,保证了现场操作者的生命安全。基于此,本文简述了煤矿井下接地系统安装的必要性以及接地保护系统在煤矿安全生产中的作用,对煤矿井下接地系统的安装及其要求进行了探讨分析,并论述了井下机电设备局部接地的问题及其安装使用管理。

关键词:煤矿井下接地系统;安装;必要性;作用;要求;问题;

一、煤矿井下接地系统安装的必要性

煤矿井下作业环境恶劣,作业空间有限,人身直接碰触电气设备的机会较多,加之巷道空气湿度大,机电设备外壳容易锈蚀,顶板掉矸等机械损伤经常会损坏电缆绝缘,诱发漏电、短路等电气故障,而电气设备一旦带电,将有可能造成人身触电事故,并且电气故障产生的电气火花可能会引发瓦斯、煤尘爆炸,影响操作人员的安全。因此,接地保护作为煤矿井下电气设备三大保护之一,对保证井下安全供电显得尤为重要。

煤矿安全规程规定电压在36V 以上和由于绝缘损坏可能带有危险电压的电气设备的金属外壳、构架,铠装电缆的钢带(钢丝)、铅皮(屏蔽护套)等必须有保护接地。

二、接地保护系统在煤矿安全生产中的作用

接地保护的原理是用导体将电气设备外壳通过接地体与大地连接起来,当人员触电时,接地体和人员将作为两个并联导体,漏电电压将通过人体和接地体这两个并联导体与大地构成回路,将电流导入大地,而通常人体电阻远大于接地电阻,所以接地体将起到分流作用,来保证触电人员不会受到大电流的伤害。通过人身的电流与通过接地体的电流关系如图:

Rgr ——接地极的接地电阻,要求Rgr≤2Ω;

Igr——流过接地极的电流,A。

接地电阻Rgr越小,则流经人体的电流Ima就越小,大部分电流通过接地极流入大地。

可见有了接地保护后,人体触及带电设备外壳时,设备外壳与大地之间的电流的路径是接地装置和人体所形成的并联电路。接地电阻越小,通过按地装置的电流越大,在人体电阻一定的情况下,通过人体的电流就越小,有了接地装置,当带电导体与带电体外壳连接后,接地电流通过导体流入地下,同时,设置接地装置电阻,可减少人体分担的电流,达到安全电流30mA以下,以保证触电人员的安全。

井下保护接地的侧重点在于限制裸露漏电电流和人身触电电流的大小,最大限度的降低故障的严重程度。假设没有接地保护,电气设备发生缺相或相间短路等故障后,人体一旦触碰电气设备,就会导致电流通过人体,直接与大地接通,这时强电流将只通过人体形成,造成人体触电事故,由于装设了保护接地装置,碰壳处的漏电电流大部分将经接地极入地。即使设备外壳与大地接触不良而产生火花,但由于接地装置的分流作用,使电火花能量大大减小,从而避免引爆瓦斯、煤尘的危险。

三、煤矿井下接地保护系统的安装及其要求

接地保护是为了降低电气装置外露导电部分和装置外导电部分在故障情况下可能带的电压,减少对人身的危害。

1、井下在接地保护中又分为主接地和局部接地,煤矿安全规程规定:(1)主接地极应当在主、副水仓中各埋设1块.主接地极应当用耐腐蚀的钢板制成,其面积不得小于0.75m2、厚度不得小于5mm。(2)下列地点应当装设局部接地极:采区变电所(包括移动变电站和移动变压器) ;装有电气设备的硐室和单独装设的高压电气设备;低压配电点或者装有3台以上电气设备的地点;无低压配电点的采煤工作面的运输巷、回风巷、带式输送机巷以及由变电所单独供电的掘进工作面(至少分别设置1个局部接地极) ;连接高压动力电缆的金属连接装置。

2、井下保护接地的基本要求。接地装置的连接线应采取防腐措施。结合神华宁煤集团清水营煤矿井下接地系统安装及其要求进行分析。清水营煤矿井下潮湿,巷道错综复杂,11采区变电所10kV电源由高压铠装电缆引入,为整个11采区提供电源。接地装置布置:在11采区水泵房主副水仓各设置了一块厚10mm,1m×1m的镀锌钢板作为主接地极。在其他各配电点和水仓设置局部接地极,局部接地极采用φ50mm,L=1500mm的镀锌钢管,钻20个φ6mm的透孔,并全部垂直埋入巷道底板。若配电点附近有水沟,则一般将局部接地极平放于水沟中,若没有水沟则将局部接地极全部垂直埋入巷道底板。

3、井下接地网的连接形式:清水营煤矿井下高压铠装电缆的铠装层和橡套电缆金属屏蔽层均需与配电装置外壳连接,再通过电气设备的接地端子用-25×4镀锌扁钢与接地极相连接。低压供电电缆一般采用四芯的橡套电缆,其中有一芯与电气设备内接地端子连接,再通过电气设备的接地端子用-25×4镀锌扁钢与接地极相连接。这种接地方式中,利用供电的高、低压电缆中的金属外皮和橡套电缆的接地芯线,把分布在井下中央变电所采区变电所及其他地点的电气设备的金属外壳在电气上连接起来,并与安设于主、副水仓中的主接地极、各配电点的局部接地极、接地母线等和接地导线连接起来组成的,它们共同构成一个井下接地网,保证电气设备不正常运行时的人员以及设备安全。

四、井下机电设备接地存在问题及其安装使用管理

1、井下机电设备局部接地存在的主要问题。(1)局部接地极设在巷道干燥处,没有没置在水沟或潮湿的地方。(2)局部接地板、接地线的制作工艺不符合要求,搭接长度不够等。比如钢管打的穿孔直径或者数量不符合要求,有效面积和厚度不符合要求。制作材料未使用防腐材料并且未做防腐处理等。(3)局部接地极连接处松动后没有及时维修或紧固。

2、井下机电设备局部接地的安装使用管理。(1)明确局部接地极、接地线制作标准。第一、规范局部接地极制作:制作局部接地極时严格按照设计图纸施工。第二、根据局部接地极设置地点确定制作与安装:设置在水沟内的局部接地极,用面积不小于0.6㎡,厚度不小于3mm的钢板或同等有效面积的钢管制作。设置在其他地点的局部接地极采用直径不小于35mm,长度不小于1.5m的钢管制作或采用直径不少于22mm,长度为1m的两根钢管制作。(2)规范局部接地设计安装使用管理。第一、局部接地极的安装地点按《煤矿安全规程》要求设置。第二、确定局部接地极安装标准:钢板和钢管制作的局部接地极均要求平放于水沟深处,而设在其他地点的接地极必须的局部接地极必须全部垂直埋入巷道底板。第三、规范局部接地装置的配备与供应。煤矿供应部门应统一制作接地装置,解决接地装置使用材料不规范的问题。第四、建立局部接地极使用管理机制。煤矿机电部门应按煤矿安全规程要求,定时测量接地电阻,把对局部接地的检查维护列入日常检修计划,维护单位设立专门维护管理台账,确保局部接地极的完好,且设置在水沟中的局部接地极必须确保水沟中有水。

结束语

综上所述,煤矿井下由于巷道狭窄、场地受到限制,加之井下空气潮湿,并且大部分煤矿存在可燃性气体和粉尘爆炸的危险性,使得电气设备漏电和人员触电的危险程度大大增加,因此为了保障煤矿井下作业安全,对煤矿井下接地系统的安装及其要求进行分析具有重要意义。

参考文献:

[1]陆吉斌.浅谈煤矿井下电气设备的接地保护技术[J].科技创新与应用,2013(29)

[2]王伟.等电位连接在井下接地系统中的研究与应用[J].中国煤炭,2014(08)

[3]关恒祝.矿山井下低压IT接地系统设计规范探讨[J].工矿自动化,2015(02)

作者:王森田

第2篇:TPS系统接地要求

HONEYWELL TPS系统接地要求

霍尼韦尔的接地原则包括CE构架和NON CE构架的解决方案。CE(common earth)

1.CE构架的类型:

CE构架解决方案的系统,应用于CE原则合法要求的国家(欧盟),这个是1996年提出的,使用单点接地的要求。这些产品和附件经过测试标注为CE,所有系统需要1个总的地与公共地连接到工厂地。

2.NON CE构架的类型:

NON CE构架解决方案使用NON CE标注的设备和配件。这些系统除主安全地排/连接器外,特别需要一个额外的仪表地排/连接器(MRG)。这个仪表地(MRG)需要专用的连接到工厂的专用仪表地。

电气安全考虑:

接地网络的结构有树形,格栅,星形。不允许菊花链方式。

NON CE的TPS系统会使用总计4种类型的接地系统。

1. AC 安全地

2. 主参考地/逻辑地

3. 防雷地

4. 本质安全地

AC 安全地

1. 区域内的所有金属框架及附件相互连接。

2. 人能够接触的最小电压。

3. 用于所有电源系统为防雷而接地。

4. 用于每个TAP的UCN同轴电缆屏蔽层接地。

5. 它连接到XPM电源系统的每个机柜。

6. 用于一些现场电缆的屏蔽接地。

7. 没有防雷保护的电极,阻值最大5欧姆。

防雷地(LG)

1. 为了安全的释放由金属框架结构和电气系统的汇聚的闪电电荷。

2. 安全释放能量以保护人员,控制系统设备和建筑物。

3. 典型的,一个防雷接地系统包括3米的地极,焊接到沿建筑物一周每隔30米一个的垂直结构体,如果可能,靠近潮湿区域。

4. 通常,AC安全地(主)地极连接到防雷地地极。

5. 推荐每个地极到真实地的电阻值最大值是0.1欧姆。

6. 建筑物的框架通过1根专用的5.2mm线(#4AWG)连接到防雷接地地极或者格栅。

主参考地(MRG)或者信号地

第3篇:轨道交通地铁通信系统设计技术要求规范---(通信系统)

通信

通信

通信系统是轨道交通运营指挥、运营管理、公共安全治理、服务乘客的网络平台,它是轨道交通正常运转的神经系统,为列车运行的快捷、安全、准点提供了基本通信保障。通信系统在正常情况下应保证列车安全高效运营、为乘客出行提供高质量的服务保证;在异常情况下能迅速转变为供防灾救援和事故处理的指挥通信系统。

主要设计规范及标准

《地铁设计规范》(GB50157-2013) 《城市轨道交通技术规范》(GB50490-2009) 《城市轨道交通工程项目建设标准》(建标104-2008) 《铁路通信设计规范》(TB10006-99)

《电子信息系统机房设计规范》(GB50174-2008) 《民用建筑电气设计规范》(JGJ16-2008)

《民用闭路监视电视系统工程设计规范》(GB50198-94) 《本地通信线路工程设计规范》(YD5137-2005) 《通信管道与通道工程设计规范》(YD5007-2003) 《数字同步网工程设计暂行规范》(YD/T5089-2000) 哈尔滨市有关地方法规、标准 国际标准化组织(ISO)相关标准 国际电工技术委员会(IEC)相关标准 国际电气与电子工程师协会IEEE有关协议

国际电信联盟ITU-T、国际无线电咨询委员会CCIR的有关建议 欧洲邮政及电信联盟CEPC最新文件及其附件 电子工业协会(EIA)的有关标准

一般要求

1. 通信系统是指挥列车运行,进行运营管理、公务联络、提高乘

13—1 通信

客服务水平和传递各种信息的重要手段,应能传递语音、文字、数据、图像等,并具有网络监控、管理功能。因此,必须建立一个可靠、易扩充、组网灵活、各种信息的综合数字通信网。

2. 当出现紧急情况时,本系统应能迅速及时地为防灾救援和事故的指挥提供通信联络。

3. 通信设备的选型,应在满足系统功能的基础上优先选择国产设备,对于国内尚不能满足功能的设备,应进行充分比选后选择引进。

4. 设计范围

哈尔滨轨道交通1号线四期工程线路全长2.3km,全部为地下线,全线设2座车站,控制中心利用清滨公园控制中心(已建成)。

通信系统设计范围为上述工点及线路所有通信线缆、系统设备及相关设施,系统由专用通信系统、公用通信系统、公安通信系统三部分组成。

专用通信系统由传输系统、公务电话系统、专用电话系统、无线通信系统、闭路电视监控系统、广播系统、乘客信息系统、时钟系统、办公数据网络及综合布线系统、集中告警系统、电源系统组成。

公安通信系统由公安无线系统、消防无线系统、治安动态视频监控系统、公安专网系统组成。

公用通信系统由传输系统、公用无线引入系统、电源系统及集中监测告警系统组成。

基本技术要求

1. 本系统及设备应是技术先进、价格合理、安全可靠、组网灵活,并代表当前通信发展要求的成熟技术。

2. 通信系统主要设备和模块应具有自检功能,并采取必要的冗余,避免单点故障引起全网故障。

3. 本系统中各子系统发生故障时,应具有降级使用功能和对重要通道的备用手段,以保证系统基本功能。

4. 通信系统主要设备应采用模块化结构,易于扩展和平滑升级。

13—2 通信

5. 通信系统应采用支持符合国际标准和工业界标准的相关接口,能与其它相关系统或业务部门实现可靠的互联,并应选择广泛应用的标准协议。

6. 本系统应选用体积小、重量轻、耗能少、防尘、防锈、防震、防潮、防晒的设备和材料。

7. 本系统设计应充分考虑电下铁道的特性,应采用抗电气干扰强的设备和电缆,并采取必要的防护措施。

8. 光缆、电缆应采用阻燃、低烟、低毒、防蚀的产品,并应考虑防鼠害和防迷流腐蚀。

9. 本线作为1号线

一、

二、三期工程的延伸段,因此,在整体上应与既有的1号线通信系统组成统一的通信网,充分考虑对控制中心级设备系统的改造、衔接。该网络与既有1号线

一、

二、三期工程的通信网络应组成功能完整统

一、便于维护管理的网络,以实现控制中心对全线的协调统一管理。

10. 本系统应满足下列工作环境条件:

(1) 环境温度:0℃~50℃(室内);-40℃~65℃(室外)

(2) 相对湿度:25℃时30%~75%(室内);35℃时10%~95%(室外)。 (3) 防护等级:IP50(室内);IP65(室外及区间)。 (4) 设备限高:室内≤2200mm,区间内不超过设备限界。 (5) 冷却方法:自然风冷或强迫风冷。

(6) 负载承荷:≤600kg/m2。(通信设备);≤1000kg/m2。(通信电源) 耐机械冲击:10g 耐机械振动:5~20Hz时,5mm(振幅);

13..1 专用通信系统 传输系统

传输系统应满足1号线四期工程对于传递语音、数据、文字、图像等业务信息的需要,具有多功能、大容量、高可靠并能进行集中维护管

13—3 20~100Hz时,1.4g(室内),4.2g(区间隧道) 通信

理的数字传输网,与既有1号线

一、

二、三期工程传输子系统构成一个完整统一的传输网络。

1. 系统功能

(1) 传输系统应具备在沿线各车站自由上下话路、使用灵活及易于扩展的功能。

(2) 传输系统应具备设于不同光缆路径的主备光通道,同时系统应具备通道保护或复用段保护功能。在出现故障时能自动倒换,且倒换时间小于50ms。

(3) 系统应有功能完善的网络管理功能及硬件设施,所有站的配置及其它调整均应能在控制中心的操作终端上遥控完成。

(4) 传输系统的设计容量除应满足本线路的各专业需求外,还应充分考虑满足远期发展的需求,并宜预留30%的余量。

2. 传输的信息内容

(1) 各车站各种调度电话及自动电话用户的语音信息。 (2) 无线基站和主交换机的话音及控制信息。

(3) 控制中心至各车站的电视监视、广播、乘客信息、时钟等系统的语音、数据、图像、视频信息及其控制信号。

(4) 各种自动化系统,包括信号系统(ATS)、电力监控系统(SCADA)、防灾报警(FAS)系统、自动售检票(AFC)及的办公自动化(OA)等系统等所需的各种数据信息。

3. 系统结构

本工程应结合既有1号线

一、

二、三期工程系统组网情况,从通信系统的各种业务功能出发,推荐最为适用的传输方案,线路传输速率不宜低于2.5Gb/s。

传输系统须采用环状网络结构,各节点宜隔站连接以保证系统的可靠性和安全性。传输系统的自愈功能设置主备光通道,并分设与区间两侧的光缆中,具备手/自动切换,切换时,不影响传输质量。

在各车站分别设置传输节点设备,控制中心设备及网管宜采用扩容方案,网管设备具备对所有节点进行远程在线管理。

13—4 通信

4. 系统统接口配置类型

传输系统配置的接口种类根据相关各系统的使用要求,经过协调后确定。为了降低系统的运行代价,简化维护过程,减少维修困难,提高系统的适应能理,应尽量使用较少的接口种类。

系统配置的各类用户接口应具有足够的容量来满足近远期对系统的扩展要求,以及与其它轨道交通线路接入和可能的扩充。系统配置的主要的接口种类如下:

(1) 光纤传输线路接口

(2) 标准的G.703 2M(基群)接口

(3) 以太网接口,接口速率为10M/100M/1000M

(4) 低速数据接口RS-232,RS-422,RS-485,2.4~19.2kbps (5) 网络管理接口 (6) 时钟输入/输出接口

(7) 其它经系统设计后确认所需的接口 5. 传输线路

从控制中心至各车站之间,分别在区间两侧弱电桥架上各敷设1条48芯单模光缆及一条20P市话电缆。光缆宜采用符合ITU-T建议的G.652b双窗口单模光纤。无特殊分歧需求时,除长大区间外,光缆在区间内不得接续。干线电缆为光传输系统故障等情况下提供必要的备用调度通信。干线通信光电缆必须采用无卤、阻燃、低烟、低毒、防蚀、耐老化、防鼠害和抗电气干扰的铠装缆。在区间内全线设置通信电缆托架放置通信光电缆。

所有光、电缆在接入设备前,应经过光纤、音频配线架,电缆接入时应设置适当的保安和接地措施,并考虑足够的容量。 13..2 公务电话系统

公务电话系统采用在原有控制中心交换机扩容方式。在控制中心利用既有程控电话交换机扩容,在各车站设置小交换机,各车站小交换机通过光传输设备与控制中心交换机组网,控制中心交换机与车站小交换机之间采用2M通道组网。

13—5 通信

1. 采用单局制构成,对控制中心数字程控交换机扩容,用于控制中心、各车站间的内部通话及与市话网的连接。

2. 主要部件应采用双机热备份工作模式,话务处理能力满足远期容量需求。

3. 中继方式

交机与市话局采用2Mb/s数字中继,全自动呼出,呼入采用部分全自动直拨DID,部分采用半自动接续BID的混合进网中继方式。

(1) 各种业务忙时话务量按下列要求设计: 电话用户0.16Erl/线; 传真0.17 Erl/线;

每条数字中继话路0.7 Erl/线;

低速数据、2B+D、30B+D及其它符合ISDN用户网络基本条件的各类用户1 Erl/线。

(2) 传输衰耗应满足下列要求: ① 四线链路 地区呼叫:3.5dB 长途呼叫:7dB ② 用户线衰耗

用户至市话端局间的衰耗不大于7dB。 (3) 编号方案

本线的公务电话用户应按照哈尔滨市轨道交通1号线的号码分配原则进行统一编号。 13..3 专用电话系统

专用通信系统由它调度电话、站内电话、站间行车电话、区间电话、直通录音电话等组成。

1. 调度电话

调度电话设列车调度电话、电力调度电话、环控、防灾及维修调度电话,各调度区段划分应与行车指挥或控制管界划分一致。

总机和分机间话路经数字传输通道按辐射方式连接。

13—6 通信

2. 站内电话供车站值班员与本站其他有关部门进行通话联络。 3. 站间电话能及时、迅速沟通相邻两车站的通话,且不允许其它电话插入。

4. 在区间每隔150~200m设一台区间电话机,用于列车司机或维修人员与有关单位进行紧急联系和一般通话。1~3台电话机并联使用一个用户号码。

5. 直通录音电话供电力部门使用,与市供电局直通通话,并能实时录音,直通录音电话设于控制中心。 13..4 无线通信系统

1. 采用与1号线

一、

二、三期一致的800MHz频段TETRA数字集群无线通信系统。

2. 采用全基站方式实现无线信号覆盖。

3. 区间(包括地下站台)应采用漏泄电缆完成无线信号的覆盖,车站站厅(含公共区域、重要用房等)宜采用天线完成信号覆盖。在初步设计阶段应根据运营和运营部门的需求,明确无线信号的具体覆盖范围。

4. 为减少不同小区的频率干扰,采用800MHz频段的三组频率(6对频点)轮流在本线上使用。具体频点待向哈尔滨市无线电管理委员会申请并得到批准后确定。

5. 在满足信纳比20dB的条件下,本系统可靠通信的时间、场强覆盖地点的概率在线路运营区间范围内应大于95%,其它地点不小于90%。

6. 系统设置

专用无线系统包含列车调度、事故及防灾、设备维修及停车场管理四个子系统,系统在既有1号线工程800MHz频段TETRA数字集群无线通信系统基础上进行扩容。

(1) 列车调度子系统供列车调度员、司机、车站值班员、车辆基地和停车场信号楼值班员之间以及车站值班员与站台值班员之间通信联络,满足列车运行需要。

(2) 事故及防灾子系统供防灾调度员、车站防灾员、现场指挥人员

13—7 通信

及有关人员之间通信联络,满足事故抢险及防灾救灾需要。

(3) 设备维修子系统供维修值班员与现场维修人员之间通信联络,满足线路、设备的日常维护及抢修的需要。

(4) 停车场管理子系统供车辆基地和停车场运转值班员、调车员、列车司机、场内作业人员之间通信联络,满足列车调车及车辆维修的需要。本期工程不新设停车场。

7. 系统功能

(1) 虚拟专网:系统为各调度群用户提供专用调度台,组成虚拟专用网;

(2) 调度通话:单呼、组呼、全呼、紧急呼叫、强拆、组呼的动态重组、调度监听、优先级设置及呼叫;

(3) 能完成调度区域选择、越基站无隙切换;电话互联呼叫等功能; (4) 车载台自动转组:列车在进出车辆基地时,系统可通过信号系统ATS所提供的信息,进行行车调度通话组与车辆段通话组的自动转换;

(5) 所有调度通话的自动录音:具有列车司机与行车调度的语言录音及回放,时间不少于60min;

(6) 主要提示信号:接通音、呼叫失败音(或显示)、忙音、弱场区提示音;

(7) 应提供分组数据传输能力,支持多用户共享、语音调度优先和自动断点续传,并能根据语音调度通信的繁忙程度,自动调整分组数据业务带宽(7.2~28.8Kbps)。

(8) 网管设备应具有系统配置、用户管理、故障监测报警及管理、统计报告功能。 13..5

闭路电视监控系统 1. 监视功能

车站值班员可监视本站站台、站厅及自动扶梯、出入口情况; 中心调度员可利用监视器和显示大屏监视全线各车站情况。 2. 图像选择功能

车站行车值班员可选择本站与行车相关的任一摄像机的图像在任一

13—8 通信

监视器上显示,既可用各种时序自动循环切换,也可由操作人员手动切换。 控制中心各调度员可利用

一、

二、三期设置的调用终端同时选择全线任一摄像机或相同摄像机的16幅图像,在既有任一监视器和显示大屏上显示,既用各种时序可自动循环切换,也可由操作人员手动切换。

3. 录像功能

本系统在各车站设置长时间录像机,对运营用摄像机图像进行长时4. 列车司机监视功能

列车司机可通过站台前端设置监视器方式,监视站台和旅客上下车间不间断录像。

情况,即在上、下行站台列车驾驶室停车位置的一端,各设置1台大屏幕彩色监视器,接收本侧站台摄像机的图像供司机观看。 13..6 广播系统

1. 本系统纳入既有1号线

一、

二、三期工程的广播网络,实现控制中心调度员通过同一控制设备对既有1号线

一、

二、三期及本期车站的统一控制,保证系统功能与

一、

二、三期工程的一致性。

2. 由车站广播子系统、控制中心子系统组成。

3. 车站广播是控制中心、车站两级控制的广播网,控制中心的调度员(总调、列调、防灾调度)可对全线车站进行选站、选路或全线统一广播,车站值班员可对本管区的站台、站厅、办公管理区及有关设备房进行同时广播或分路、分区广播。

4. 车站广播的优先顺序为: 控制中心防灾调度; 车站值班员; 控制中心总调、列调;

5. 各车站分为上、下行站台、站厅、办公及设备房、出入口五个广播区。

6. 扩音设备应采用n+1备份方式工作。

7. 车站采用低功率扬声器密布的方式,使车站内各点均获得均匀

13—9 通信

而足够的声场强度,其有用声场强度高于背景噪音10dB,切换到防灾广播时,声场强度高于背景噪音15dB。

8. 为保证声场强度在上、下行站台设置噪声传感器。 13..7 乘客信息系统

乘客信息系统(PIS)是依靠成熟可靠的网络技术和多媒体传输、显示技术,以车站和车载显示终端为媒介,向乘客提供以运营信息为主的多媒体综合信息显示系统。

1. 本系统分为车站乘客信息系统和车载乘客信息系统。按照系统组成,整个系统又可以分为中心、车站、车载和网络四个部分。

(1)

中心子系统

乘客信息中心子系统对各车站子系统的操作通过专用通信传输通道实现,对车载子系统的操作通过本系统设置的WLAN传输通道实现。1号线四期工程在

一、

二、三期中心子系统的基础上扩容,车站子系统接入中心子系统。

(2)

车站子系统

车站子系统的主要设备包括:车站信息服务器、车站交换机、车站播放控制器分配器、显示屏集成化软件等。

(3)

车载子系统

车载子系统主要设备包括:车载无线天线、车载无线单元、车载播放控制器等。

(4)

网络子系统

网络子系统是指提供系统数据信息和控制信号传输的通道,根据传输路径可分为有线网络和无线网络两个部分。有线网络采用专用传输系统提供的以太网通道,无线网络应支持以80km每小时速度行驶列车的双向数据通信。考虑到PIS和预留车载CCTV车地双向数据通信的需求,无线传输部分宜采用WLAN传输技术。

2. 系统终端设备布置 (1)

车站LCD显示屏

LCD显示屏设置在各车站站厅售票机上方和上下行站台乘客候车

13—10 通信

区。

(2)

LED显示屏

LED屏设置在各车站出入口处。 (3)

车载LCD显示屏

车载LCD显示屏设置在各列列车每节客室车厢的车门旁。 13..8 时钟系统 1. 系统功能

(1) 为控制中心、车站各部门工作人员提供统一的时间显示; (2) 为乘客提供统一的标准时间信息; 2. 系统构成

本系统利用既有1号线

一、

二、三期工程控制中心既有母钟作为标准时钟源、在各车站设置子钟驱动器、子钟(各类时间显示单元)等设备。

在各车站设置的子钟驱动器,接收母钟发送的时间编码信息,以消除累计误差。子钟驱动器应具备多路输出接口,当母钟或传输通道发生故障时,仍可驱动子钟并告警。在子钟驱动器故障时,子钟可进入降级模式并告警。 13..9 办公数据网络及综合布线系统 1. 系统组成

OA系统的硬件包括网络设备、综合布线、计算机设备及相应办公设备。四期工程OA系统接入

一、

二、三期工程设置的信息网,构成1号线完整的OA信息网络。

2. 传输方式

利用专用传输系统提供的以太网通道组网。 3. 软件

办公自动化系统的软件主要包括操作系统、数据库软件、自动备份软件,网管软件以及各种OA应用软件等。 13..10 集中告警系统

集中监测告警系统由以太网交换机、工作站、打印机、网络设备等

13—11 通信

组成,通过控制中心以太网交换机将各子系统的监控终端连接成网。控制中心设备已在

一、

二、三期工程中实施,本次四期工程对其进行扩容接入。 13..11 电源及接地系统

1. 通信电源是保证通信系统正常工作的必要条件。因此,通信电2. 控制中心及各车站、车辆段、停车场的通信设备均要求按一级源必须安全可靠。

负荷供电,需供电系统提供三相五线制交流电源。各通信机房设置专门的交流配电柜。

由变电所引接两路独立的三相五线制交流电源进线。如使用中一路在全线设置UPS电源并提供交流“集中供电,分散配电”的功能。 3. 交流UPS供电电源输出电压波动范围不应大于±5%。 4. 通信设备在外部电源失电时应能通过蓄电池提供不间断供电,5 蓄电池应无腐蚀气体析出,适合设在通信机房内。 电源故障时应能进行自切并在本地及远端自动告警。

其蓄电池组的容量应保证向通信设备连续供电不少于2h。

6. 为确保人身和通信设备安全以及通信设备的正常工作,需设置为保证系统正常工作和人身设备的安全,应采用联合接地方式。 通信专业应对接地体部分应提出设置要求,由供电专业负责设置,接地系统。

通信专业和其它专业的接地引出端子应保证足够的间距。在通信电源设备室内设置地线盘,综合接地体的接地电阻应不大于1Ω。

接地装置用来接引下列各类设备: — 直流电源需要接地的一极 — 通信设备的保安避雷器

— 通信设备、通信电源设备的机架,机壳 — 引入电缆、室内电缆和配线的金属护套或屏蔽层 — 交、直流电源设备采用供电系统的PE线保护。

13—12 通信

13..1 公安通信系统 公安无线系统 1. 系统功能

(1) 满足公安350MHz警用自动级建设项目的要求,系统通过链路应能实现350MHz公安电台从地面到地下,从一个地铁站到另一个地铁站的全自动漫游。

(2) 系统满足MPT1327集群标准信令规范,符合公安部要求。 (3) 满足 MPT1343,警用CPSX用户编号协议。

(4) 系统必须覆盖站厅、站台、出入口通道、隧道区间,实现地下线路,地下车站之间、车站与地面之间通信;

(5) 系统支持从指挥中心或现场任意一台手持机到各个分部门的全呼、一对多组呼、一对一单呼、广播呼叫、优先呼叫、紧急呼叫、PABX/PSTN呼叫以及在紧急情况下的强拆、强插等集群调度功能。

(6) 分站本身发生的本地呼叫不占用主站信道,跨站呼叫时间不超过0.5秒;

(7) 集群信道和常规信道共享功能:可通过系统管理终端,远程遥控设置某集群信道变为常规中转信道。

(8) 主站信道满负荷或出现故障时,分站可独立工作,而且分站可独立实现MPT1327信令标准所规定的所有集群呼叫功能。

2. 系统组网方案

利用哈尔滨公安市局调度中心设置地铁公安无线设备,可进行单独的网络管理。

应采用与市局公安350MHz集群通信系统兼容的设备和相同的系统制式。

采用分基站组网方式,地铁内部通信话音信息可以不用通过市区主基站,不占用主基站资源。

在各车站设置分基站分别接入哈尔滨市的模拟集群通信系统主基站,各地下移动电台及固定电台通过分基站融入市公安集群指挥调度通信网。

13—13 通信

在每个地下车站各配置一套多信道无线集群分基站,分基站与市公安局的中心主基站采用无线链路连接。在每个车站出入口地面设置室外天线,经射频电缆连接到站内分基站,通过空中接口与市局指定的地面主基站连通。

3. 系统构成

本工程采用无线链路分基站引入方式构建公安无线通信网,在四期工程5个地下车站设置分基站。

隧道内无线场强覆盖可采用漏缆覆盖方式,上下行合用一条缆。站厅、设备层、办公区域、人流通道和换乘厅使用比较经济的小天线覆盖,收发合用同一副天线。站台由于形状较规则,宽度较窄,结合隧道的覆盖方式,站台和隧道一并采用漏泄同轴电缆方式覆盖。

在每个站站外需要架设与市局主基站通信的链路天线和GPS接收天线。

在四期工程5个地下车站公安机房分别设置5套公安350M模拟集群无线分基站,分基站配置4个信道机,用于公安话音通信。

扩容市局、地铁分局配置公安指挥调度台和市局网管设备。 在派出所、车站警务室设置手持终端和固定台。 13..2 消防无线系统 1. 系统功能

(1) 地铁消防无线系统是哈尔滨市消防无线系统的一部分,必须和市消防无线通信系统联网,以保证地下消防人员与消防指挥中心之间、消防地铁中队等相关部门之间的无线通信。

(2) 系统必须覆盖站厅、站台、出入口通道、隧道区间,实现地下全线、地下车站之间、车站与地面之间通信。

2. 系统组网方案

(1) 系统采用800MHz的数字集群系统。

(2) 集群交换机由市消防局统一设置在市消防中心,不在本工程范围,本工程主要考虑地下基站设置。全线采用基站+光纤直放站的方式组网。

13—14 通信

(3) 扩容消防指挥中心地铁消防调度台和集群、直放站网管。 13..3 治安动态视频监控系统 1. 系统功能 (1) 图像监视功能

车站公安值班员使用本地监控,共享原有专用闭路电视系统和公安专用摄像机资源,可通过终端切换实现现场实时图像的调看。

派出所值班员可通过控制终端远程调看所管辖区域车站的摄像机图像。

地铁分局值班员可通过控制终端远程调看全线车站的摄像机图像。 (2) 图像选择功能

车站公安值班员、派出所值班员、地铁分局值班员可通过键盘进行自动循环或手动切换选择。

(3) 录像功能

对站内所有图像进行录像,录像保存时间不小于15天。 (4) 图像分析功能

根据市公安局需求,在各车站设置至少4路图像视频分析系统,报警时自动弹出相关画面。

2. 系统构成

系统由摄像机终端、图像显示与控制、图像录制、控制信号处理、信号传输及网管设备组成。

公安通信设备室设置视频分配器、视频切换矩阵、编码器、高清解码器、视频分析设备、云台控制设备、视频控制设备及录像设备,在公安值班室设置视频监控终端及监视器。

系统通过公安专网提供的数字通道接入派出所及地铁公安分局。 13..4 公安专网系统 1. 系统功能

公安专网系统是为公安轨道分局与派出所及车站警务室提供数据及视频信息传送的网络平台,同时与市公安计算机网络互联进行数据信息交流。

13—15 通信

由于公安部门的特殊性,必须保证该系统的独立性、保密性、安全性。本系统应能传输公安系统的管理、监控信息等数据信息。

2. 系统构成

采用IP数据网络,在公安轨道分局、派出所和车站设置以太网交换机,组成骨干层、汇聚层和接入层三层IP网络。

汇聚层和接入层设备接入由1号线

一、

二、三期在轨道分局设置的核心交换机。

汇聚层设备设于派出所,每个派出所设1台以太网交换机,向上联至市公安轨道分局交换机。

接入层设备设于车站公安通信机房,每个车站设一台以太网交换机,以太网交换机分别与派出所交换机互联。

本工程上下行各敷设一条60芯光缆。

公用通信系统

1. 民用通信引入系统作为一个相对独立的系统,应满足轨道交通开展公用通信运营的需求。

2. 民用通信引入系统应满足乘客在地下空间进行无线通信联络、拨打公用通信网电话及其它多媒体通信的需求。

3. 民用通信引入系统应满足公众移动通信运营商和多种移动通信制式接入的需求,同时应考虑将来业务技术发展的需求,预留相应接口和条件。

4. 传输系统 (1) 传输的信息 ① 无线中继信息 ② 电源网管信息 ③ 无线覆盖设备网管信息 ④ 系统本身所需的相关信息 ⑤ 其他信息 (2) 传输系统制式

13—16 通信

传输系统应采用光纤及数字复用设备。应根据本工程的具体特点,对各种传输制式进行充分论证,明确推荐所采用的传输系统制式。

(3) 传输网络组网应安全、可靠,易扩容、升级和维护。 (4) 系统带宽

根据用户使用的性质及要求提供主、备用信道并预留一定租用的带宽,并具有自动倒换功能。

(5) 系统节点通道型式和接口要求

系统各节点应能提供点对点式E1通道、以太网(10/100M Ethernet)等符合相关标准和建议的接口。

(6) 系统的容量应考虑扩展的需要,宜预留30%的余量。 (7) 系统应具有完善的网管功能,可进行故障管理、性能监视、系统管理、配置管理。

(8) 系统宜独立敷设光缆,应采用充油、低烟、无卤、阻燃、束管式的铠装光缆,并采用1310nm和1550nm双窗口的单模光纤。光纤的几何尺寸、光学、传输特性应满足ITU-T有关建议。

5. 移动电话引入系统

(1) 应是诸多射频信号的合成——分配网络。系统应完成的功能为:将各地下车站目前及将来(预留)各运营商的各种移动电话制式的射频信号合路后,再由天馈系统均匀地将能量辐射于需要覆盖的场所,在无线覆盖区域内95%的位置,99%的时间内移动台可接入网络。

(2) 民用通信引入系统支持GSM、CDMA、GPRS、3G等制式的信号引入。

(3) 无线网络覆盖及服务质量应达到以下要求: ① 区域边缘GSM、CDMA下行信号电平≥-85dBm;

② 根据国家环境电磁波卫生标准,办公区域一级标准(10w/cm2),站台、站厅、商场及隧道内达到二级标准(40w/cm2);

③ 覆盖区内无线可通率≥95%;

④ 同频干扰保护比:C/I(载波/干扰)≥12dB;

⑤ 在基站接收端位置接收到的GSM上行噪声电平应小于

13—17 通信

-110dBm/200kHz;

⑥ 在基站接收端位置接收到的CDMA上行噪声电平应小于-105dBm/1.25MHz;

⑦ 越区切换成功率、掉话率、误码率应符合国家和行业的相关规定。

7. 电源设备及接地系统

(1) 为保证民用通信引入系统安全可靠地正常工作,系统设备按一级负荷供电,需供电系统提供两路独立、可靠的三相五线制交流电源。交流输入电源电压的波动范围为:380V±10%。

(2) 民用通信引入系统采用UPS不间断电源供电,其配电容量按远期确定。

(3) 本系统应根据各子系统对直流电源需求,优化系统配电方案,考虑设置直流供电系统的合理性。

(4) 本系统接地的技术指标应与运营通信系统的电源及接地一致。接地宜合用运营通信系统的接地箱,连接至直流电源接地、屏蔽接地、保安避雷接地、测试接地、设备金属外壳、室内金属电缆桥架及金属电源保护管等接入本接地装置。综合接地装置的接地电阻应≤1Ω。

通信用房技术要求及机构设置和定员

1. 本线通信用房设在各车站,其用途分为通信设备用房、生产辅助用房及办公用房等。

2. 通信用房的设置原则

通信设备机房的位置安排应做到经济合理、尽量远离电力变电所,在技术上应考虑引入方便、控制配线长度和便于维修。

在通信系统设计中,应充分考虑通信设备的布置以及电缆的敷设,综合考虑布置并预留通信专业所需的沟槽管洞。

机房地面均布荷载计算标准:设备室600kg/m2,通信电源设备处1000kg/m2。

各种通信用房的面积,均应按远期容量确定。

13—18 通信

通信设备用房内设活动地板,应有防静电措施,机房地板下净空不小于300mm。室内净高不得小于2.8m,门宽度不小于1.2m(双扇向外对开),门高度不小于2.0m。

通信机房防火及其它工艺要求应符合国家的相关规定。

3. 业务技术管理机构定员和行政机构定员应分别单列,以适应将来不同运营管理方式的变动。

13..1 通信系统维修措施 主要功能

1. 应能24小时不间断地对所有通信设备进行故障告警监视、集中控制和抢修。

2. 针对各设备的特性制定维修、巡检、测试方案。 13..2 维修工区和车间房屋设置与检修设备配置

以管理体制和定员为设计基础,合理配置通信工区、材料备品室、仪器仪表室、休息室、设备检修室。

13—19

第4篇:无线对讲系统设计规范要求范本

1. 系统概述 1.1 本项目需设计一套6信道(12个时隙)数字无线对讲系统,整个项目范围内覆盖率98%以上,以提供建筑中管理部门工作人员的检查、维护方便、快捷地保持通讯联系和在紧急情况下提供多系统间通信的需求。 1.2 在覆盖建筑的公共区域范围基础下,酒店的所有机电房设备房、供配电机房、弱电机房、电梯机房等,同时保安部所涉及的所有保安区域范围均获信号覆盖以确保无盲点。 1.3 建筑占地面积较大,且内部结构复杂,建议本项目采用400MHz中继无线对讲系统以符合长距离通信和室内信号穿透的要求,但仍需要以建设当地无线电管理局对频率的规划为前提。 1.4 无线中继设备及合路平台须装设于通风良好或空调的弱电机房,设备须设于独立金属柜体和保持适当分隔以确保最佳的工作状态; 1.5 整体系统须符合但不限于以下要求;

 招标图纸所示无线对讲系统分布仅供参考,承包人须根据现场实测的电场分布情况提供足够的天线、有关之设备及配件以确保本系统可覆盖所需的范围。承包人须顾及到大楼的结构有可能会妨碍信号的传送。  天线的位置、数量和输出功率须合理设计,以确保使用合理数量的天线,保证较小的天线端口输出功率,达到良好的覆盖效果,室内天线的输出功率须小于15dB,接收信号信噪比大于20dB,以避免电磁辐射污染环境,以符合国家环境电磁波卫生标准,。

 综合考虑天线的数量、位置和输出功率,以及所需覆盖的范围,确保信号的均匀分布,要求酒建筑内所有区域可测得的对讲机信号电平强度不低于-85dBm;  在覆盖室内基础上并包括建筑所辖区域内移动台呼出和接听正常,建筑室外区域可测得的对讲机信号电平强度不低于-95dBm,若有独立建筑,需要考虑建筑内部信号覆盖。

1.6 本系统如遇停电等意外情况发生,须保证通讯畅通,中继台需要配置不间断电源,停电时自动切换至后备电源供电,来电时自动恢复充电,至少保证两个小时的备用电力。 1.7 防干扰:本系统须对环境因素进行综合考虑,设计时避免建筑强电设备对系统产生不良影响。 1.8 设计中需考虑到无线对讲系统不可对本项目弱电系统、其它通信和网络系统产生任何影响。 1.9 按建设单位委托本承包人须负责向无线电管理委员会申请合法的频率使用,本承包人须按获批核无线通信频率进行深化设计和设备供货。 1.10 受建设单位委托本承包人须负责向相关管理部门申办本系统时所有设计、供应、安装接线、测试及试运转的相关所有协调工作和费用,如无线电管理委员会方案论证费、中转台设台费、频占费、安装完成后现场测试等相关费用。

1.11 凡未列入本技术规格说明书或图中,但又是本系统运转所必须的任何设备、材料,也须包括在合约工程内,不可追加额外费用,予以提供。

2. 主要系统功能要求 2.1 ★ 无线对讲系统采用数字信道主机,考虑到最终使用的终端容量,可至少保证同时为12个通信组或数据组提供语音、信息传递服务,并要求计算证明最大化利用信道共享资源来提供更多的语音和数据通信需求。 2.2 系统采用收发天线共缆方式,在天馈系统中在保证高质量的信号(平均信号强度≥-85dBm,信噪比≥20dB)的同时,降低工程造价。 2.3 天馈系统根据覆盖信号传输实际情况,采用光纤传输与射频传输共用的方式,主干采用光纤传输,分支采用射频线缆传输,系统分为若干个子区域来覆盖建筑的不同区域及业态,做到针对性的信号覆盖,同时设计增强系统故障弱化能力,每个子系统之间互不影响。 2.4 ★系统支持与消防报警系统联动功能,在发生消防报警时,系统可按预先设定的程序将报警点位信息发送给指定的单个或组对讲机终端上,并可以从对讲机返回更新信息。 2.5 ★ 系统支持数据采集功能,可将即时语音、数据信息实时收集并上传至相应服务器,实现任意对讲机通话组的通信录音,为管理分析提供重要措施。

2.6 ★ 可与楼宇自控系统通过数据网关进行联动,可实现定时或特定要求将楼宇设备自控系统监控平台中紧急的状态信息通过无线方式发送至指定人员的无线对讲终端中,并可以从对讲机返回更新信息。

2.7 ★ 要求系统支持和酒店HotSOS等第三方优化管理软件数据接口,并可采用适合的对讲机终端进行派单流程的操作和回复。

2.8 ★ 要求系统具备定位功能,可将各种联动信息发送给附近人员的对讲机中,大大提高了事件响应及处理时间。同时,可通过定位功能实现在线式巡更,在巡更途中,可实时送回巡更人员的位置信息。

2.9 系统设计需由具备相关设计资质单位完成,并需最终获得政府相关单位的使用许可证。

3. 主要设备性能要求 3.1 数字中继台

同时支持数字 TDMA 模式下的两条语音或数据路径。 可以方便地安装于墙面或机架系统。可以提供多信道共享功能以提高信道的利用率、集成的数据传输以及增强的语音通讯。

 支持数字TDMA模式下2个同步语音或数据信道;  高功率下100%连续工作周期;  可在模拟或数字模式下工作;  射频输出功率:45W  工作频率:403~470MHz  信道间隔:12.5KHz  频率稳定性:+/-0.5PPM  接收机互调:75dB  接收机邻近信道选择:60dB/12.5kHz  耐用性和可靠性符合美国军标810C、D、E和F  支持IP直接方式接口 推荐品牌:摩托罗拉、建伍、艾可慕

3.2 定向耦合合路组件

定向耦合合路组件是一套极其紧凑的小型合路器,只占据机柜2-4U的空间,并易于拆卸,抗损性能优越,可用于移动的环境,在两个信道合路的情况下每个信道插入损耗低于3dB,单个的最大承载功率达200W。

 工作频率:400~430MHZ  工作带宽:2MHz  最大允许合路数:8  输入承载功率:200W  端口隔离度:70db  接口:N型

推荐品牌:EVERTAC、歌海、威升

3.3

接收机多路耦合器组件

接收机多路耦合器组件用于多信道基站,使得多个接收机能共用一套接收天线。这样既可降低架设成本又可提高系统性能。

 频率范围:400~430MHZ  工作带宽:2MHz  上行增益:0-10db  系统噪音系数:≤5  输入、输出端口:N型  输入、输出驻波比:≤1:1.5  输出间隔离度:25db 推荐品牌:EVERTAC、歌海、威升 3.4 双工器

双工器被用于整合基站的发射信号和接收信号

 工作频率:400~430MHZ  工作带宽:500KHz  频率间隔:10MHZ  接收插入损耗:1.4dB  发射插入损耗:1.4dB  收发端口高隔离度:50dB  最大承载功率:100W

推荐品牌:EVERTAC、歌海、威升

3.5

室内射频放大组件

室内射频放大组件是用于提升传输中的射频信号强度,同时为下行链路和上行链路提供独立的增益补偿。

 工作频率:400~430MHz  工作带宽:2MHz  上下行隔离:

 模块化设计及自动平衡控制电路  高动态范围 

推荐品牌:EVERTAC、歌海、威升

3.6 室内吸顶天线

室内全向吸顶天线可支持350-520MHz,外形设计简洁、紧凑,具有良好的隐藏性,可安装于吊顶内,若吸附在吊顶以下时可充分与室内环境相融合。产品体积小、重量轻、波束角精确、即使安装在金属天花内,也可确保其性能指标覆盖效果有良好表现。

 室内吸顶式安装标准,不允许外露  垂直极化方向  工作频率:400~430MHz  驻波比:<1.5  增益:3dB 推荐品牌:EVERTAC、歌海、威升

3.7 定向耦合器

定向耦合器被设计用于从主干线路上提取一定比例的信号给分支线路使无线覆盖系统的分支线路可得到需要的信号增益。

 工作频率:400~430MHz  输入输出阻抗:50欧  最大输入功率:<100W 推荐品牌:EVERTAC、歌海、威升

3.8 功率分配器

二功率分配器被设计用于从主干或分支线路上均分想同比例的信号给分支线路或终端器件,使无线覆盖系统的分支线路保持信号增益的平衡工作频率:

 工作频率:400~430MHz  输入输出阻抗:50欧  最大输入功率:<100W 推荐品牌:EVERTAC、歌海、威升

3.9 手持对讲机

 TDMA数字制式;  最小频率间隔:12.5kHz  多行彩色显示屏幕  DTMF键盘中文显示

 具备蓝牙功能,支持PPT方式耳机  机身轻巧,便于隐藏  具备选呼、组呼、群呼功能  射频输出功率:2~3W  工作频率:403~470MHz  信道间隔:12.5KHz  频率稳定性:+/-1.5PPM  接收机互调:70dB  接收机邻近信道选择:60dB/12.5kHz  耐用性和可靠性符合美国军标810C、D、E和F

推荐品牌:摩托罗拉、艾可慕 3.10 线缆

采用低烟阻燃低损耗波纹管同轴电缆,每百米线缆信号最大衰减4.75~5.6dB。

推荐品牌:联创、俊之、亨通

第5篇:弱电防雷接地要求

弱电工程具体防雷方案

弱电工程防雷方案简述

一、弱电工程概述

智能建筑弱电工程中有些工程队往往忽视防雷接地,给弱电工程遗留下安全隐患。本文较深入地探讨了智能建筑弱电工程防雷接地设计方案,供相关弱电工程技术人员参考,以起抛砖引玉之效。

随着通信科学技术的不断发展,特别是无线移动技术的步伐日益加快,而通信设备属于弱电设备, 它耐雷电及过电压的能力很弱,因而各种通信设备及计算机设备遭受雷击损坏已成为影响通信系统安全运行的重要因素。总的来讲,有两种过电压方式侵入设备从而损坏设备:

一种由弱电工种中的电源线、信号传输线、天馈线及地线侵入的雷电流。

另一种是内部操作过电压,如变压器的空载、电机的启动、开关的开启等引起的浪涌电压,足以使许多微电子设备遭受不同程度的损坏,直接造成巨额的经济损失,更重要的还会导致整个通信网络瘫痪,从而对我们保障武警消防系统的通信系统、内部管理系统的设备安全性、可靠性就提出了更高的要求。由此可见通信系统和计算机网络系统的雷电防护安全问题愈显得日益突出,势在必行。

二、弱电工程具体防雷系统解决方案

弱电防雷是一项综合工程,它包括防直击雷、防感应雷以及接地系统的设计。本方案参照信息产业部批准的中国通信行业标准:“通信基站防雷与接地设计规范”;“通信工程电源系统防雷技术规定” 及“通信局(站)雷电过电压保护工程设计规范” ,结合我公司产品的特点和工程设计的经验,提出了本解决方案。

(1). 防雷慨述

雷电是发生在大气中的声、光、电物理现象,它给人类的生活带来很大影响,雷电造成的灾害自远古以来一直威胁着人类和地球上的一切生物,随着科学技术的发展,微电子设备的增多,计算机的普及,雷电的危害性愈来愈突出。感应雷的危害已被社会愈来愈重视。而感应雷是指由于闪电过程中产生的磁场与各种电子设备的信号线,电源线以及天馈线之间的耦合而产生的脉冲电流,也指带电雷云对地面物体产生的静电感应电流,若能将电子设备上电源线,信号线或天馈线上感应的雷电电流通过相应的防感应雷避雷器引导入地,则达到了防感应雷的目的。

(2).雷电破坏弱电设备的途径主要有以下几个方面: 1.直击雷对建筑物或邻近地区的雷电放电,从而导致建筑物内部通信网络环路中,由于电磁感应产生瞬态过电压造成设备损坏; 2.雷电通过供电系统侵入设备造成的损坏; 3.雷电通过通信线路(如DDN/X.

25、PSTN、ISDN、邮电专线、视频传输线、音控线、帧中继等)的感应传入弱电系统损坏设备; 4.雷电通过天馈线路传入系统损坏设备; 5.接地措施处理不符合规范要求,引起的地电位反击; 6.静电感应产生瞬间电荷反击,传入网络系统造成设备损坏。

综上所述,雷击不仅会造成建筑物和通信网络、设备的损坏,而且还会危及人生安全。因此应采取综合防雷措施,既要防御直击雷对建筑的危害,又要防御感应雷沿各种途径进入室内,对人员、设备的危害。

(3)、设计依据及原则 1设计依据: A.《电子计算杌机房设计规范》GB50147—93 C.《工业与民用电力装置的过电压保护设计规范》GB64—83 D.《电子设备雷击保护导册》GB7450—87 E.《建筑物电气设计手册》

F. 《计算机信息系统防雷保安器》 GA173-1998。 H.《建筑物防雷设计规范》GB50057—94 I.《雷电电磁脉冲的防护》IEC1312—1.2.3. 2设计原则: 通过对贵单位的设备情况分析,现提出我公司对该项目的设计原则: a、避雷器件在线路中应不影响被保护设备的正常工作。 b、重点考虑先进性、安全性、实用性。 c、考虑机房的整体性、美观性。 d、设计施工的可操作性。

三、弱电工程具体防雷措施

为了保证福建省武警消防总队的大楼、供电系统、监控、消防、通讯系统及电梯系统的防雷安全运行,我们对福建省武警消防总队大楼提出如下防雷解决方案:

3.1 接地系统:

防雷工程设计中无论是防直击雷还是防感应雷,接地系统是最重要的部分。任何一个设备系统均需要一个良好的接地,它不仅是泄放雷电波的根本,而且良好的接地抑制了由于地电位的上升而造成的地电位反击,根据国家标准《电子计算机机房设计规范》(GB50174─93)的规定:“电子计算机机房的接地一般有四种:交流工作接地、安全保护接地、直流工作接地、防雷保护地,其接地电阻£1W。又据国家标准《建筑物防雷设计规范》(GB50057-94)以及《电子计算机机房设计规范》中指出:接地引线宜采用25mm2以上的铜芯线。关于接地体的选用,经过与专业技术人员的共同探讨,认为采用传统材料──钢材作接地体,辅以降阻剂,造价高且不宜达到要求£1W,并且钢材易腐蚀,降阻剂易流失,稳定性差。几年后,随着钢材的腐蚀及降阻剂的流失,接地电阻很快就会成倍上升,这样对于今后再改善接地电阻就造成相当大的浪费和不便,且现有的场地也不允许使用很多的钢材和占用很大的面积。故我们共同认为采用低电阻非金属接地模块来作接地体,该产品还列入国家火炬计划,国家级科技成果推广计划,国家级军事电子产品计划,并由中国人民保险公司承担产品及工程质量保险。它的突出优点在于节省钢材(也节省费用,尤其施工费用),由于是非金属,增加了接地体寿命,耐酸、碱腐蚀,其材料与土壤有很强的亲和力,对降低接地电阻具有很明显的作用。且稳定性极好,使用几个模块就能达到较低的接地电阻,这样占用的面积就小,不需要使用很多的钢材,占用很大的面积。

3.1.1对接地电阻的要求: 从理论上讲接地电阻愈小愈好,但依据规范、标准,地阻不宜大于4欧姆,如采用联合接地的方案应小于1欧姆。

3.1.2 应采用联合接地:

接地的流派很多,近年来联合接地的观点占上风。因为,现代化的城市不可能以足够的距离作几个地网来满足要求,考虑到福建省武警消防总队的大楼、供电系统、监控、消防、通讯系统及电梯系统的具体情况,地网建议设计为联合接地,延用原来大楼的防雷地网做为此防雷工程地线引出线,但要遵循共网不共线,单点接地的原则。另外,由于此防雷工程的供电系统、监控、消防、通讯系统及电梯系统的分布较远,无法使用原地网,所以防雷地线需在各系统较近处的地方做地网来满足防雷要求地阻≤4Ω即可。

3.2机房的设备屏蔽接地

因为机房的设备对雷的伤害特别敏感,所以对机房的接地该特别的重要。对机房的各种重要的设备的外壳及静电地板龙骨均通过BV10mm²铜线连接到汇集环上,用BV35mm²铜线做汇集环,汇集环接下线用BV70mm²铜线做引下线接大楼独立地网或大楼主钢筋。

3.3供电系统的防雷

电源线是感应雷电波的主要侵入通道,实践证明有80%以上的感应雷击来自于电源线。为了有效泄放雷电,降低残压,保护设备,应作多级防雷保护。

在主楼3楼中心交换机房电源进线端LAY220-100GJ-100(一台)作为电源的

一、

二、

三、级防雷,此型号避雷器,雷电通流量100KA(8/20μs)启动电压500V-560V. (注意:此避雷器的工作电流市100A所以它的最大承受负载功率是100*220=22000W,为更好保护我门应把机房功率控制在它最大承受负载的60%的范围内22000*60%=13200W,现在基本能控制在这个范围内。) 在食堂2楼分交换机房、3楼、研发4楼、电源进线端各加入LAY220-100GJ-50一台(共3台)作为电源的

一、

二、

三、级防雷,此型号避雷器,雷电通流量50KA(8/20μs)启动电压500V-560V. (注意:此避雷器的工作电流市50A所以它的最大承受负载功率是50*220=11000W,为更好保护我门应把机房功率控制在它最大承受负载的60%的范围内11000*60%=6600W,现在基本能控制在这个范围内。) 在监控设备的视频服务器,取电处加入LAY220-5C移动式多功能防雷插座。(6个)共6个监控。

在机房里对各重要设备和重要信息点,的电源都加入LAY220-5C移动式多功能防雷插座,作为用户终端设备供点保护( 3.4信号线路的防雷:

因为现在的各种微电子设备应用较广,设备之间的信号传输线又分布较广,暴露在空间的距离长,加上信号传输线的屏蔽未作好或不能有效屏蔽,就极易受到感应雷电波的侵入,而微电子设备的工作电压及承压能力较低,这样一来各种微电子设备就会受到感应雷的破坏,所以信号线路的防雷是十分重要的。根据侨兴通信弱电工程的情况。

在主楼交换机房,核心交换机与服务器的两端加入LAXRJ4502-08BHA(2台*1=2个)配线架与中继线靠配线架一端加入LAXRJ4502-17CT。(24对线,2个12口器件)作为对交换机防雷保护。

在食堂的分交换机房,配线架与中继线靠配线架的一端加LAXRJ4502-17CT。(18对线,2个12口器件)作为对交换机的防雷保护。

生产3楼的分交换机房,配线架与中机线靠配线的一端加上LAXRJ4502-17CT(18对线,2个12口器件)作为对交换机的防雷保护。

研发4楼的分交换机房,配线架与中继线靠配线架的一端加LAXRJ4502-17CT。(56对线,5个12口器件)作为对交换机的防雷保护。

在各楼宇的信息点与中继线,靠信息点处加入LAXRJ4508-08BHA主楼24的信息、食堂2楼18信息点、生产3楼18个信息点、研发56个信息点(大约有116个信息点) 监控摄像机的防护

由于对设备(待定)具体防雷,具体防雷方案待定,在视频服务器与中继线靠服务器的一端加入LAXR4508-08BHA。(6台摄像机*1=6个)建议对门口监视系统摄像端分系统做防雷,由于设备待定(基本设计图2,有待修改)。 4.1安装与验收

1.安装 施工计划和工期安排应以双方签定的工程合同为准,其施工安装要求均以本方案进行。具体的安装计划由建设方协调安排,施工过程中遇到的断电或关闭设备问题,由建设方协调解决。

在安装中,如施工方需移动或变动相关设备的位置或配置需经过的建设方同意。在施工中有不可抗拒力或其他原因中断的,应签署相应的停复工报告,其施工期限应相应延长。

2.验收

无论是单一设备还是防雷系统,均按照双方同意的施工技术文件要求来进行验收。其中单一设备是据设备清单和检测报告现场验收;防雷系统安装完成设备正式开通,即开始初步验收,初验合格后开始试运行,时间为一个月。

四、服务保证和维护 1.服务保证

a、施工方保证所提供的避雷设备的质量的可靠性和真实性,并提相应的书面文件。工程中使用的防雷设备因雷击发生坏,由施工方免费负责维修,无法维修的设备进行更换。并承担工程责任险。

b、施工方在接到故障通知后48小时内赶到现场分析原因并解决问题。施工方在安装后的巡视检查应得到建设方的配合。

c、避雷器一年内如出现损坏,免费修复或更换。经过保修期后,施工方继续提供完善的服务,建设方所需产品施工方以当时最优惠价格提供设备及附件。

d、每年雷雨季节开始和结束时,各检测一次避雷器的工作情况和地网阻值。 e、随时提供防雷方面有关问题的技术支持。

f、对用户方发生雷击事故时,我方接报后响应时间小于24小时,及时提出解决方案。并在48小时内到达现场,彻底解决问题。

2.设备维护要求

a、建设方对安装防雷设备应由专人定期检查、维护,发现问题及时通知施工方。 b、建设方改动相关设备时涉及避雷设备要通知施工方。

五、弱电防雷系统示意图

第6篇:系统安全接地

接地的分类

安全接地工作接地屏蔽接地

安全接地

设备金属外壳等的接地

用电设备的绝缘物质层由于受到了外部的机械损伤、系统过电压或者本身老化等原因而导致绝缘性能大大降低时,设备的金属外壳、操作手柄等导电部分出现较高的对地电压。人触及这些部位时,会发生触电危险。因此凡是人可接触的部位(如外壳、框架、机座、操作手柄等金属部件)都必须接地,称为安全接地。

第7篇:煤矿防雷接地规范

煤矿防雷中几个问题

从2003年开始对各自境内的煤矿陆续开展了防雷整改工作,到2005年底全省约70%的煤矿完成了防雷设施的安装及检测。然而,由于多种原因,造成整改过程中或整改完成后出现一些问题,如某些煤矿防雷装置投入使用后,在雷电天气过程中,电源避雷器、电气设备、电子地磅系统瓦斯检测系统一并被雷击损坏,造成不应当出现的重大经济损失。本文根据对事故了解的情况,针对小型煤矿在防雷装置设计、施工过程中出现的问题,介绍我们的一些看法,供设计、施工人员参考。 2技术规范

结合实际情况,正确理解和执行技术规范和规程的使用场合,是正确设计防雷装置的关键,在多数出现问题的地方,多是失误在上面两个方面。贵州的几乎所有小型煤矿地处山区,与移动基站类似,不同之处在于煤矿在山腰或山沟;煤矿地点人员较少,除下井矿工外,地面上仅有少数工作人员,地面设施主要有卷扬机、换气风机、瓦斯监测系统等。因此,根据实际情况,煤矿防雷装置设计、施工主要应参照下列技术规范: GB50057-94(2000)《建筑物防雷设计规范》、 GB7450-87《电子设备雷击保护导则》、 GB50054-95《低电压配电设计规范》,以及 99(03)D501—1 《建筑物防雷设施安装》、 03D501—4《接地装置安装》。

地面建筑物除炸药库可按一类防雷构筑物考虑外,其余建(构)筑物防雷类别应按第三类考虑。 考虑小型煤矿属于一个比较特殊行业,而且多在山中这样一个特殊地形环境,防雷措施设计还需依据《煤矿安全规程》相关规定,但在执行过程中由于技术人员使用的版本不一致,也会出现技术争论情况,如将“第九篇第六章—井下电气部分”接地要求错误用于地面电气接地要求,主要是技术人员使用简写本的《煤矿安全规程》而未使用完全版本的《煤矿安全规程》所致。 3 防雷措施设计出现的主要问题

煤矿开采场所,空气湿度相对大,地形、土质结构复杂,电阻率在500-2000Ω·m之间,雷电流泄放散流能力差,容易遭受雷击。煤矿动力电源基本都是架空线路,所以煤矿设备(配电柜、电器、绞车等)时常遭受雷击;排风口处风速快、排出的空气中含有大量的高浓度瓦斯、尘埃、氢气等,遭受雷电闪击后易引起瓦斯爆炸,造成重大安全事故;主井口地面金属轨道有利于直接雷电流导引闪击,可能导致雷电流引入矿井中引起瓦斯爆炸,2002年5月,我省习水县某煤矿发生的一起由于雷击引起200m深处爆炸事故。因此,我们认为防雷措施应加强直接雷击防护方面的考虑。 3.1 直击雷击防护

主要是井口和和小型炸药库的直击雷击防护。根据矿井口情况,设置一~二枝8---12 m高的独立避雷针,基本能对矿井口进行完全直击雷保护,从安全角度出发,避雷针接地电阻设计小于10Ω,针脚距针脚距离洞口边沿距离不小于3m,距离洞口人行道不小于3m。见图

1、 图2。 炸药库、雷管库直击雷防护,按照GB50057-94《建筑物防雷设计规范》第3.2.1条,必须安装单枝或多枝独立避雷针或架空避雷网,不能直接在炸药库上安装避雷带或避雷网格,库内严禁电缆线进出,避免感应雷击和雷电波侵入。

从了解的情况看,主要问题是:某些设计人员错误理解《煤矿安全规程》中井口部分轨道接地装置应采用“集中接地”条文,将避雷针接地装置与入井轨道接地装置相联,埋下可能发生跨步电压伤人事故隐患。《煤矿安全规程》中井口部分集中接地装置应是铁轨与进入矿井的电缆屏蔽层接地共用接地装置概念,不是与避雷针共用接地装置。 3.2 雷电波侵入防护措施

电源线路:矿山电源线路多采用两种供电系统,向井下供电电源为中性点不接地的IT系统,而且电压为660v50Hz高压交流电,通过双屏蔽层电缆送入矿井;矿井地面交流电源则为TN供电系统:380v/220v50Hz。同时电源线路上装有高灵敏度的RCD保护器(mA级)。

电源线路出现问题最多的是设计人员未仔细进行现场考察,没有注意到矿山交流供电电压白天、晚上电压幅度差异较大而且供电电压为660v50Hz高压这两个特点,选取避雷器技术参数时,按照常规情况考虑,出现三相电源避雷器安装完成后,接通电源闸刀就跳闸或避雷器瞬间烧毁情况,不明情况的人还以为是避雷器质量不佳原因。 针对煤矿这一特殊情况,设计人员在选取电源避雷器参数前,一定测试了解交流工作电压及电压波动范围情况,根据测试的参数向供货商特别定做宽动态范围的SPD,以免出现重大事故。第一级避雷器通流容量不小于80kA,动作电压1000V—1500V,接地线截面积不小于10mm2,接地电阻不大于10Ω。电源线路最好采用二级或三级防护,向井下供电电缆在井口处金属外皮需作接地处理。

另一方面,小型矿山通常远离城区,从配电变压器到矿井区距离较远,而且电源线路均为没有绝缘胶皮的架空金属裸导线,易遭受直接雷击,设计人员基本未注意到这一特殊情况,因此运行过程中多次出现架空电源线路遭受直接雷击而造成避雷器、电气设备一并被击坏情况。 架空电源线路遭受直接雷击而产生的过电压,可由下式计算: 架空电源线路附近雷击时,线路出现雷电感应过电压数量可由下式计算:

:雷电流幅值,KA;S:雷击点与导线的距离,m;h:导线离地面的高度,m。

从上面两式可以看出,无论是雷电流直接击在架空电源线路上或附近地区闪击,线路上的雷电过电压脉冲幅度可以达上万伏,我们也就可以理解雷雨天气多次出现避雷器、电气设备一并被击坏情况了,这一情况类似高山移动基站某些重大雷击案例事故原因。

然而对电源线路全线架设避雷线成本过高,不过可以采取辅助措施,多次、逐级减小电源线路上到达矿井位置的雷击过电压脉冲能量。针对矿山电源线路供电系统特殊性,经过多次实践,采取如下辅助措施可以获得比较好的效果:架空电源线路入户前三杆(或线路全线隔杆) 铁横担必须接地,同时在接地铁横担处对线路制作简易放电间隙,形成多级衰减线路上雷电过电压;在土质较差的地方,接地电阻不易降低时,将电杆金属斜拉线一并连接。 弱电信号线路

小型矿山的信号线路比较简单,主要有:瓦斯监测信号线路、电子地磅称重信号系统。线路应在地下电缆沟内穿金属管敷设,根据线路工作电压,安装符合要求的信号避雷器;其启动电压为工作电压的1.5倍,通流容量不小于10kA,接地线不小于6mm2。

对于电子地磅称重信号系统,由于其工作原理一直鲜有介绍,并且信号系统压力信号比较弱,信号避雷器制作也比较困难,所以一直只是在其电源线路上安装避雷器,而信号线路最多仅穿钢管敷设而已,故时有雷击事故发生;幸运的是:目前已有适合电子地磅称重信号系统的国产避雷器,参见图3。瓦斯监测信号系统防雷已有文章介绍,本文不再赘述。 3.3? 铁轨断接、接地

铁轨断接就是在铁轨入井口处串入绝缘段,预防直接雷电、雷电波沿铁轨入侵井洞内引起瓦斯爆炸,对每一根铁轨,在引入井(洞)之后,应至少选定三个自然接头,串入绝缘轨段,每个绝缘轨段长度不小于3cm。串入绝缘轨段的铁轨接头夹板、螺丝杆、帽,都要选用适当厚度的绝缘衬垫、套管、垫圈。绝缘段之间的距离,必须大于电机车、列车的总长度。两相邻绝缘段之间的铁轨与轨枕之间,必须加绝缘垫,保证轨~地之间绝缘良好,同时至少必须有一个绝缘轨段在井口内并保持干燥绝缘,否则会失去绝缘断接的作用。

铁轨接地洞外接地装置尽量沿洞口两边敷设,洞内部分接地装置距离洞口不小于5m。 4.4静电防护

静电放电过程类似与雷电放电,只不过是一种微弱的雷电放电形式,当静电电流通过物体散放时,它在寻找一条对地阻抗低的通路使电位均衡而已,因此,设置相应保护措施,保证设备良好接地、地线连接良好就可完全避免静电放电造成的重大事故。

正常情况下人体的静电电压在500—1500V,使用交流电源的设备外壳,在使用过程中也会带有静电,特别在矿井中,有一定浓度的瓦斯,一旦出现静电放电,后果不堪设想。由于矿井内部设备接地、保护措施不属于项目考虑,故不予讨论。但如果使用电雷管时,电雷管库必须设置防静电装置和人体消静电装置,消静电装置接地电阻小于100Ω。 1.5小结

(1)进行煤矿防雷措施设计时,一定要仔细考察现场情况,在施工过程中发现存在不合理地方时,要及时反馈设计人员重新论证修改。设计规范主要以GB50057-94规范和《煤矿安全规程》相关规定为主,建筑物防雷按照第三类考虑,接地电阻建议提高为小于10Ω。 (2)如采用塔式避雷针,建议使用φ20元钢制作避雷针塔体,塔基础按照标准图集3D501—4《接地装置安装》中15m针高基础设计,避雷针用φ20×500mm规格材型,同时避雷针安装地点尽量避免在可能出现垮塌地点。

(3)即使在作了可靠轨道断接的情况下,井口避雷针接地建议采用独立接地装置,最好不与主井口外地面轨道接地体连成综合接地体。 (4)由于矿山采用高电压IT供电系统,最好架空电源线路每杆铁横担均接地并做简易放电间隙,多级衰减、逐级分流架空线路上超强的雷电过电压脉冲,尽量避免避雷器、电气设备一并被雷击损坏的现象出现。 参考文献 1煤矿安全规程? 2GB50057-94《建筑物防雷设计规范》

上一篇:市级农业龙头企业标准下一篇:销售员工转正申请书