密度的测量误差分析

2022-05-17 版权声明 我要投稿

第1篇:密度的测量误差分析

水准测量误差分析与误差消除

摘要:水准测量是目前高程测量方法中精度最高,也是应用最广的测量方法之一,在各大工程建设中被广泛使用。研究水准测量过程中误差的来源并分析出相应的消除方法对提高水准测量成果质量与精度,为工程建设提供高质量高程成果有着积极的作用。

关键词:工程建设;水准测量;误差分析;误差消除

0.引言

水准测量又被称为几何水准测量,是高程测量的其中一种方法。其原理非常简单,就是利用水准仪提供的一条水平视线,读出仪器前后两尺的读数,进而计算出两点间高差的测量方法。[1]本文主要从水准测量中误差产生的三个方面,仪器误差、外界环境及观测误差来对误差来源进行详细分析,并探讨相应的误差削弱或消除的方法。

1.仪器误差及其消除方法

1.1 i角误差

i角产生的原因就是水准仪所提供的视准轴线和理论的水准轴线不平行,导致出现了一个夹角,这个夹角就叫i角。即使仪器是经过了正规机构的检验校正的,但也是无法完全消除仪器i角。这就导致当水准仪的水准气泡居中时,视准轴依然不能保证处于水平方向,使得水准尺读数产生误差,并且该误差与视距长度成正比关系,公式如下

式中、分别为后视距、前视距,由(1-1)式可知,在i角一定的情况下,若单个测站前后视距相等或者一个测段累计前后视距相等,那么i角误差便能消除。但是在实际测量工作中,若要求前后视距严格相等是难以做到的。因此,我们只要按照相应等级水准测量前后视距差及累计视距差限差要求来测量,i角误差带来的影响便可以忽略。

1.2 角误差

角误差即为交叉误差。假设当水准仪不存在i角的情况下,水准仪的垂直轴完全垂直时,随着水准仪在水平面上的转动,视准轴和水准轴在垂直面上的投影依然处于平行状态,所以此情况对测量并没有不良的影响。而当仪器的垂直轴发生偏斜时,随着仪器的转动,水准气泡会偏离居中位置,视准轴也会偏离水平方向,从而导致在水准尺上读数时出现偏差。[2]要想消除这种误差对测量结果的影响,在测量之前就要对仪器角误差进行严格的校正和检验。

1.3 水准标尺零点差

由于水准标尺制造工艺的问题与使用磨损的情况存在,每一对水准标尺都存在零点差,而且每对水准标尺两个尺子零点差都是不一样的。零点差的存在会对标尺读数产生影响,从而导致最终水准测量的高程成果产生误差。

由上式发现,如果水准测量测段能保证为偶数站的话,那么水准标尺零点差是可以完全抵消的。因此,在实际水准测量工作中,我们可以在相邻两测站上将两标尺交替作为前后尺,并保证每个测段都以偶数站结束,那么差可以将水准标尺零点完全抵消。

1.4 水准标尺每米长度误差

水准标尺每米长度误差简单来说就是水准标尺刻画的刻度与真实长度不符而出现的误差。设为标尺每米间隔平均真长误差,为测站高差,则测段的尺长改正数应该为

因此,在水准测量工作开展前,还需要对水准标尺进行检验。在水准测量工作结束后,在填写水准高差概略表时还要进行尺长改正,然后才能进行平差处理,这样才能有效消除水准标尺每米长度误差对测量成果的影响。

2. 环境因素引起的误差及其消除方法

2.1 温度影响

温度的变化会直接导致水准仪i角的大小发生变化。原因是因为随着温度的变化,由于仪器内部零件材质不同,或者仪器受热部位不同,会使仪器内部零件产生不同程度的收缩或膨胀,从而导致仪器i角发生变化。经相关实验结果表明,周围环境每均匀变化1℃,仪器的i角会变化约0.5″。[3]

因为温度变化对i角的大小产生的影响是非常复杂且难寻规律的,因此难以用相应有效的方法来完全消除其影响。但是在水准测量作业前,我们可以将仪器预先放置于外界环境下一段时间,使仪器内部温度与周围环境温度趋于一致,这样可以大大降低仪器内部零件因热胀冷缩而对i角产生的影响。在观测时,避免仪器被阳光直射,给仪器打伞,也能减弱i角的无规律变化。

2.2 仪器与水准标尺沉降的影响

仪器和水准标尺的沉降对水准测量高程成果的影响是比较大的,因此在水准测量作业过程中一定要避免其影响的出现。

2.2.1仪器沉降

在一个测站测量过程中,若所架设的仪器发生沉降的话,那么随着时间的推移,每次的标尺读数都会比真实读数偏低,这将直接影响测得的高差结果。假设仪器发生的是均匀沉降,我们采用———的观测顺序来读数,那么此站高差计算可得

由式2-1可以发现,采用后前前后的读数顺序可以消除仪器均匀沉降所带来的误差。同时,我们要保证架设仪器时一定要架设在土质坚实处,从而减小仪器沉降带来的影响。

2.2.2 水准标尺沉降

在一个测站测量完成后,此测站的前尺不动作为下一测站的后尺,而后尺往前进方向移动作为下一测站的前尺。若在换站期间,上一测站的前尺发生沉降的话,这会导致下一测站后尺读数比真实读数偏大,从而导致下一测站测得的高差偏大。这种误差在测量过程中是难以发现的,我们一定要注意摆放尺垫时一定要放置在土质坚实处,避免放于草地上、土质松软处。同时,每一测段都进行往返测,这也能有效地抵消此类误差,这也是水准测量要求必须进行往返测的原因。

2.3 大气垂直折光影响

由于空气在不同的离地高度中密度分布是不同的,宏观上呈梯度分布,离地面越近,空气密度越大,反之密度则越小。这就导致光线在通过空气这种介质时出现折射现象,光线会向密度更大的一侧偏折,从而导致在水准测量读数时视线发生弯曲,引起读数误差。在不同的温度和空气湿度等情况的影响下,垂直折光偏折系数也会有所不同。上午地面吸热,离地越近温度越高,下午地面放热,离地越近温度越低。这会使得空气密度在一天中呈现不同的分布状态,从而引起垂直折光的无规律变化。

为了削弱大气垂直折光对测量的影响,可以通过选择适宜的观测天气,缩短前后视距,保证前后视距尽量相等,以及保证观测视线不要离地面太近等措施來实现。

3. 观测误差

观测误差的来源主要有三点,其一就是水准仪与水准标尺的水准泡未完全居中引起的误差,其二是照准水准标尺刻度的误差,其三是读数误差。这三种误差都属于偶然误差,难以用科学系统的方法来消除。但经相关研究显示,这些偶然误差在每一测站中的误差影响还不到0.1mm,[3]因此这些误差基本可以忽略。

4.总结

通过以上三个方面对水准测量中出现的误差进行的详细分析,我们可以从中发现,绝大多数的误差我们都可以运用系统科学的措施来消除或削弱。因此,在实际工作中,我们只要规范熟练地操作仪器,提高从业者的责任心,严格按照国家相应等级的水准测量规范来实施,使用经过专业鉴定机构鉴定的测量仪器来作业,那么最终的水准测量成果必将是高质量、高精度的。

参考文献

[1]张正禄.工程测量学[M].武汉:武汉大学出版社,2013:33-36.

[2]孔祥元,郭际明,刘宗泉.大地测量学基础[M].武汉:武汉大学出版社,2010:317-322.

[3]孔祥元,郭际明.控制测量学[M].武汉:武汉大学出版社,2006:240-246.

作者:林文成

第2篇:测量密度实验中的误差分析

在初中物理学习中,“密度”这一知识点既是重点也是难点,在社会生活及现代科学技术中密度知识的应用也十分普遍,对未知物质密度的测定具有十分重要的现实意义,特别是为物理的探究式教学,自主参与式学习提供了很好的素材,值得我们认真地探索和挖掘。

在“测量物质密度”的实验教学过程中初中物理只要求学生掌握测量固体和液体密度的方法,下面就从误差的分类和来源两各方面来分析常见的几种实验方法中的误差产生原因和减小误差的方法。

一、误差及其种类和产生原因:

每一个物理量都是客观存在,在一定的条件下具有不依人的意志为转移的客观大小,人们将它称为该物理量的真值。进行测量是想要获得待测量的真值。然而测量要依据一定的理论或方法,使用一定的仪器,在一定的环境中,由具体的人进行。由于实验理论上存在着近似性,方法上难以很完善,实验仪器灵敏度和分辨能力有局限性,周围环境不稳定等因素的影响,待测量的真值 是不可能准确测得的,测量结果和被测量真值之间总会存在或多或少的偏差,这种偏差就叫做测量值的误差。

测量误差主要分为两大类:系统误差、随机误差。

(一)系统误差产生的原因:

1、测量仪器灵敏度和分辨能力较低;

2、实验原理和方法不完善等。

(二)随机误差产生的原因:

1、环境因素的影响;

2、实验者自身条件等。

二、减小误差的方法

1、选用精密的测量仪器;

2、完善实验原理和方法;

3、多次测量取平均值。

三、测量固体密度

(一)测量规则固体的密度: 原理:ρ=m/V

实验器材:天平(带砝码)、刻度尺、圆柱体铝块。 实验步骤:

1、用天平测出圆柱体铝块的质量m;

2、根据固体的形状测出相关长度(横截面圆的直径:D、高:h),

2 由相应公式(V=Sh=πDh/4)计算出体积V。

3、根据公式ρ=m/V计算出铝块密度。 误差分析:

1、产生原因:(1)测量仪器天平和刻度尺的选取不够精确;

(2)实验方法不完善;

(3)环境温度和湿度因素的影响;

(4)测量长度时估读和测量方法环节;

(5)计算时常数“π”的取值等。

2、减小误差的方法:(1)选用分度值较小的天平和刻度尺进行测量;

(2)如果可以选择其他测量工具,则在测量体积时可以选 择量筒来测量体积。

(3)测量体积时应当考虑环境温度和湿度等因素,如“热

胀冷缩”对不同材料的体积影响。

(4)对于同一长度的测量,要选择正确的测量方法,读数

时要估读到分度值的下一位,且要多测量几次求平均 值。

(5)常数“π”的取值要尽量准确等。

(二)测量不规则固体的密度: 原理:ρ=m/V

实验器材:天平(带砝码)、量筒、小石块、水、细线。 实验步骤:

1、用天平测出小石块的质量m;

2、在量筒中倒入适量的水,测出水的体积内V1;

3、用细线系住小石块,使小石块全部浸入水中,测出总体积V2;

4、根据公式计算出固体密度。ρ=m/V=m/(V2-V1) 误差分析:

1、产生原因:(1)测量仪器天平和量筒的选取不够精确;

(2)实验方法、步骤不完善;

(3)环境温度和湿度等因素的影响;

2、减小误差的方法:(1)选用分度值较小的天平和刻度尺进行测量;

(2)测量小石块的质量和体积的顺序不能颠倒;

(3)选择较细的细线;

(4)测量体积时应当考虑环境温度和湿度等因素,如“水

的蒸发”等因素对的体积影响。

(5)测量质量和体积时,要多测量几次求平均值。 误差分析:

1、产生原因:(1)测量仪器天平的选取不够精确;

(2)实验方法、步骤不完善;

(3)环境温度和湿度等因素的影响。

2、减小误差的方法:(1)选用分度值较小的天平进行测量;

(2)测量小石块的质量和体积的顺序不颠倒;

(3)选择较细的细线;

(4)测量体积时应当考虑环境温度和湿度等因素,如“水

的蒸发”等因素对的体积影响、“水质(选用纯净水)” 因素对水的密度的影响等。

(5)测量质量时,要多测量几次求平均值。

四、测量液体密度

原理:ρ=m/V 方法一:

实验器材:天平、量筒、烧杯、水、盐。 实验步骤:

1、用天平测出空烧杯的质量m1;

2、在烧杯中倒入适量的水,调制出待测量的盐水,用用天平测出烧 杯和盐水的总质量m2;

3、将烧杯中的盐水全部导入量筒中测出盐水的体积V;

4、根据公式ρ=m/V=(m2-m1)/V计算出固体密度。 误差分析:

1、产生原因:(1)测量仪器天平和量筒的选取不够精确;

(2)实验方法、步骤不完善;

(3)环境温度和湿度因素的影响;

2、减小误差的方法:(1)选用分度值较小的天平和量筒进行测量; (2)尽量将烧杯中的水倒入量筒中;

(3)测量体积时应当考虑环境温度和湿度等因素,如“水

的蒸发”等因素对的体积影响。

(4)测量质量和体积时,要多测量几次求平均值。

说明:该试验方法中因为无法将烧杯中的水全部倒入量筒中,在烧杯内壁上或多或少会残留一些水,还有不好控制水的多少,所以实验误差较大,建议一般不选择此方法测量液体密度。

方法二:

实验器材:天平、量筒、烧杯、水、盐。

实验步骤:

1、在烧杯中倒入适量的水,调制出待测量的盐水,用天平测出烧杯

和盐水的总质量

;

;

2、将适量的盐水倒入量筒中,测出量筒中的盐水的体积

3、用天平测出剩余的盐水和烧杯的总质量

;

4、根据公式ρ=m/V=(m2-m1)/V计算出盐水的密度。 误差分析:

1、产生原因:(1)测量仪器天平和量筒的选取不够精确; (2)环境温度和湿度因素的影响;

2、减小误差的方法:(1)选用分度值较小的天平和量筒进行测量;

(2)测量体积时应当考虑环境温度和湿度等因素,如“水

的蒸发”等因素对的体积影响;

(3)测量质量和体积时,要多测量几次求平均值。

以上就是初中阶段测量固体和液体密度的一些常用方法,以及这些实验中产生误差的原因和如何减小误差的方法提出一些自己的意见。当然,初中阶段不要求学生对误差进行深入的分析和处理,但也要求学生能找出简单的误差原因,在教学过程教师应该对每个实验中对产生误差的原因进行分析,根据其原因提出如何来减小这些误差的方法,从而培养学生的实验设计、实验操作、实验数据和结果的处理和分析能力,提高学生自身的综合素质。

第3篇:从误差分析谈谈“测量固体的密度”实验改进期

江苏省江阴市新桥中学(214400)徐美蓉 1“测量固体的密度”教学目标分析 《物理课程标准(2011年版)》提出:“为了适应时代发展需要,义务教育物理课程应体现物理学的本质,反映物理学对社会发展的影响;应注重学生的全面发展,关注学生应对未来社会挑战的需求;应发挥在培养学生科学素养方面的重要作用。”此阶段的物理课程,不仅应注重科学知识的传授和技能的训练,而且应注重对学生学习兴趣、探究能力、创新意识、科学态度、科学精神等方面的培养。

苏科版初中物理教材《密度知识的应用》一节安排了学生实验——测量物质的密度,要求选择一个固体,测量其密度。要求“学会测量液体或一些形状不规则的固体的密度”、“尝试用密度知识解决简单的问题,能解释生活中一些与密度有关的物理现象”。本课不仅能培养学生的技能,锻炼学生的思维,还能培养学生应用物理知识解决问题的能力,体现了新课标“从生活走向物理,从物理走向社会”的理念。 2“测量固体的密度”实验设计

在社会生活和现代科学技术中,利用密度知识来鉴别物质、间接测量物体的质量或体积等,有一定的现实意义。常见的测量固体密度的方法如下(以测量小石块的密度为例)。 2.1实验步骤

(1)调节天平平衡,用天平测出小石块的质量m。 (2)在量筒中倒入适量的水,测出水的体积V1。

(3)用细线系好小石块,放入盛有水的量筒中,测出总体积V2。 (4)小石块的体积为V2-V1。

2.2实验数据记录及处理

收集其中一组学生的实验数据,见表1。

学生根据每次算出的小石块的密度,求出小石块的平均密度:

这是初中物理计算物理量时常用的计算方法,多次测量取平均值以减小测量误差。 3“测量固体的密度”实验误差分析

由于测量仪器、测量方法、测量条件和测量人员水平以及种种因素的局限,误差总是存在,不可避免。在物理教学中,经常采用第一种方法来测量固体的密度,对第一种实验方案误差分析如下。

3.1小石块的质量误差分析

该实验在测量小石块的质量时采用的是秤量为200 g、感量为0.2 g的JPT-2型架盘天平。根据实验方案,小石块的质量能比较准确地被测出,但实验数据还是有所偏差,可能是读数时存在误差或天平本身存在系统误差。小石块的质量误差计算如下:

用贝塞尔公式计算任意一次质量测量值的标准差为:

用格罗布斯判据剔除坏数据,查表得G6=1.82,G6S=0.14 质量不确定度的A类分量为ΔA=S(m)=0.077 g 托盘天平的仪器最大允差Δ仪=0.001 g

质量的测量结果:m=(11.7±0.08) g 通过计算可知,小石块质量的测量误差为0.001 7,其中该误差因素本身的误差为0.08,相应的误差传递系数为0.22。 误差分析如下:

(1)由于天平的制造、调整和实验时的环境、温度等原因,一般天平的两臂总是不严格相等。因此,当天平平衡时,砝码的质量和游码所示质量之和并不完全等于物体的质量。为消除这种误差,可以利用杠杆原理进行检测,求出天平臂长之比,从而做出更精确的测量。

(2)砝码的误差。由于使用时间长,砝码可能在操作过程中有磨损、生锈等各种现象发生,对测量结果也会有一定的影响。另外,托盘天平的灵敏度较低,也是一部分影响原因。 3.2小石块的体积误差分析

在测量小石块的体积时,采用了间接测量的方法。为使测量结果更加准确,改变了水的量,但从实验数据看出,小石块的体积每次测量的结果也有一定的误差。而测量的体积不仅包括小石块的体积,细线也占了一定的体积,所以测得的体积偏大。对小石块体积的计算及其误差分析如下:

用格罗布斯判据剔除坏数据,查表得G6=1.82,G6S=0.14 体积不确定度的A类分量为ΔA=S(V)=0.077 cm3

体积的测量结果:V=(4.6±0.3) cm3 通过计算可知:小石块体积的测量误差为0.16,因素本身的误差为0.3,相应的误差传递系数为0.54。 误差分析:

(1)在测量小石块的体积时,由于细线也占有一定的体积,导致测出的小石块的体积存在误差。为减少这部分误差,细线越细越好,浸入液体中的细线越少越好,而且细线的吸水性也要进行考虑。

(2)小石块本身可能吸附了一些杂质,对其体积的测量也有一定的影响。 3.3小石块的密度的计算

根据测量结果,小石块密度的置信区间为(2.3,2.7),相对不确定度为8%。据分析,体积误差因素对实验结果总误差的贡献较大。 4实验改进

在实验过程中,要减小实验误差,可以用更加精确的测量仪器,如用电子天平来测量小石块的质量,也可以采用多种方法进行实验,如可以用测力计或力传感器测量小石块的重力,从而算出小石块的质量。还可以利用杠杆的平衡条件测量小石块的重力。

根据计算,小石块的体积误差对实验结果的影响较大,所以在实验时要尽量减小小石块体积的误差,如用较细的细绳系住小石块、选用比较干净的小石块进行实验,减少杂质对实验结果的影响等。

除了以上方法测量小石块的密度,还可以利用阿基米德原理来测量小石块的密度,实验步骤如下。

(1)用细绳系住小石块,挂在弹簧测力计上,静止时测出小石块的重力G。

(2)在烧杯中倒入适量的水,将小石块慢慢浸没在水中,静止时读出弹簧测力计的示数F。

5结束语

本实验方案只用了一种测量工具——弹簧测力计,也可以用力传感器来代替弹簧测力计。由于采用了较精密的测量工具,该测量方法实验误差小,而且避免了细绳的体积对实验结果的影响。当然,在测小石块重力时,绳子的重力也对测量结果有一定的影响。误差不可避免,具体选择哪种方法进行实验,还要考虑学生认知特征和思维特点。

第4篇:矿山测量中贯通位置的选择影响贯通误差的分析

摘 要:矿山测量的重要工作是贯通测量,根据误差预计原理可知同样进行导线测量由于贯通位置的不同会导致贯通效果大为不同;本文对贯通位置影响贯通效果的原理进行了简述,同时以新安煤矿3103工作面的不同贯通位置作为贯通点影响贯通精度举例进行了阐述。 关键词:贯通位置 影响 贯通误差 分析

矿山测量的日常重要工作是一井内掘进巷道的贯通测量工作,不论贯通位置在轨道巷、运输巷还是在切眼,《煤矿测量规程》规定贯通限差应控制在横向±300mm,纵向±200mm;根据误差预计原理可知,在同样测量工作量的前提下,贯通位置选择的不同对贯通误差的影响也是不同的。现就贯通位置影响贯通精度作以下阐述。

一、贯通测量中的误差来源

1、贯通测量中的误差来源主要有3个方面:(1)起算数据引起的误差,(2)测量方法误差,(3)系统误差;

起算数据影响的点位误差,主要是对附和导线影响较大,附和导线两端起始,相当于两段支导线,故对贯通精度影响较大;因此附和导线的起算数据误差是贯通误差的重要来源,特别是不同时期测设的附和导线,影响优为严重,所以,在进行贯通测量方案的选择过程中,应尽量布设闭和导线。

另外,考虑测量方法的误差,主要是瞄准和读数造成的误差;贯通测量还应适当考虑系统误差对贯通精度的影响。

2、在高科技高速发展的今天,全站仪等新仪器设备在贯通测量中得到了普遍应用,其测距精度达2mm+2ppm,量边误差对贯通重要方向的影响较小,不是主要的误差来源。

二、贯通相遇点最佳位置的选择对贯通误差的影响

1、一井内巷道的贯通中,要对贯通方案进行井下平面和高程的误差预计。 (1)垂直方向的误差(纵向误差)可以按照Mh=±50√H(H为公里数),可知高程方向的贯通误差只与高程路线的长度有关,两次独立观测,除以 √2为中误差,取中误差的2倍作为预计结果。其预计结果大小与贯通点位置无关。 (2)水平方向的误差(横向误差)预计,包括量边引起的误差和测角引起的误差两方面,计算公式如下:

测角误差Mxβ=±(Mβ/ρ)∑√RY2i 量边误差MxL=±(A+BL)cosαi 式中,Mβ为测角中误差,与使用仪器有关,ρ为常数206265,RYi为各点到贯通重要方向的距离(如图x方向为贯通重要方向)。A、B为测距常数,L为两连续导线点之间的距离,αi为两导线点与贯通重要方向的夹角。

2、根据误差原理计算最佳贯通位置

对于一个确定了方案的贯通,其导线的布设形式就可以从设计图上表现出来,且误差预计的各个数据RYi、L、αi都可以从图上量出来,而Mβ、A、B可以根据使用的仪器确定一般不可变;由于量边误差对于贯通误差影响较小,而测角误差中∑RY2i的变化对贯通误差影响较大,它随着贯通位置的不同而显著变化。因此,22∑RYi的大小直接影响到贯通精度的高低,要使∑RYi最小,才能使误差最小,精度最高。

设K为贯通点,

Mxβ=±(Mβ/ρ)∑RYi ∑RYi=∑(cosαi |Pik|)――α为Pi点到贯通点K的距离 ――αi为Pi-K与Y’轴的夹角

令S=∑R2Yi,则 S=(Yk-Y1)2+( Yk-Y2)2+(Yk-Y3)

2、、、、+( Yk-Yi)2 S=∑Y2k-∑2 Yk Yi+∑Y2iS=nY2k-2nYk∑Yi+∑Y2i

由上式可以看出S是关于Yk的2次函数,且开口向上,有最小值。 对S求导,得: S’=-∑2 Yk+2∑Yi 令S’=0,则,-∑2 Yk+2∑Yi=0,Yk=∑Yi/n 从公式中可以得出,当Yk=∑Yi/n,即Yk就是各导线点在贯通方向上的Y值的平均值时,S最小;当Yk大于或小于∑Yi/n时,S变大,并且距离∑Yi/n越远,越靠近两端时S越来越大。

22222

2三、以新安煤矿3103综放工作面贯通工程为例说明我矿贯通工程中在贯通位置的选择对贯通精度的影响

新安矿3103综放工作面,倾向长150米,走向长800米,在巷道掘进过程中敷设一闭和导线,导线周长1800米,采用2″级全站仪测角量边,一次对中,一测回,独立观测两次。按此进行误差预算(主要是测角误差):如图(贯通点在运输巷计算最优位置示意图):

1、若贯通位置选择在轨道巷或者运输巷,以运输巷为例,在图上先确定贯通重要方向X:

①若贯通位置在最右端,求得∑Yi=14707 ,(i=1~36), ∑Yi=8883503 ②贯通位置最优位置为,∑Yi/n= 14707/36= 408.5,即得最优点为距离最右端408.5米处;求得∑Yi2=2874518.0 ③若贯通位置在最左端时,∑Y2i=9325039 贯通点在运输巷计算最优位置(距最左端408.5米)计算表 点号 3 4 5 6 7 8 9 10 11 12 Ryi Ryi2

点号 Ryi Ryi2

点号 Ryi Ryi2

-361.5 130682.3 -348.5 121452.3 -313.5 98282.25 -240.5 57840.25 -160.5 25760.25

-55.5 3080.25 -7.5 56.25

2-408.5 166872.3 20 426.2 181646.4 3 -368.5 135792.3 12 -403.5 162812.3 4 -310.5 96410.25 11 -398.5 158802.3 5 -260.5 67860.25 10 -377.5 142506.3 6 -177.5 31506.25

-149.5 22350.25

-62.5 3906.25

-18.5 342.25 21.5 462.25

7 8 9

10 37.5 1406.25 11 77.5 6006.25 12 151.5 22952.25 71.5 5112.25

13 14 15 16 17 18 19 113.5 12882.25

161.5 26082.25

219.5 48180.25

269.5 72630.25

312.5 97656.25

381.5 145542.3

426.2 181646.4

13 237.5 56406.25 14 294.5 86730.25 15 346.5 120062.3 16 448.5 201152.3 17 426.1 181646.4

∑ 221.2 1115234.6

-753.3 645767.34

532.1 1113516.1 ∑Ryi 0 ∑Ryi2 2874518.0

2、同理,若贯通位置选择在切眼,在先确定贯通重要方向X,: ①若贯通位置在最左端,求得∑Yi= 2915,(i=1~36), ∑Y2i=382313 ②贯通位置最优位置为,∑Yi/n= 2915/36= 81,即得最优点为距离最左端81米处,∑Y2i=184380 ③若贯通位置在最右端时,∑Y2i=339462 综上所述:

1、对于一井内掘进工作面贯通相遇点在重要方向上都有最优位置。

2、当贯通巷道在最优点贯通时,测角引起的在巷道贯通重要方向上的误差最小,22∑Yi最小;距离这个点越远,∑Yi最大,误差越大。

3、由我矿3103综放面误差预算可知,在类似工作面中,①在切眼里选择的最优点贯通误差比在轨道巷或运输巷选择的最优点要小的多。②无论在切眼还是轨道巷或者运输巷透窝时,在两端点误差最大,中间最小。 参考文献: 《矿山测量学》 张国良 中国矿业大学出版社

作者简介:邸伟,男,1980.9出生,大学文化,2001年毕业于黑龙江工程学院测绘工程系工程测量专业,现在枣庄矿业集团新安煤矿新安煤矿生产部工作,测量助理工程师

联系电话 :0632-4069070 邮箱:diwei1980@163.com 通讯地址:山东省微山县留庄镇新安煤矿 邮编: 277642

第5篇:垂直度误差、位置度误差的测量

任务五 垂直度误差、位置度误差的测量 【课题名称】

平面零件的误差测量 【教学目标与要求】

一、 知识目标

了解线、面垂直度误差和面对称度误差的检测工具及测量方法。

二、 能力目标

能够正确使用百分表进行测量,并准确计算误差值。

三、 素质目标

熟悉平面零件形位误差的检测原理、测量工具和使用方法,并能准确计算其误差。

四、 教学要求

能够按照误差要求正确地选择检测工具,并能够掌握测量工具的使用方法,对工件进行准确的测量。 【教学重点】

百分表的使用,各种形位误差的检测方法。 【难点分析】

百分表的使用,各种形位误差的检测方法。 【分析学生】

该内容的难度较大,比较难理解,需要多做解释,学生才能够掌握。

【教学设计思路】 本次课内容较多,且内容难懂,建议分成2学时,以保证有更多的练习机会,由于实训条件所限,可以分组进行测量,对于垂直度的检测也应先讲测量原理和方法,再让学生实测,最后介绍如何调零位计算误差值,边讲边练再总结提高。 【教学安排】

2学时

先讲后练,以练为主,加强巡视指导。 【教学过程】

一. 复习旧课

在形状和位置误差中,直线度、平面度的误差在平面零件中出现比较多,大家是否还能记住这些形位公差的含义呢?

二、 导入新课

需要应用什么测量工具来检测零件的垂直度和对称度呢?对于测量出来的数值又需要进行怎么样的处理才能得出正确的误差值?这是本次课程的主要内容。

三、讲授新课

垂直度和对称度误差的测量应用百分表或千分表作为量具,用标准平扳为基准面,借助于表座、方箱或直角尺座工具,将被测工件安放在基准面上进行检测。

线与面和面与面之间垂直度的检测方法相同,后者需要多测量几次。

1.测量平面之间的垂直度,需要借助于方箱或直角尺座,将被测工件固定起来,分别检测其平面对标准平板的垂直度,即可测量出这两平面间的垂直度。

2.测量工件平面间的对称度的方法。先检测a表面的三个坐标点a

1、a2和a3的数值,翻转工件,使c面处于a面的位置,再测量三个坐标点c

1、c2和c3点的数值,上下两平面对应点a1与c1,a2与c2,a3与c3的数值差即是a和c平面之间对称度的差值。

测量时应当注意保持百分表的表杆垂直于被测表面,其检测结果才是准确的数值。

3.位置度的测量要先找好基准,以基准来确定工件的位置度是否存在误差。

具体测量步骤教材。

四、小结

平面之间的平行度、垂直度和对称度误差都是位置误差,都可用百分表或千分表来测量。测量时应保证表杆垂直于被测表面,标准平板、方箱和直角尺座的精度都应当比较高,否则会影响测量的结果。移动百分表时,应注意保持平稳,速度尽可能慢些,同时被测表面应当保持平整干净。

五、布置作业

填好检测记录,计算误差数值。

第6篇:如何用误差理论减少测量中的误差

摘要:有测量就有误差,虽然误差不能完全的消除,但是可以尽量的减小误差,首先要对各种误差有所了解,针对不同的误差采取不同的方法进行减小。

1.随机误差

1.1随机误差的概念:是同一测量条件下,重复测量中以不可预知方式变化的测量误差分量。

1.2随机误差的特征

1)绝对值相等的正误差与负误差出现的次数相等,即误差的对称性。 2)绝对值小的误差比绝对值大的误差出现的次数多,即误差的单峰性。 3)在一定的测量条件下,随机误差的绝对值不会超过一定界限,即误差的有界性。

4)随着测量次数的增加,随机误差的算术平均值趋于零,即误差的抵偿性。 多数随机误差具有以上特性,这种误差的分布规律,人们称之为正态分布特性。

1.3减少随机误差的方法 1.3.1算数平均值

由于随机误差的抵偿性,当测量次数足够多时,正负误差的绝对值相等,因此多次测量的算术平均值作为被测量的测量结果,能减小随机误差的影响。

1n设x1,x2,,xn为n次测量值,则算术平均值xxi

ni11.3.2实验标准(偏)差

由于随机误差的存在,等精度测量中各测得值一般皆不相同,它们围绕着测量列的平均值有一定的分散性,测量的标准差可用实验标准(偏)差表征,由贝赛尔公式计算

1ns(xi-x)2 n111这里的标准差不是测量列中任何一个具体测得值的随机误差,标准差的大小说明在一定条件下的等精度测量随机误差的概率分布情况。标准差大,随机误差的分布范围宽,精密度低;标准差小,随机误差的分布范围窄,精密度高。 1.3.3算术平均值的标准偏差

如果在相同条件下对同一量值做多组测量,每一测量列都有一算术平均值,由于随机误差的存在,各个测量列的平均值各不相同,它们围绕着真值有一定的分散性,因此可用算术平均值的标准差来表征算术平均值的分散性。

ssxn

n1(xix)2 n(n1)i12.系统误差

2.1系统误差的概念:是同一测量条件下,重复测量中保持恒定或以可预知方式变化的测量误差分量。

2.2系统误差来源及对测量结果的影响

系统误差是由固定不变的或按某种规律变化的因素造成的,这些误差因素可能是由于

1)测量装置方面的原因:仪器设计上的缺欠,仪器零件制造和安装的不正确,仪器附件的制造偏差。

2)测量环境的原因:测量过程中温度、湿度等按一定的规律变化。 3)测量方法的原因:采用近似的测量方法或近似的计算公式引起的误差。 4)测量人员的原因:由于测量人的个人特点导致的测量误差。

系统误差具有确定的规律性,这与随机误差有根本区别。不过,有些系统误差的规律是并未掌握的。因而没有一个规则化的处理方法,这给处理系统误差带来困难。按其表现的规律特征,可分为恒定系统误差和变值系统误差。

2.3系统误差的分类

1)恒定系统误差:多次测量时,条件完全不变,或条件改变并不影响测量结果,因而各次测量的结果中该误差恒定不变。恒定系统误差以大小和符号固定的形式存在于每个测量值和算术平均值之中。它仅影响测量的算术平均值,并不影响其随机误差的分布规律及分布范围。

2)变值系统误差:指在整个测量过程中,误差的大小和符号按某一确定规律变化的误差。它不仅影响测量的算术平均值,而且改变其随机误差的分布规律和分布范围。 2.4系统误差的发现方法 2.4.1实验对比检验系统误差

为了验证某一测量仪器或测量方法是否存在系差,可用高一级精度的仪器或测量方法给出标准量进行对比检验。这种检定不仅能发现测量中是否存在系差,而且能够确定具体数值。有时,由于测量精度高或被测参数复杂,难以找到高一级精度的测量仪器或测量方法提供的标准量。此时,可用同精度的其它仪器或测量方法给出的测量结果作对比,若发现明显差别,表明二者之间有系差。

2.4.2通过理论分析判断系统误差

对测量器具、测量原理、方法及数据处理等方面进行具体分析,能够找到测量中的各系差因素。有时可根据测量的具体内容找出系差所遵从的函数关系,由此计算出测量的系差的具体数值,利用修正法予以消除。

2.4.3对测量数据进行直接判断

通过观察测量数据的变化趋势,直接发现测量中的系统误差。这一方法较为粗略,但简单易行。

2.4.4用统计方法进行检验

按随机误差的统计规律做出某种统计判断,如果不相符合,则说明包含系统误差。由于这种判别方法不涉及测量本身,仅针对测里数据,因而便于使用。但每种统计方法都不是完美的,其应用是有限的,在此只给出常用的几种。

1)残差校验法

将残差vi分为前后数目相等的两部分v

1、v

2、vk和vk

1、vk

2、vn。分别求和并作比较,若Vii1kik1V显著不为零,则怀疑存在系统误差。这种方法适

in于判别线性变化的系统误差。

2)阿贝·赫梅特判别法

对残差vi做统计量uv1v2v2v3vn1vnvvi1n1ii1

若un-1s2则判定该组数据含有系统误差。这种方法适于判别周期性的系统误差。

3)残差总和判别法 若残差vi有vi2sn则怀疑有系统误差的存在。

i1n4)标准差比较法

对测量结果,用不同公式计算其标准差,然后通过比较可发现系统误差。用贝赛尔公式计算为:

s1vi1n2in1

用别捷尔公式计算标准差为: s21.253s22 1s1n1vi1nin(n1)

若则怀疑存在系统误差。

3.粗大误差

3.1粗大误差的概念:指超出在规定条件下预期的误差。 3.2粗大误差的产生原因

测量数据中包含随机误差和系统误差是正常的,只要测量误差在一定的范围内,测量结果就是正确的。但当测量者在测量时由于疏忽造成错误读取示值,错误纪录测量值,错误操作以及使用有缺欠的计量器具时,会出现粗大误差,此数据的误差分量明显偏大,即明显歪曲测量结果。任意一测量数据都含有测量误差,并服从某一分布,它使测量结

果具有一定的分散性。因此,任凭直观判断,难于区分含有粗大误差的异常数据和正常数据。

3.3粗大误差的判别方法 3.3.1莱以特准则(3准则)

若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。如果某测得值的残差大于3倍的标准差,即v3时,该数据为异常数据,应剔除。莱以特准则的合理性是显然的,对服从正态分布的随机误差,其残差落在(-3,3)以外的概率仅为0.27%,当在有限次测量中发生的可能性很小,认为是不可能发生的。

3.3.2肖维勒准则

若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。若认为xi为可疑数据,若此数据的残差vZc,则此数据为异常数据,应剔除。实用中Zc<3,这在一定程度上弥补了3口准则的不足。Zc是与测量次数n有关的系数,具体的查表。

3.3.3格罗布斯准则

若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。为判别测得值中是否含有异常数据,将测得值由小到大排列成统计量xi。

x1x2xn

若认为x1是可疑的,则有统计量为

g1xx1

若认为xn是可疑的,则有统计量为

gnxxn

当g1g0n,a,认为测量值x1是异常数据,应剔除。 当gngnn,a,认为测量值xn是异常数据,应剔除。

g0n,a为测量次数为n显著度为a时的统计量临界值,可查表。 3.3.4 t检验准则(罗曼诺夫斯基准则) 罗曼诺夫斯基准则又称t检验准则,其特点是首先剔除一个可疑的测得值,然后按t分布检验被剔除的测量值是否为异常值。若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。若认为xj为可疑数据,将其剔除后计算平均值x(计算时不包含xj),并求得测量列的标准差(计算时不包含vjxjx)。若xjxKn,a,则认为xj为异常数据,应剔除。其中Kn,a为测量次数为n和显著度为a时的t检验系数,可查表得到。

小结:由于产生系统误差的因素是多方面的,又很复杂,我们还不能找到一套适用于所有系统误差的通用方法。但是根据三种误差的来源、特征以及寻找其方法,我们可以用给出的不同方法对其适当的减少。

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

第7篇:直线度误差的测量教案

任务二 直线度误差的测量

【课题名称】

平面零件直线度误差的测量 【教学目标与要求】

一. 知识目标

了解直线度误差的检测工具及测量方法。 二. 能力目标

能够正确使用百分表、框式水平仪和自准直仪进行测量,并准确计算误差值。

三. 素质目标

熟悉平面零件形位误差的检测原理、测量工具和使用方法,并能准确计算其误差。

四. 教学要求

能够按照误差要求正确地选择检测工具,并能够掌握测量工具的使用方法,对工件进行准确测量。 【教学重点】

框式水平仪、自准直仪和百分表的使用,各种形位误差的检测方法。 【难点分析】

精度为 0.02 mm/m的水平仪测量长度为200 mm长的实际误差值的计算。从误差图形求出最大的误差值。 【分析学生】 该内容的难度较大,特别是直线度误差值的计算和平面度零位调整比较难以理解,需要多做解释,学生才能够掌握。尤其是零位调整的方法更难懂,一定要把原理讲透。 【教学设计思路】

本次课内容较多,且内容难懂,建议分成4学时,以保证有更多的练习机会。由于实训条件所限制,可以分组进行测量,教师应先讲解水平仪的测量原理,并计算按照200 mm长为一段测量时水平仪的实际误差,再让学生测量,然后按结果来讲述如何计算两端直线度的误差值。对于平面度的检测也应先讲测量原理和方法,再给学生实测,最后介绍如何调零位计算误差值,边讲边练再总结提高。本次课教学一定要做好预习工作。 【教学安排】

4学时

先讲后练,以练为主,加强巡视指导。 【教学过程】

一. 复习旧课

在形状和位置误差中,直线度误差在平面零件中出现得比较多,大家是否还能记住这些形位公差的含义呢?

二、 导入新课

需要应用什么测量工具来检测零件的直线度,对于测量出来的数值又需要进行什么样的处理才能得出正确的误差值?这是本次课程的主要内容。

三、讲授新课

直线度误差一般是指机床导轨在全部长度上的实际直线度与理想直线的偏差值,它关系机床的精确度,影响加工工件的质量,对于高精度的数控机床来说,控制直线度误差在允许的范围内就显得更为重要。直线度误差分为垂直面的直线度误差和水平内的直线度误差两种,这里通常指垂直面的直线度误差。

(1)用百分表来打表的方法测量 具体步骤见教材相关内容。 测量时应当注意几点:

1)百分表的表杆触头要与被测表面垂直,否则会产生测量误差,不是准确的误差值。

2)移动表面要光滑平直,自身的直线度要高。 3)表杆触头起点位置时,转动表盘调整表针对准零位。 (2)一般选用框式水平仪和光学自准直仪来测量,检测工具不同,但原理相似。对于高精度的数控机床,要借助电脑和专用软件进行检测并给予修正。这里主要介绍常用的水平仪的测量原理和使用方法。

测量直线度误差的水平仪为200 mm×200 mm的框式结构,其精度为0.02 mm/m,即当水平仪放在1m长的垫板上,一端垫起0.02 mm高时,其水平仪中的水泡必定向低端移动一个刻度;如果移动了两个刻度,则表面垫起的高度应为0.04 mm,一般导轨的长度较短,常以200 mm为一测量单位,即直接把水平仪的底面放在被检测的导轨上,由于底面长为200 mm,所以当水平仪上的气泡向低端移动一刻度时,此时水平仪底面两端的高度差应当为200×0.02/1000 mm=0.004 mm,而决不是0.02 mm,这一点应当注意。

(3)将被测导轨按200 mm一段分成若干段,从左向右依次测量200 mm长一段两端的高度差,并列表记录。表中数字正值表示右端高左端低,负值表示左端高右端低,最后按照所测的数值列出误差图形。从图形中可以看出终点不在纵坐标的零线上,说明导轨的起点和终点不在同一水平线上,这时图形上的直线度误差反映不是真实情况,要想准确地计算直线度误差应当将两端点调成水平,才能得出实际值,否则应当对图形进行技术处理,通常采用技术处理图形的方法较为简单。

先用直线连接图形的起点和终点,分别过曲线的最高点和最低点作该直线的两条平行线,所得两条平行线间纵坐标气泡格f=3.5即为导轨的最大图形误差。将f=3.5气泡格值乘以水平仪的精度,即得导轨的直线度实际误差,3.5×0.004 mm=0.014 mm,该导轨的直线度误差为0.014 mm。

(4)较为精确的检测工具是光学自准仪,它是应用平面直线度的高低误差使反射光线与目镜上十字指示线之间产生的偏移量大小,来逐段测量导轨的直线度误差,最后计算出整个导轨的最大误差值,实际上是用光学仪器来代替水平仪的气泡格。其测量步骤与水平仪测量方法基本一致。

四、小结 平面之间的平行度、垂直度和对称度误差都是位置误差,都可用百分表或千分表来测量。测量时应保证表杆垂直于被测表面,标准平板、方箱和直角尺座的精度都应当比较高,否则会影响测量的结果。移动百分表时,应注意保持平稳,速度应尽可能慢些,同时被测表面应当保持平整干净。

五、布置作业

作好下次课的预习,填好检测记录,计算误差数值。

上一篇:脱贫攻坚专项巡察整改下一篇:浅谈话题作文拟题方法