人类基因组计划

2022-03-27 版权声明 我要投稿

在人生的每一阶段,我们总是有着不同的目标与期望,有着生活的目标,也有着工作的目标,还有人生的目标,而要实现这些目标与期望,就需要具体的计划,在拟定计划时你是否会感到迷惑呢?以下是小编整理的《人类基因组计划》的文章,希望能够很好的帮助到大家,谢谢大家对小编的支持和鼓励。

第一篇:人类基因组计划

《人类基因信息与健康》感想

班级:车辆0902 姓名:张寒雨 学号:0120907250205

随着人类科技的进步,人身上的各种各样的健康问题也开始慢慢显现出来。特别是一些很特殊的疾病只在一些特定的时刻显现出来,而很多情况下我们并不知道它的存在,往往被我们忽略,只有在它们显现出来的时候我们才意识到它们的存在和严重性。像蚕豆病之类的疾病,是对我们人类自身的健康一个很大的潜在威胁。

在日常生活中有许多是与遗传健康有关联的事情,比如说“饮酒”,“饮酒”是我们生活中一个必不可少的重要环节,在社会交往中占有重要的地位,我认为适量饮酒是有益于身体健康的自古以来,就有“酒为百药之长”的说法,可见酒对人类的健康确是有益的。据专家们对各种酒类的研究分析后发现,在各类酒中,除了含有酒精外,尚有多种有机酸、氨基酸、酯类、糖分、微量的高级醇和较多的维生素等人体所必需的营养物质。酒对人类的健康确是大有裨益的。适量饮酒可预防心肌梗死和脑血栓 据日本科学家发现,喝酒人血液中出现大量尿激酶及其前驱体蛋白质,不喝酒的人,血液中只有极少数的尿激酶,而造成心肌梗死和脑血栓的原因是人体中可以溶解血栓的尿激酶等纤溶酶减少,故适量饮酒可预防心肌梗死和脑血栓。当然,大量饮酒对身体的危害是很大的,长期大量饮酒的危害几乎波及全身的各个系统和器官,如肝脏、胰腺、心肌等等,可造成酒精性肝病、胰腺炎、心肌病等等。对机体造成非常大的危害,甚至危及生命。酒精性肝病 长期的过度饮酒,通过乙醇本身和它的衍生物乙醛可使肝细胞反复发生脂肪变性、坏死和再生,而导致酒精性肝病,包括酒精性脂肪肝、酒精性肝炎、肝纤维化和肝硬化。而很多人认为,经常喝酒可以锻炼人的酒量,使 人的酒量提高,这种观点是不太正确的,因为喝酒的能力与人的遗传基因有一定的关系,有的人的酒量已经受遗传基因决定了,并不是通过多喝酒就能提高酒量的,相反,像这种锻炼酒量的方式只是在危害自己的身体健康。所以不能喝酒的人一定要根据自身的身体情况合理的适量的饮酒,不要盲目的通过多喝酒来提高自己的酒量,而在有的社交场合还是要合理控制自己的饮酒量,不能碍于情面明知自己不能饮酒还大量饮酒,这是对自己身体不负责任的表现。我们应该认识到,遗传因素的影响并不是我们所能决定,盲目的跟风不过是在损害我们的身体,所以根据自身的身体情况合理的制定我们的生活习惯,这才是对我们的身体健康负责任的表现。 转基因技术的确是科学上的一个伟大的进步,但由此而带来的一些安全环境和道德问题也是不容我们小视的,例如孟山都的转基因产品已经在全球都产生了严重的后果,给种植和食用转基因产品的人造成了很大的影响。 孟山都公司的发家产品,无论是用于战争的落叶剂如“橙剂”(越战),还是用于农业的除草剂如“农达”(Roundup),本质都是杀死植物、制造死亡的东西。从这个角度讲孟山都公司是靠贩卖死亡起家的,是个死亡贩子。而转基因产品特别是在欧洲是受到很多人抵制的。像孟山都这样一些利用转基因技术生产生物产品的公司,对转基因产品的安全性一直持保密态度,并且一手主导了转基因产品的测试和研究,进而主导了最终的结果,对民众一直采取欺骗的态度。而特别是政府和一些研究机构为了利益关系和他们勾结在一起,隐瞒实情,使得转基因食品的安全性更不为大众所知。这是我们在今后的生活需要引起重视的问题。 谈到健康,除了自身的生活习惯之外,疾病是我们一个避不开的问题。像有的人,很不辛,天生就是白化病,血友病等遗传病患者。而有的人,如色盲,虽然称不上是疾病,但还是给他们的生活带来了很大的影响。而这些遗传病基本上是很难乃至无法治愈的,所以,这些人在生活中要非常注意自身的身体状况,尽量避免不利于身体条件的一些东西,做好预防。而对于我们没有遗传病的人,并不是说这些问题与我们一点关系都没有,当前环境污染日趋加剧,人类的生活环境不断恶化,与致癌因素的接触越来越紧密。人体细胞的稳定性只能是相对的,人体细胞基因的改变是必然的和难以避免的,但这并不意味着癌症无法克服和人们对癌症无能为力。事实上,我们每个人体内都存在着数量不一的部分癌变细胞,但是只有极少的癌变细胞能够发展成癌症,大部分癌变细胞或被机体及时清除,或没有自主分裂能力而长期潜伏,不会危害人体健康。

随着医学的进步与发展,以及对癌症研究的深入,人们对癌症的病因已有空前的了解,职业性肿瘤已经基本能够预防,某些普通人群的癌症也已能预防和治疗,现代医学已经认识到肿瘤、癌症是一种基因病,所有的细胞中都含有能够导致细胞癌变的基因,这些癌症基因代代相传。但在通常情况下它们处于被阻遏状态,只有当细胞内有关的调节机制遭到破坏的时候下,癌症基因才会“作恶”,导致癌变的发生。“激酶”的基因家族包括500多种不同的基因,它们功能的丧失是癌症的一个常见诱因,这些基因就像开关一样,控制着细胞的生长和死亡以及变异进程。 对于癌症患者,不少人都会关注他一直以来的营养状况、饮食方式、生活习惯、年龄的大小、生活环境等,其实这些都不是很精确。是否得病不仅跟平时的生活习惯有关系,还跟每个人的基因密切相关。 有些人的致癌基因比较活跃,在外界的影响下,容易得癌症。对应起来,有些人的DNA比较容易修复,得癌症的几率相对就会小一些。这就很好地解释了为什么有些人每天抽一根烟就会得肺癌,有些人每天抽很多烟都不会得肺癌。 现在很多人都谈癌色变,其实只要注意预防,癌症并没有什么可拍的,这就需要我们养成良好的生活习惯不要抽烟,或者戒烟。抽烟的人有一半会死于与抽烟相关的疾病,其中很多是癌症。在美国,90%的肺癌是直接由抽烟引起的,另外有3%是因为吸入二手烟造成的。关注吃的东西,据统计,很少吃水果和蔬菜的人患癌的可能性比吃水果蔬菜比较多的人高一倍。多做运动。中度运动是科学家推荐的运动方式。据研究,每天散步一小时可以把患结肠癌的可能性降低46%。了解家族病史。家族病史是致命癌症的最大诱因,遗传可能导致基因中有致癌因素。如果直系亲属(父母、兄弟姐妹、子女)有过癌症,那么你可能需要在比较年轻的时候就做定期检查,这是关系到遗传基因的问题,必须 引起重视。癌症离我们其实并不遥远,但无论如何,人们不应该害怕,而应采取积极的态度预防癌症。

所以,生活中有关身体健康的小事都不能忽视,应该采取谨慎的态度,关爱自己,有时候,大问题总是由于我们的忽视引起的,而在这个问题上更要相信科学,不能人云亦云,盲目跟从。再比如福岛的核泄漏事故,有时候我们更得相信自己的判断,采取一定的措施,养成良好的习惯来保护自己的健康。

第二篇:基因工程与人类健康

基因工程与人类健康(Genetic engineering and human health)

随着社会的发展,时代的进步,医学已经进入了一个飞速发展的阶段。随着人们生活水平的日益提高,随之而来的便是各种疾病。新的药物层出不穷,在医学历史上掀起一阵又一阵的波澜。近年来,尤以基因工程,蛋白质工程,胚胎细胞工程,动、植物细胞工程备受科学家青睐。其中最为基本的就是基因工程。

基因工程(genetic engineering )

基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础, 以分子生物学和微生物学的现代方法为手段, 将不同来源的基因(DNA分子),按预先设计的蓝图, 在体外构建杂种DNA分子, 然后导入活细胞, 以改变生物原有的遗传特性、获得新品种、 生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。

 基因工程简介

 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术

迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。

诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。

 随着DNA的内部结构和遗传机制的了解,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是设想在分子的水平上去干预生物的遗传特性。 如果将一种生物 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。

基因工程的基本操作步骤 1.获取目的基因是实施基因工程的第一步。

2.基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。 3.将目的基因导入受体细胞是实施基因工程的第三步。

4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。

一、 基因工程与农牧业、食品工业

运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 1.转基因鱼

生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.转基因牛

乳汁中含有人生长激素的转基因牛(阿根廷)。 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄

5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物

导入贮藏蛋白基因的超级羊和超级小鼠 8.特殊动物

导入人基因具特殊用途的猪和小鼠 9.抗虫棉

苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。

二、 基因工程与人类健康

 基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。

 用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。

我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。

无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。

 可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。  基因工程将使传统中药进入新时代

 转基因药用植物或器官研究、有效次生代谢途径关键酶基因的克隆研究、中药DNA分子标记以及中药基因芯片的研究等,已成为当今中药研究的热点,并将使传统中药进入一个崭新的时代。

在转基因药用植物的研究方面,中国医学科学院药用植物研究所分别通过发根农杆菌和根癌农杆菌诱导丹参形成毛状根和冠瘿瘤进而再分化形成植株,他们将其与栽培的丹参作了形态和化学成分比较研究,结果发现毛状根再生的植株叶片皱缩、节间缩短、植株矮化、须根发达等;而冠瘿组织再生的植株株形高大、根系发达、产量高,丹参酮的含量高于对照,这对丹参的良种繁育,提高药材质量具有重要意义。

面对许多野生植物濒于灭绝,一些特殊环境下的植物引种困难等问题,中国科学工作者开始探索通过高等植物细胞、器官等的大量培养生产有用的次生代谢物。研究内容包括通过高产组织或细胞系的筛选与培养条件的优化和通过对次生代谢产物生物合成途径的调控等,达到降低成本及提高次生代谢产物产量的目的。

三、基因工程在医药方面的应用

1.基因工程药品的生产: ⑴基因工程胰岛素

胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。

将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%! ⑵基因工程干扰素

干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。

基因工程人干扰素α-2b(安达芬) 是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。 ⑶其它基因工程药物

人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。 2.基因诊断与基因治疗:

运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。 ◆SCID的基因工程治疗

重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的方法治疗。

3、转基因动物生产药物

 通过转基因动物家畜来生产基因药物而言,最理想的表达场所是乳腺。因为乳腺是一个外泌器官,乳汁不进入体内循环,不会影响到转基因动物本身的生理代谢反应。从转基因动物的乳汁中获取的基因产物,不但产量高、易提纯,而且表达的蛋白经过充分的修饰加工,具有稳定的生物活性,因此又称为“动物乳腺生物反应器”。所以用转基因牛、羊等家畜的乳腺表达人类所需蛋白基因,就相当于建一座大型制药厂,这种药物工厂显然具有投资少、效益高、无公害等优点。 制备转基因羊,就是将人的α抗胰蛋白酶基因通过显微操作注进母羊受精卵的雄性细胞核,并使之与羊本身的基因整合起来,形成一体,这种新的基因组可以稳定地遗传到出生的小羊身上。小山羊也成了人工创造的与它们母亲不同的新品系,它们的后代也将带有这种α抗胰蛋白酶基因。这个过程有些类植物的嫁接术。

目前,在转基因动物研制中,外源基因与动物本身的基因组整合率低,其表达往往不理想,外源基因应有的性质得不到充分表现或不表现。实验运动如牛、羊和猪的整合率一般为1%左右。

4 、基因工程抗体的临床应用1.在肿瘤性疾病诊疗方面的应用 2.墓因工程抗体的抗感染作用 3.细胞内抗体

4.用于未来诊断的生物传感器和微矩阵技术

四、基因工程在工业及环境保护方面的应用

1 环境监测

2 环境治理(微生物技术与基因工程结合) 应用基因工程技术,使植物成为能替代微生物发酵设备的生物反应器,更经济地生产出人类所需要的各种原料已经成为非常具有吸引力的领域。现在已经培育了多种可作为生物反应器的转基因植物,能产生出可分解的塑料原料、石油、工业用脂肪、糖类和酶类等。经典工业所产生废水、废气和废料,以及人民生活所产生的垃圾等各种污染物,已经构成对人类生活和生产活动的严重威胁。环境保护是人类目前面临的与人类前途生死攸关的重大问题。基因重组技术为解决这些问题提供了可能性,通过基因重组,人们可以根据需要将某种微生物的基因转移到另一种微生物中,创造一些对有害物质分解能力更强、更能适应环境要求的新菌种。利用微生物分解各种废弃物的同时能产生出重要的工业原料是转基因微生物应用的一个重点,植物的纤维素和木质素是木材工业中常见的废弃物,人们可利用转基因微生物来分解纤维素,生产工业用的原料,如乙醇等石油化工产品。许多低耗能、少污染的基因工程逐渐取代高耗能、高污染的化工产业已成为一种趋势。1975年,科学家用基因工程的方法,把能分解三种焊类的基因都转到能分解另一种烃类的假单抱杆菌内,创造出了能同时分解四种烃类的“超级细菌”。 “超级细菌”能吞食和分解多种污染环境的物质,例如石油中的多种烃类化合物,汞、镉等重金属, DDT等毒害物质。

参考文献

冯斌.谢先芝 基因工程技术 [期刊论文]西南农业学报 2005(2) 许冬倩.李正国.王君 基因工程技术在食品工业改造过程中的应用 [期刊论文]西南农业学报2007 20(5)

杨吉成 缪竞诚 医用基因工程 化学工业出版社2003 杨昆 基因工程与医药革命 中药报 2000 基因工程技术在制药领域的应用前景及产业化趋势 来源:中国发酵工业网 程露阳,郭亚春,黄晓形 基因工程抗体的研究进展及临床应用

[1]李立家,肖庚富.基因工程.2004.

第三篇:基因工程与人类的未来

班级:13级生科02班

学号:13300226

姓名:李想

摘要:本论文主要阐述基因工程的历史、发展及对人类未来的影响,让人们更加了解人类在基因方面的发展过程和明白基因工程的利弊,使人们更加惊醒,希望未来的基因工程对人类的发展起到重要的推动作用。基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。人们可以通过DNA重组技术来创造出一个新的物种,也可改变地球上已有物种的某些基因,从而改变其性状。这种技术对人类甚至对地球的影响是无法被忽略的,不过无论什么技术都有其利弊,其主要还是看人类对其的用法,用之好则好,用之坏则坏。 关键词:基因工程、人类、未来、利弊

Abstract: in this paper to expound the history of genetic engineering, development and future for mankind, let people know more about the development of the human in the aspect of gene and understand the pros and cons of genetic engineering, make people woke up more, hope that the future of genetic engineering plays an important role on the development of human beings.Genetic engineering (based engineering) say again gene splicing technology and DNA recombination technology.People can through recombinant DNA technology to create a new species, also can change some genes of the existing species upon earth, to change its character.The effect of the technology of human beings on the earth even cannot be neglected, but no matter what technology has its advantages and disadvantages, the main or the human to its usage, with the good is good, bad is bad. Keywords: genetic engineering, human, in the future, the advantages and disadvantages

前言

基因工程如今在世界各地都有着极大的发展,并且将其运用到了各个领域,为各领域的发展提供了新的思路和技术。如在生产领域,如今所说的转基因食品就是基因工程的产物;还有在环保、医疗、食品、植物的新品种研究和动植物的物种延续等。

现在的基因工程已经着手解决人类更加难以突破的领域,如治疗恶性肿瘤的药物,科学家们希望利用基因工程使得药物基因重组从而达到想要的结果;还有在治疗蔓延在全世界的艾滋病方面科学家也希望能在基因工程方面有所突破。

本论文主要阐述基因工程的历史、发展及对人类未来的影响,让人们更加了解人类在基因方面的发展过程和明白基因工程的利弊,使人们更加惊醒,希望未来的基因工程对人类的发展起到重要的推动作用。

正文

基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。基因工程是指在体外将核酸分子插入病毒、质粒或者其他截体分子,构成遗传物质的新组合并使之掺入到原先没有这类分子的寄主细胞内,而能持续稳定地繁殖的技术[1]。首先该技术高效、经济,这是传统产业工程无法比拟的。它能按人类需要来设计和改造生物的机构和功能、生产出优良的动物、植物和微生物品种。在低投入的情况下,能够高效生产出所需商品。而且外源基因只要进入受体细胞的基因组中就可以遗传给后代,育出的优良品种,可持久利用。其次,该技术具有清洁、低耗和可持续发展的特点。现代基因工程所利用的原料是可再生及可循环使用的,不需要消耗大量的不可再生资源,所以极少产生对生态环境有害的废物。再次,该技术应用于疾病的诊断与治疗方面也有优势。基因诊断更有预见性和准确性,而且基因治疗可从基因水平上纠正疾病,从而是疾病得以根治[2]。

1、基因工程发展历史

1866年,奥地利遗传学家孟德尔神父根据豌豆杂交实验发现生物的遗传基因规律,提出遗传因子概念,并总结出孟德尔遗传定律。1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体。1909年丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念 。1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。1953年,美国生化学家沃森和英国物理学家克里克宣布他们发现了DNA的双螺旋结构,奠下了基因工程的基础;1969年 科学家成功分离出第一个基因。1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。1983年 科学家首次培育出世界第一个转基因植物转基因烟草。1988年 K.Mullis发明了PCR技术。至此,基因工程在全世界迅速发展,并逐渐渗透各个领域。

2、基因工程所应用的领域 2.1环境保护

环境污染已远远超出了自然节微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力[2]。如:日本将嗜油酸单孢杆菌的耐汞基因转入腐臭孢杆菌,改菌株能把汞化无吸收到细胞内,用它处理污水就能解决被汞污染的环境问题,又使得汞得以回收。美国加利福尼亚大学的微生物工作者培育出了一种以PCBs(聚氯联苯)为食物的细菌[3]。

基因技术的发展,也为防止农林害虫提供了有效的新技术手段,微生物农药因此在世界范围受到广泛重视[4]。农作物在生长过程中容易受到致病菌级害虫的影响,因此在作物种植过程中往往需要大量的农药控制病虫害,这是造成食物中农药残留及环境污染的主要原因[5]。而如今,宜采用基因工程技术将各种抗病、抗虫基因转移到大豆、玉米和水稻等多种重要农作物种,利用转基因职务自身的能力抵抗外界病、虫的危害,达到减少农药使用的目的[6]。

2.2食品产业

基因工程技术在绿色食品资源改造方面及绿色食品品质改良方面都有极大的应用。在绿色食品资源改造方面如有植物性食品原料、动物性食品原料和微生物食品原料等资源改造。在植物性食品原料资源改造方面主要应用于增产、抗病虫害等;动物性食品原料中主要引用于动物优良品种的发展,且转基因技术的应用对于动物优良品种的选育具有独特优势;在微生物性食品原料的资源改造方面主要利用遗传改造的微生物来转化纤维素和半纤维素来生产真菌蛋白食品。

对于绿色食品品质改良方面的应用主要有提高食物的营养价值、降低天然食物中的有害成分和减少生产过剩中的农药、化肥的使用量等。如改善植物油脂品质,一些在植物油脂代谢中比较重要的基因已被克隆,为利用基因工程技术改善油脂中的组分提供了便利[7]。

2.3医疗、药物

基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。而如今不仅应用于改变基因缺陷的遗传病,而且还可用于治疗肿瘤等癌症病症[8]。例如:肝癌是人类常见的恶性肿瘤之一,死亡率居于恶性肿瘤第三位[9];而在肝癌介入治疗的方法中所需要用到的一个非常重要的技术便是基因工程技术[10]。不仅在肝癌治疗方面,在其他癌症治疗和其他疾病方面也得到了应用;如:血友病、卵巢癌、脑血管痉挛、乳腺癌以及乙型肝炎等疾病。

而针对某些疾病治疗也利用基因工程技术来大量生产了一些药物来进行辅助治疗。如治疗白血病时,将细胞因子转入肿瘤细胞制成的基因工程疫苗治疗白血病已取得较好的疗效[11]。而对于基因工程药物的生产,微生物有着极大的作用。微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本[12]。

3基因工程的利弊

基因工程的发展不仅影响到了环保领域、食品原料和生产领域、农业领域和医疗领域,还影响着人类的工业领域,甚至,由于基因工程技术的推动,计算机行业也在进步,并还将带动其他行业的进步[13]。所以基因工程的发展对于人类的发展来说好处是无法估量的。

凡是有利便有弊。虽然基因工程技术为人类的生活、生产带来了很多便利,但如果对其运用不当,将会对人类社会带来不可估量的后果。现今,人们对于某些转基因问题还难以做出确切的答复,如人类的健康会不会收到转基因食品的影响,外援基因会不会破坏体内其他调节基因的平衡,是否会引起细胞病变,这些问题都亟待解决,可能要经过无数人的努力和实验才能得出结论[14]。

4.结语

我们在大力发展转基因技术的同时,必须高度重视对转基因动物、植物和微生物品种的生物控制和控制技术的研究。在转基因食品的安全性没有进行全面的评估和没有可靠的生物控制措施之前,应严格禁止其进行生产和进入开放的自然生态系统,只有其生态安全性达到了传统育种方法培育的新品种时,或无生殖能力的动物和植物才能允许进入自然界进行生产,也只有这样才是有益于人类和社会进步的。在看到基因工程为人类社会的带来巨大变革的同时,人们更应该理性的看待,并不断探索,以期让基因工程技术能创造出更高的价值[15]。

参考文献

[1] 张军梅. 基因工程技术的应用现状及其对人类社会的影响[J]. 北京农业,2011,36:11-12. [2] 杨林,聂克艳,杨晓容,高红卫. 基因工程技术在环境保护中的应用[J]. 西南农业学报,2007,5:30-34 [3] 胡金川. 基因工程技术在肽抗生素制备中的应用进展[J]. 医学研究生报,2003,16(8):611-613 [4] 黄传杰. 植物基因工程技术在病虫害防治中的应用与展望[J]. 安徽农业科学,2001,9(3):320-324 [5] 黄大昉. 农业微生物基因工程研究与展望[J]. 农业生物技术学报,2003,11(2):111-114 [6] 韩剑宏,唐运平,倪文. 环境生物技术在微污染源岁中的应用与展望[J]. 城市环境与城市生态,2003,16(6):96-97 [7] 刘新平. 基因工程技术队发展绿色食品产业的影响[J]. 南昌高专学报,2006,1:99-101 [8] 董自梅. 基因工程与医疗[J]. 濮阳教育学院学报,1995,2,8-8 [9] 刘慧媛,陈志敏,曾健伟,等. 415例原发性肝癌患者的临床特点分析. 新医学,2013,44(2):123-126 [10] 刘广才. 肝癌介入治疗的回顾与展望[J]. 中外医学研究,2014,12(26):163-164 [11] 王飞,陈慧慧,李建. 基因工程药物治疗白血病的研究进展[J]. 现代肿瘤医学,2013,21(5):1158-1162 [12] 韩倩倩,王春仁. 基因治疗产品、细胞治疗产品和组织工程产品在欧盟的监管[J]. 组织工程与重建外科杂志,2014,05:244-246. [13] 毛传清,祝娟. 论基因工程对人类社会的主要影响[J]. 科技进步与对策,2002,1:36-37 [14] 章洁东. 试谈基因工程技术的利弊影响[J]. 生物技术世界,2014,10:226-226 [15] 张军梅. 基因工程技术的应用现状及其对人类社会的影响[J]. 北京农业,2011,12:11-12

第四篇:基因组学与遗传保护目录

目录

摘要 ........................... 1

关键词 .............................. 1

Abstract: ............................ 1

Key words ......................... 1

0前言 ............................... 1

1基因文库............................... 2

1.1基因文库的概念 ...................... 2

1.2基因文库的类型 ...................... 3

1.2.1基因组文库 .......................... 3

1.2.2 cDNA文库 .......................... 3

1.2.3基因组文库与cDNA文库的区别 ................. 3

1.3基因文库的大小 ...................... 4

1.4基因组文库的研究进展 ........................ 4

1.4.1克隆载体的发展 ......................... 4

1.4.2噬菌体文库 .......................... 5

1.4.3柯斯质粒(Cosmid)文库 ............... 5

1.4.4酵母人工染色体(YAC)文库 ............... 5

1.4.5细菌人工染色体(BAC)文库 ............... 6

1.5基因组文库的构建 ......................... 6

1.5.1 BAC载体的制备........................ 7

1.5.2高分子量核DNA的制备 ................. 7

1.5.3高分子量核DNA的部分消化 ................ 7

1.5.4大片段核DNA与载体连接 .................... 7

1.5.5重组载体转化受体细胞 .................... 7

1.5.6挑选阳性克隆 ...................... 8

2基因组文库与保护遗传学 ........................ 8

2.1保护遗传学的产生 ......................... 8

2.2保护遗传学的发展 ......................... 9

2.3保护遗传学的内容 ......................... 9

2.4保护遗传学研究的意义 ...................... 10

参考文献......................... 10

第五篇:材料芯片与材料基因组

SHANGHAI JIAO TONG UNIVERSITY 课程论文

《材料芯片与基因组》

论文题目:

第一章 材料基因组计划

1.1 提出背景

金融危机之后,美国政府意识到仅靠服务业已无法支撑美国经济走出泥潭,必须重振制造业。美国制造业的振兴不是传统制造业的复兴,而是新兴制造业的培育,其中建立在材料科学基础上的新材料产业是重点之一。

美国科学院和工程院共同设置的国家研究理事会在2008年发表了题为《集成计算材料工程》的报告。报告明确指出了传统材料设计的方法和系统面临的问题:

① 现代的计算工具已经从根本上大大缩短了新产品设计的时间,材料设计却没有相似的可靠而普适的计算工具,使材料设计主要靠试验,从而导致材料设计远远落后于新产品设计;

② 太长的材料设计周期和低成功率使得新材料在新产品中的使用越来越少,从而导致非最佳的材料被用在产品中;

③ 用于产品的材料性能欠佳而成为制约产品性能设计的瓶颈,造成恶性循环。

应对美国提出的材料基因组研究计划,对我国如何规划、开展实施自己的科学计划提出建议并进行深入的研讨,在中国科学院和中国工程院的推动下,于2011年12月21—23日在北京召开了S14次香山科学会议。在此前召开的由两院部分院士参加的筹备会上,大家认为:“材料科学研究成分—结构—性能之间的关系,从新材料的发现、合成、性能优化、制备、应用、回收再利用,既有基础科学,又有工程科学,是一个系统工程。”因此,一致同意把那次会议定名为“材料科学系统工程”香山科学会议。

结合我国的国情,材料界的专家学者提出建设发展符合中国材料领域的“材料科学系统工程”,具体包含如下建议:

1)共用平台协同建设。建立几个集理论计算平台、数据库平台和测试平台“三位一体”的“材料科学系统工程中心”,结合国家大科学工程设施,集中国内材料计算与模拟领域优势力量,通力合作,跟上并引领国际材料领域新一轮发展的浪潮。

2)重点材料示范突破。选择几项国家急需的、战略需要的、国内有良好基础的结构材料和功能材料作为示范突破,通过与平台建设相结合,进行演示示范,为更大范围的推广积累经验。

3)产业链条协同创新。成立一个包括政府机构、科学家和产业代表在内的指导协调委员会,全面协调从材料基础研究、软件开发、数据库建立、测试平台直至产业化的各项工作,以充分发挥我国社会主义制度在统筹科学研究和产业化革命的优越性;建议有条件的教育机构开设相关课程。

1.2 基因组计划

1.2.1基本内容

从宏观上讲,所谓材料基因组可以理解为反映材料某种特性的“基本单元”及其“组装”。基本单元是指能直接反映材料性能差异的最小物质单元,不同材料基本单元是非唯一的,可以是组成物质的任何自然存在的原子、分子、电子、离子、单一相等物质粒子,也可以是这些物质组合而形成的团簇、单元或组合相。而组装是指将这些相同或不同的基本单元以某种工艺或技术结合,形成大尺寸材料。

美国“材料基因组计划”试图创造一个材料创新框架,以期抓住材料发展中的机遇,重点包括以下3方面的内容:计算工具平台、实验工具平台和数字化数据(数据库及信息学)平台。如图1所示:

图1材料创新框架

材料基因组技术包括高通量材料计算模拟、高通量材料实验和材料数据库三大组成要素;其中材料计算模拟是实现“材料按需设计”的基础,可以帮助缩小高通量材料实验范围,提供实验理论依据;高通量材料实验起着承上启下的角色,既可以为材料模拟计算提供海量的基础数据和实验验证,也可以充实材料数据库,并为材料信息学提供分析素材,同时还可以针对具体应用需求,直接快速筛选目标材料;材料数据库可以为材料计算模拟提供计算基础数据,为高通量材料实验提供实验设计的依据,同时计算和实验所得的材料数据亦可以丰富材料数据库的建设。

1.2.2 高通量材料计算模拟

材料基因组技术中所指的高通量计算,是指利用超级计算平台与多尺度集成化、高通量并发式材料计算方法和软件相结合,实现大体系材料模拟、快速计算、材料性质的精确预测和新材料的设计,提高新材料筛选效率和设计水平,为新材料的研发提供理论依据。其中并发式材料计算方法包括第一原理计算方法、计算热力学方法、动力学过程算法等,跨越原子模型、简约模型和工程模型等多个层次,并整合了从原子尺度至宏观尺度等多尺度的关联算法。

1.2.3 高通量实验

“材料高通量实验”是在短时间内完成大量样品的制备与表征。其核心思想是将传统材料研究中采用的顺序迭代方法改为并行处理,以量变引起材料研究效率的质变。

作为“材料基因组技术”三大要素之一,它需要与“材料计算模拟”和“材料信息学/数据库”有机融合、协同发展、互相补充,方可更充分发挥其加速材料研发与应用的效能,最终使材料科学走向“按需设计”的终极目标。当前,即使在材料计算模拟技术领先的欧美国家,由于受到目前计算能力、理论模型和基础数据的限制,绝大多数材料计算结果的准确性还远不能达到实验结果水平,难以满足实用要求。因此,在由传统经验方法向新型预测方法的过渡中,高通量实验扮演着承上启下的关键角色。首先,高通量实验可为材料模拟计算提供海量的基础数据,使材料数据库得到充实;同时,高通量实验可为材料模拟计算的结果提供实验验证,使计算模型得到优化、修正;更为重要的是,高通量实验可快速地提供有价值的研究成果,直接加速材料的筛选和优化。随着中国材料科技的快速发展和材料基因组方法在研发中不断被广泛采用,高通量实验的重要性将日益彰显。

1.2.3.1 高通量实验制备技术

高通量实验中组合材料样品的制备一般分为“组合”与“成相”2个步骤:1)将多个元素系统性地进行混合,以获得所需的材料成分“组合”;

2)通过扩散或者热力学过程形成晶相或非晶相材料,即“成相”。组合材料样品的制备方法种类繁多,可根据不同应用领域的要求灵活选用。包括:基于薄膜沉积工艺的高通量组合制备技术(基于薄膜形态的组合材料芯片是目前发展最为成熟的高通量材料制备技术。

1.2.3.2 材料高通量表征工具:

高通量微区成分、结构表征:同步辐射光源在从红外至硬X射线全光谱范围内均能实现高亮度微聚焦,同时还具有高准直性、全光谱、高偏振、高纯净等优秀特性,从而能够很好地满足高通量组合材料样品所需的亮度和空间分辨率要求,因此是理想的高通量组合材料表征测试手段。

高通量微区光学性质表征:现有的连续光谱椭偏仪商业产品可提供10μm的空间分辨率和比较广的光谱范围,可用于高通量微区光学性质的表征。除连续光谱椭偏仪外,激光椭偏仪、阴极荧光计、光致荧光测试仪均可实现高通量微区光学性质表征。

高通量微区电磁学性能表征:衰逝微波探针显微镜的微区分辨率是普通的电磁仪表难以实现的,配以自动化的样品台控制和数据采集,可以实现组合材料芯片的高通量、全自动电磁学特性测量。

高通量微区热力学性能表征:利用飞秒脉冲激光技术进行时间域热反射成相,可以达到1μm的空间分辨率和10000点/h的测试速率,广泛适用于薄膜及体材热力学参数的微区表征,包括导热系数、热膨胀系数、熔点、热力学参数(Cp、H,等)、热电参数等。

高通量微区电化学性能表征:美国PrincetonAppliedResearch,AMETEK,Inc.开发的VersaSCAN微区电化学扫描系统是以电化学过程和材料电化学特性为基础的高通量微区电化学测试平台,可提供6种微区电化学测试技术,包括扫描电化学显微镜、扫描开尔文探针、扫描振动电极测试、微区电化学阻抗测试、扫描电解液微滴测试、非接触式微区形貌测试。

1.2.4材料数据库

近年来,大数据这一概念在科学与工程领域兴起并快速扩展,引起大量不同领域研究者的广泛兴趣。现代科学与工程的各个的领域都会涉及大数据概念。湍流模拟过程中追踪流场演变错产生的数据、分子动力学模拟金属塑性变形过程中存储原子空间位置所产生的数据、望远镜资料库中记录星体光谱信息的数据。

基于材料基因组技术的材料发展计划将大数据概念与传统的材料发展紧密联系在一起。从材料、工艺,直到最终的结构件,需要涉及大量的、不同类型的数据。图2为不同阶段、不同尺度范畴结构材料涉及的图像以及背后存在的潜在海量数据大数据概念已经深人到材料科学与工程的各个方面,如材料成分筛选、工艺优化、微结构机理分析、以及物理与力学性能评估等。就一种特定的材料而言,完整的数据信息由结构性数据与非结构性数据构成。结构性数据包括化学成分、加工与热处理艺、微观组织特征、物理性能、以及力学性能(如强度、伸长率、疲劳寿命、裂纹扩展速率、蠕变速率、温度与应变率敏感性等)非结构性数据包括测试用的仪器设备、测试与检测标准、测试环境温度与气氛条件等影响实验数据适用范围、可靠性与置信度等限制性条件,以及为便于数据传播与理解的解释性信息。

图2 跨越不同尺度的结构材料图像

材料数据分为计算数据和实验数据。长期以来,材料数据研究处于单打独斗和小规模的“数据制造-简单处理”模式,往往采用图表和统计方法等传统低通量人工数据处理方法,针对单次或数次计算、实验得出的少量数据进行分析,并对其规律进行猜想和提出经验公式,无法严谨预测和深度挖掘材料本质科学规律,造成材料研究经验结论多于理论的现状,无法完成从“试错”材料研究向材料理性设计的转变,同时也使得相同工作盲目重复进行,极大地浪费了有限的科研资源。

为解决上述问题,目美国麻省理工学院建立的Materials Project数据库,主要集中在无机固体上,尤其以锂离子电池材料为主。Materials Project利用密度泛函理论(density functional theory)收集的巨型数据库来预测模拟物质模型的实际属性。目前该数据库里保存了大约10万种可能存在的材料。为了充分发挥这些据在新材料研发中的作用,研究人员用人工筛选结合机器学习的方式来探索这些数据间蕴含的材料本质性能规律。Materials Project采用分布式计算的原理,使用者可以通过在电脑上下载一个程序来进行运算并返还结果。

美国哈佛大学清洁能源计划建立起来的Molecular Space数据库也是基于密度泛函理论,采用人工加机器学习的方式来挖掘数据库的潜力。目前,Molecular Space数据库在网上发布了230万种元素组合供研究人员使用。

日本国立材料科学研究所建立的材料数据库是在其原有的11个材料数据库基础上整合建立的,涵盖了聚合物、无机非金属材料、金属材料、超导材料、复合材料以及扩散等内容,是目前世界上最大的、最全的材料数据库系统。目前,其含有数据库及应用系统已达到20个,包括8个材料基本性能数据库,3个工程应用数据库,5个在线结构材料数据库以及4个数据库应用系统。目前注册用户超过80000名,分别来自149个国家的21228个组织机构。

1.3 基因组总体目标

2011年6月,美国总统巴拉克·奥巴马在卡耐基·梅隆大学的演讲中宣布了“先进制造业伙伴关系”计划,材料基因组计划是其中的一个重要组成部分.他明确指出了材料基因组计划的总体目标:“将先进材料的发现、开发、制造和使用的速度提高一倍” 《材料基因组计划》拟通过新材料研制周期内各个阶段的团队相互协作,加强“官产学研用”相结合,注重实验技术、计算技术和数据库之间的协作和共享(利益通过学习标识以解决知识产权问题),目标是把新材料研发周期减半,成本降低到现有的几分之一,以期加速美国在清洁能源、国家安全、人类健康与福祉以及下一代劳动力培养等方面的进步,加强美国的国际竞争力。

1.4 培育下一代材料工作者“材料基因组计划”

提出、建立所需网络共享结果和信息,打破材料固有分散多学科性质形成的障碍;建立基础设施并签署协议,促进学术界、政府和工业界的合作,让研究人员、教师和学生都有机会充分利用各种基础设施。根据该计划,2012财年,美国政府将投入1亿美元,拟用数年时间在各个部门之间开展一系列的联合研究行动:①美国能源部(DOE)科学办公室将与国家科学基金会(NSF)携手开发、维护和实施可靠、可互操作和可重复使用的下一代物质设计软件。DOE将通过“材料和化学计算设计”项目,NSF将通过“21世纪科学与工程网络基础设施框架”项目,来协调发展高品质生产软件工具包。②为支持先进软件项目开发,DOE和NSF还将协调发展下一代的表征工具,为算法和软件工具的发展和验证提供基础数据。③美国国家标准与技术研究院主导的“先进材料设计”项目将针对标准基础设施,使材料的发现和优化计算建模和仿真更可靠,该项目将与DOE、NSF的项目密切配合。④美国国防部(DOD)将重点投资计算材料的基础研究和应用研究,提高材料性能,满足广泛的国家安全需求,在材料防御系统保持技术优势,陆军研究实验室、海军研究办公室和空军研究实验室将共同进行该项目的研究。⑤DOE能源效率和可再生能源部门的新一代材料方案将充分利用计算工具,加速制造和新能源材料的表征技术,新投资领域包括:用于制造过程的新材料,提高材料性能和降低制造成本的新复合材料系统,用于预测空间和时间变化的建模和仿真工具等。⑥NSF和DOD将发挥引领示范作用,培育和发展下一代材料工作者,推动建立政府、学术界和产业界的新伙伴关系。 1.5 材料基因组计划应用成功实例

美国国家研究理事会(NRC)最近发表的报告《轻质化技术在军用飞机、舰船和车辆中的应用》中引用了两个成功的ICME合金设计实例[180]。一个是由Olson领导设计由QuesTek创新公司开发的FerriumS53飞机着陆架用齿轮钢[181-182];另一个是GE开发的燃气涡轮机用GTD262高温合金[180,183]。作者作为共同发明人(江亮博士是主导发明者)参与了GTD262合金的设计和开发。它的设计和开发从概念到生产只用了4年时间,研发所用经费是以前同类合金的开发成本的1/5左右。通过把计算热力学相稳定性的预测与GE内部的材料性能模型和数据库的整合,我们设计GTD262的成分一次到位,没有像以前开发合金那样要经过几次来来回回的重复实验才能达到成分的优化。因为设计时考虑到了很多因素,如可铸性、可焊性和抗氧化等,中试和生产过程中也没有出现任何问题。GTD262合金的设计是一个很好的ICME的例子。但希望它的成功不要给人一种错觉,以为现在就可以在把一个全新的合金的研发时间缩短到4年之内。GTD262是修改一个现有的合金(GTD222)而获得的。在GTD222的成分附近,GE有过去的经验数据库以帮助我们设计。如果是一个成分远离现有合金的全新的合金,我们现在还没有所需的以物理/机制为基础的模型和性能数据库来进行合金设计。材料基因组工程就是要建立这样的模型和性能数据库来实现快速设计新材料。

第二章 组合芯片技术

2.1 背景

组合材料芯片技术是近年来发展起来的一种新型的材料研究方法.区别于传统材料研究中一次只合成和表征一个样品的策略,组合材料芯片技术的基本思想在于大量不同的样品通过并行的方式在短时间内被制备而形成样品库(也称作材料芯片),同时结合快速或高通量的检测技术以获得样品的各项特性,从而达到快速发现和优化筛选新型材料体系的目的.该技术自1995年首次报道以来,已引起了材料学界的极大重视,并先后在光学材料、电子材料、磁性材料等多个技术领域中被成功地加以运用。

2.2 组合芯片技术与基因组计划的关系与意义

组合材料芯片是高通量材料实验技术的重要组成部分,可实现在一块较小的基底上,通过精妙设计,以任意元素为基本单元,组合集成多达10~108种不同成分、结构、物相等材料样品库,并利用高通量表征方法快速获得材料的成分、结构、性能等信息,以实验通量的大幅度提高带来研究效率的根本转变,实现材料搜索的“多、快、好、省”。组合材料芯片技术经历了20 年的发展与完善,已形成一系列较为成熟的材料制备技术与表征方法。

高通量材料制备和快速表征是“材料基因组计划”的三大要素平台之一,而“组合材料芯片”技术在高通量材料制备和快速表征平台中占有独特地位,因此它在“材料基因组计划”中的重要意义与作用是不言而喻的。

2.3 组合材料芯片技术发现、优化新材料的过程步骤

2.3.1 材料芯片的设计和制备

根据所要解决的问题,在掌握现有材料结构、理化性质的基础上,设计涵盖范围尽可能宽的材料芯片———由不同成分、不同掺杂的微小试样组成的试样阵列或梯度试样,然后按照所设计的材料芯片,在同一块基片上以相同或相近的条件同时合成大量的材料试样,形成由众多微小材料试样密集组合而成的材料芯片。目前较为成功的制备技术主要有组合溶液喷射法和结合掩模技术的物理沉积法。组合溶液喷射法是最先发展起来的制备技术。但用这种技术制备的材料芯片试样密度较低,在(1in2)的基片上仅包含100个分立试样;结合掩模技术的物理沉积法已广泛应用于薄膜材料芯片的制备。与传统成膜方法不同的是,该方法是在薄膜沉积的同时结合一定的掩模技术(如二元掩模、四元掩模等),并通过掩模的遮蔽和运动,在基片形成特定的成分分布,从而组合成空间可定位的薄膜材料芯片,其试样密度比组合溶液喷射法要高得多,它能够在(1in2)的基片上制备上千个,甚至几十万个成分连续梯度变化的薄膜试样。

2.3.2材料芯片的处理

制备好的材料芯片上的试样还需要通过后续工艺最终形成设计的材料结构。物理沉积制备的材料芯片是通过在中低温下进行长时间的退火处理,促使组元间的充分扩散、亚稳相的形成和防止组元的蒸发,然后再在高温下经固相反应合成所设计的材料。材料芯片在较低温度下长时间退火后的组织同传统的受控固相反应类似。薄膜有限的厚度和大量的界面使之处于高自由能的状态,为组元间扩散和混合提供了驱动力,也为亚稳相的形成提供了可能。

2.3.3 材料芯片的表征

检测材料芯片的目的是从中快速发现具有较好性能的材料配方,即“线索材料”。由于检测技术必须能在其精度范围内正确反映所测材料的性质,对高密度材料芯片的性能测量提出了挑战。考虑到材料试样库上的试样数量多(可达1000或10000个),而每个试样的量很少(微克至毫克量级),单个试样的尺寸非常小(亚毫米至毫米量级),目前传统的材料表征方法大多不能满足组合材料芯片技术研究对高通量表征的需求。因此发展满足不同芯片性能测量要求的相关检测技术极为重要。现在已发展的检测技术有发光性能的检测、介电/铁电性能的检测、电光/磁光性能的检测和材料结构/成分的检测等。

2.3.4 线索材料的优化

通过前面三个基本步骤,尤其是第三步的芯片表征,可以从材料芯片的试样库中发现“线索材料”。围绕着“线索材料”,重新在较小范围设计更精细的材料芯片,重复前面步骤,对线索材料的组分、结构及热处理工艺等条件进行微调和优化。

2.3.5 目标材料的放大

组合材料芯片中的试样都是以薄膜态的形式出现的,经过上述步骤优化出的目标材料(或称先导材料)可以直接作为研究成果以薄膜的形式加以应用转化。另外,组合材料芯片所形成的数据库和目标材料也为粉体和块体材料的开发提供了先导数据。由于三维的块体材料与二维的薄膜材料之间存在一定的差异,需要目标材料的放大制备和放大检测。作为组合材料芯片技术的最后一个步骤,目标材料的放大主要是采用传统方法合成相应的材料(粉体或块体),并对材料的组分、结构及性能与目标材料(薄膜)进行对照,获得与目标材料性能指标一致的材料。

2.4 组合材料芯片技术优势

由组合材料芯片技术获得的研究结果与用传统方法在块体(粉体)试样上获得的结果具有一致性,可以用于先导材料的快速选择和评判。此外,组合材料芯片技术还具有以下明显优势: (1)高效性

采用组合技术来实现新材料的开发和优化,可以减少试验次数、缩小试验规模、降低试验成本、缩短筛选周期,加快发现新材料的速度。同时,利用组合材料芯片技术制备的试样库包含相关化学成分、制备过程参数、试样性能、结构特征等信息,在客观上还大大增加了材料研究过程中意外发现新材料的几率。

(2)数据库的建立

合材料芯片技术可以快速、系统地建立材料性能与各层次结构、组分间的制约关系和关联数据库,为后续的材料设计提供可靠的科学依据。

(3)特别适用于多元材料体系相图的研究

二元、三元相图的研究已证实了组合材料芯片技术的可行性。鉴于四元以上复杂系统相图研究的艰巨性,若以传统方法逐点制备试样,则组合太多,成本太高,耗时太长,而且由于取点密度的限制,一些窄的相区还有可能被漏掉,而这些区域的材料往往有异常的性能。连续组合方法是研究复杂系统相图的有效手段,并能直观形象地将相区、相界显示出来。

(4)理论研究

材料芯片中大量的组合和界面还为扩散动力学、成核生长等理论的研究提供了丰富数据,从中有望发现新的规律,进而丰富材料科学理论。

2.5 组合材料芯片技术应用

组合材料芯片技术与材料芯片的高通量表征水平的发展密切相关,具备什么样的芯片检测技术才能开展相应的材料研究。受材料芯片检测技术的限制,组合材料芯片技术早期主要集中在发光材料、介电/铁电材料、催化剂等的优化和筛选。近年来随着材料结构/成分、纳米压痕测试技术等的建立,组合材料芯片技术开始在金属材料研究中获得应用。在铁-镍二元合金体系的研究中,组合芯片技术体现出很大的优势。Young等选择铁-镍合金为研究对象,采用X射线衍射仪测定晶体结构,采用扫描霍耳探针和扫描磁光克尔效应测量仪测定磁性能,将组合材料芯片技术应用在铁-镍合金组织和性能的研究中,成功得到了铁-镍合金的连续相图。其结果与用传统方法在块体试样上获得的结果基本一致,但用组合技术获得的研究成果系统性好,效率高,研究周期大大缩短。随后Young等又对铁-镍-钴三元合金系进行了研究,进一步证实了这一结果,同时他们还意外发现了两个狭窄的非晶相区,这是以前用传统方法没有发现的,或是因传统方法相对“粗放”而被忽视的相区。

Banerjee等采用组合材料芯片技术研究了生物医用合金钛-铌-锆-钽体系不同成分的组织,同时通过压痕技术测定了芯片中各组分的硬度和弹性模量,建立了成分-组织-力学性能的数据库。同时指出:对Ti-32Nb-10Zr-5Ta合金,当组织中含有20%α相是有益的,此时可以在保持较小弹性模量的同时提高强度;而当组织中不存在α相时,即使合金成分不变,在保持类似弹性模量下强度也将降低。

Seung等利用纳米压痕技术测量了钛-铝成分梯度试样芯片的力学性能,建立了成分-硬度的关系,发现其结果与块体材料一致,证明采用组合材料芯片技术预测块体材料性能的方法是可行的。

Specht等利用同步辐射加速器测定铬-铁-镍试样芯片的成分、结晶相、晶粒尺寸,描绘了铬-铁-镍纳米薄膜在200~800℃退火的三元相图,显示了铬-铁-镍纳米薄膜的相和晶粒尺寸随成分、退火温度的变化情况。Ludwig等则利用组合材料芯片技术研究了铁-铂体系的成分和退火温度对其磁性能的影响,为退火温度的选择提供了依据。

Jun等采用组合材料芯片技术研究了具有形状记忆效应的镍-钛-铜合金体系,得到了滞后温度值与合金成分的关系,研究结果与镍-钛-铜块体合金一致。他们还首次给出了滞后温度值与转变延伸张量的中间特征值之间的关系,并且确定出可以改进控制形状记忆性能的新的合金成分范围。

最近,中科院上海硅酸盐研究所等开展了“组合材料芯片技术在快速筛选及优化镀锌钢板新体系中的应用”的研究。运用组合材料学思想,使用离子束溅射方法,制备了铝-锌全组分的材料芯片,采用纳米压痕方法对材料芯片的力学性能进行了表征。结果显示,随着铝含量的提高,芯片的硬度和弹性模量均增加。这与传统块体材料结论相似,显示材料芯片结果可以用于预测铝-锌材料的力学性能。同时,采用电化学方法对材料芯片的耐蚀性能进行了表征。在综合阳极极化曲线、线性电阻和平衡电位结果后认为,铝质量分数为50%~73%时耐腐蚀性能最好。而目前在工业上得到广泛应用的热镀锌55%Al-Zn合金恰好处于此成分范围。这一研究结果表明组合技术在优选新型钢铁材料时也大有用武之地。

2.6 材料组合芯片技术发展与展望

从组合材料芯片技术的发展趋势分析,自从1995年美国科学家率先提出创新的组合材料方法学思想以来,组合材料芯片技术已成为当今,乃至今后几十年材料研究的主流方向之一。当前,组合材料研究方法已经在发达国家实际应用于材料科学多个分支,由此将给材料科学和相关产业带来新机遇。该技术最诱人的特点在于大幅度缩短材料研究周期、节省资源消耗、降低研究成本等方面的优势。近年来,中国对新材料界(尤其是以钢铁等为代表的传统产业)实现跨跃式发展和突破的要求很强烈。从某种意义上讲,作为发展中国家,往往更加迫切地需要实现跨跃式发展,或者说更加迫切地依赖于超常规的技术和途径,如果能把握和充分利用新兴组合材料学和组合技术所带来的机遇,就有可能实现发展的大跨越。我国在组合材料研究领域虽已有所部署,但还没有形成以产业为背景的研究和开发势头,在这样的情况下,选择我国有基础优势的钢铁或合金材料为切入点,发展组合材料芯片技术与应用研究,必将加速新钢种和合金的研发进程,进而带动相关技术和产业的发展。

第三章 总结

材料基因组技术是近年来全球新材料研发方法的革命,在美国被列为国家发展战略,在我国被列入新材料重大科技专项的重要主题之一。材料基因组技术是材料研发新理念与高性能计算、材料基因芯片、大数据、互联网+等现代信息技术深度融合的产物,是典型的多学科交叉,是新兴学科生长点。

材料基因组技术旨在数十倍乃至数百倍地加速新材料从研发到应用的进程,提高效率,降低成本,支撑包括电子信息、能源环保、航空航天等先进制造业的发展,是国民经济和国家安全的重要保障。

材料基因组技术基于计算材料科学 、高通量实验表征与测试 、数据库与数据挖掘技术等 ,是对传统新材料研发模式提出的全新的变革 ,是材料科学研究与新材料研发在新时期的重要突破与创新 ,是解决国计民生与国防工业中关键技术材料瓶颈的重要途径。自材料基因组计划提出以来,得到材料科学家的积极响应并取得一系列重要进展。但是,在当前条件下完全建成材料基因组技术所需要的软件与硬件基础,完全抛弃实验支撑而直接计算出新材料 的成分与工艺 ,实现新材料的完全按需设计,仍然是不现实的。通过建设与发展高通量计算模拟 、高通量实验样品制备与表征、服役环境下材料力学行为的计算模拟、以及数据库等技术,并基于已有的海量实验数据结果,充分利用传统材料科学领域中对材料成分、工艺、微结构与力学性能相互关联规律的认识,积极发挥材料基因组技术在新材料研发过程中的作用、切实推进材料基因组技术发建设与发展,对充分认识并全面推进材料基因组技术在新材料研发中的变革与突破,具有极其重要的意义与价值。

中国的新材料产业与先进国家相比,整体水平仍存在较大差距。

在此背景之下,中国材料界对材料基因组技术已形成基本共识,即必须顺应国际新材料研发的趋势,尽快启动中国版的“材料基因组计划”,变革以“炒菜法(试错法)”为基础的材料研发传统模式,实现新材料领域的超常规速度发展。

材料基因组计划是以市场与应用为导向的材料研发新理念,是新材料研发的“加速器”。中国版材料基因组计划必须根据国情,面向国家战略需求,围绕加速新材料应用。与欧美国家相比,中国的差距是宽谱的、全方位的。因此,需要首先做好5项工作:

1)建设基于材料基因组技术的先进材料创新基础研发平台; 2)尽快研发自主的软硬件技术与工具;

3)大力传播材料基因组技术提出的高效率研究方法、文化和理念; 4)通过国家级科研项目进行有导向性的推广; 5)加快培养材料基因组技术领域专业人才。

材料基因组技术是材料科学技术的一次飞跃,在中国实施材料基因组计划,就是要构建将先进实验工具、模型计算手段与数据无缝衔接的新型材料创新技术框架体系,用高通量并行迭代替代传统试错法中的多次顺序迭代,逐步由“经验指导实验”向“理论预测、实验验证”的新模式转变。在前期充分发挥中国在高通量实验技术上的相对优势,逐渐向“计算引领”过渡,以加速中国关键新材料的“发现—开发—生产—应用”进程,推动中国新材料产业跨越式发展。只有这样,才能实现习近平主席提出的“推动中国制造向中国创造转变、中国速度向中国质量转变、中国产品向中国品牌转变”的目标。

参考文献:

[1]. 中国材料基因组计划如何跨出第一步?[J]. 中国材料进展,2014,Z1:528-529. [2]刘俊聪,王丹勇,李树虎,陈以蔚,魏化震. 材料基因组计划及其实施进展研究[J]. 情报杂志,2015,01:61-66. [3]王海舟,汪洪,丁洪,项晓东,向勇,张晓琨. 材料的高通量制备与表征技术[J]. 科技导报,2015,10:31-49. [4]项晓东,汪洪,向勇,闫宗楷. 组合材料芯片技术在新材料研发中的应用[J]. 科技导报,2015,10:64-78. [5]赵继成. 材料基因组计划简介[J]. 自然杂志,2014,02:89-104. [6]赵继成. 材料基因组计划中的高通量实验方法[J]. 科学通报,2013,35:3647-3655. [7]关永军,陈柳,王金三. 材料基因组技术内涵与发展趋势[J]. 航空材料学报,2016,03:71-78. [8]向勇,闫宗楷,朱焱麟,张晓琨. 材料基因组技术前沿进展[J]. 电子科技大学学报,2016,04:634-649. [9]王海舟. 材料基因组计划中的新材料表征技术实验平台[A]. .分析科学 创造未来——纪念北京分析测试学术报告会暨展览会(BCEIA )创建30周年[C].:,2015:2. [10]万勇,黄健,冯瑞华,姜山,王桂芳. 浅析美国“材料基因组计划”[J]. 新材料产业,2012,07:62-64. [11]刘茜,陈伟,刘庆峰,归林华,朱丽慧,王利. 组合材料芯片技术应用最新进展——新型合金材料的快速发现和优选[J]. 科技导报,2007,23:64-68. [12]罗岚,徐政,许业文,刘庆峰,刘茜. 物理气相法制备材料芯片的发展[J]. 材料导报,2004,02:69-71+64. [13]秦冬阳. 组合材料芯片技术在钛合金研究中的应用[D].东北大学,2010. [14]朱丽慧,朱硕金,刘茜,刘庆峰,王利. 组合材料芯片技术及其在金属材料研究中的应用[J]. 机械工程材料,2008,01:1-4.

第六篇:《基因突变和基因重组》教案

www.5y

kj.co

m

一、教学目标

(一)知识与技能

.举例说明基因突变的概念、原因、特点;

2.举例说出基因重组;

3.说出基因突变和基因重组的意义。

(二)过程与方法

.学会数据处理,类比推理等科学方法;

2.培养学生自学能力,发散思维及综合能力。

(三)情感态度与价值

.在基因突变的学习中懂得生物界在丰富多彩的本质,从而进行辩证唯物主义的思想教育;

2.在基因突变的学习中懂得如何确立健康的生活方式;

3.引导学生从生物学角度对基因突变和基因重组作科学的了解,形成正确的科学价值观,激发学生的责任感。

二、教材分析

《基因突变和基因重组》是人教版高中生物必修二《遗传与进化》第5章第1节的教学内容,主要学习基因突变的概念、特点和原因,基因突变和基因重组的意义。

三、教学重点难点

、重点:

(1).基因突变的概念及特点;

(2).基因突变的原因。

2、难点:

基因突变和基因重组的比较。

四、学情分析

生物的变异现象对于学生而言并不陌生,通过初中生物课的学习学生已经初步认识到生物的变异与遗传物质和环境有关。本节在此基础上进一步引导学生学习遗传物质究竟是如何引起生物的变异的。

五、课时安排:1课时

六、教学程序设计

依据新课改”自主、合作、探究”的精神,按“学生是主体,教师是主导”的原则,以探究式教学方法为主线,利用学案导学,开展自主探究学习,让学生在讨论、探究、交流中相互启迪,获得新知,形成良好的学习习惯和学习方法。同时,教师充分利用现代声像技术及多媒体工具,借助多媒体动画,把基因突变的原因及类型和基因重组的原理直观地展示给学生,有利于学生由感性认识上升到理性认识。教师适时进行点拨,以帮助学生建构正确的知识结构,把课堂的主动权交给学生。

七、教学过程

教师组织和引导

学生活动

设计意图

创设情境,

激发欲望

(5分钟)

、多媒体展示水毛茛和果蝇的图片,设疑:

1、水毛茛裸露在空气中的叶和浸在水中的叶为什么表现出两种不同的形态?这种变异能遗传吗?

2、果蝇的白眼性状能遗传给后代吗?

2、导出生物体变异的类型(不可遗传变异和可遗传变异),并指出本节课学习的内容为可遗传变异中的基因突变和基因重组。

3、多媒体展示学习目标,并进行学习目标和课程标准的解读。

、学生回顾生物体的表现型与基因型和环境之间的关系并思考相关问题。

2、通过学习,知晓生物体变异的类型以及本节课所要学习的内容。

3、明确本节内容和学习目标。

步步导入,激发学生的好奇心,主动地参与获取新知识,明确学习的相关内容和学习目标。

自主学习,组内讨论

探究1:基因突变(10分钟)

、组织学生组内探讨基因突变的原因、特点,并进行小组展示。

2、多媒体展示镰刀型细胞贫血症的发病机理。并引导学生思考:碱基对的替换是否一定会引起生物体性状的改变?

3、复习豌豆的皱粒以及囊性纤维病的产生原因,提出问题引导学生进行分析,引出基因突变的概念。

4、拓展:人类ABo血型,让学生了解复等位基因。

5、对基因突变的意义进行引导,让学生懂得如何确立健康的生活方式。

、通过学案上的知识梳理,组内讨论,形成统一认知进行小组展示。

2、观看多媒体展示的镰刀型细胞贫血症的发病机理并思考相关问题,回顾密码子的简并性。

3、小组讨论,总结基因突变的概念。

4、通过人类ABo血型的学习,掌握基因突变的不定向性。

5、理解基因突变的意义,并在以后的生活中树立正确的健康观念。

培养学生自主学习的能力,并体现学生的主体地位。

多媒体直观地展示给学生,有利于学生由感性认识上升到理性认识。

通过以前所学知识的回顾,帮助学生理解基因突变的类型和实例。

完成情感态度与价值观的目标。

自主学习,组内讨论

探究2:基因重组(10分钟)

、组织学生组内探讨基因重组的类型、特点、实例并进行小组展示。

2、多媒体展示基因重组的类型及机理。

3、分析基因重组的意义。

、通过学案上的知识梳理,组内讨论,形成统一认知进行小组展示。

2、观看多媒体展示。

3、知晓基因重组的意义。

培养学生自主学习的能力,并体现学生的主体地位。

班内交流,确定难点

(10分钟)

、多媒体展现合作探究内容,倡导学生合作式学习、交流。

2、对于基因突变和基因重组的区别进行适时点拨,帮助学生理解。

、合作交流,确定难点。

2、尝试构建表格分析基因突变和基因重组之间的区别。

培养学生发散思维及综合分析的能力,完成课标中的能力要求。

随堂练习,当堂反馈

(5分钟)

多媒体展示相关习题,由简单到复杂。

读题,思考与讨论,并进行解答。

、帮助学生对知识点进行巩固。

2、通过对学生练习结果的评价,了解学生对知识的掌握情况,以便确定下一步的补偿性学习的安排。

归纳总结,科学评价

(5分钟)

、构建思维导图,帮助学生构建知识框架;

2、对本节课的小组表现进行科学评价,并评出最佳小组。

通过思维导图,构建知识框架,掌握相关知识。

科学评价有利于小组内学生之间的相互团结,培养学生团队合作的意识。

八、板书设计

5.1基因突变和基因重组

一、基因突变

、实例:

2、概念:碱基对的增添、缺失或替换

3、原因:外因、内因

4、特点:普遍性、随机性、不定向性、低频性、多害少利性

5、意义:变异的根本

二、基因重组

、概念:控制不同性状的基因的重新组合

2、类型:自由组合、交叉互换

3、意义:变异的丰富

三、基因突变与基因重组的区别

九、布置作业

固学案P31-32相关习题

十、教学反思

www.5y

kj.co

m

上一篇:任务计划下一篇:人社局汇报材料