旋风除尘器的技术性能

2022-12-07 版权声明 我要投稿

第1篇:旋风除尘器的技术性能

旋风除尘器压力损失的试验研究

摘要:分析了旋风除尘器压力损失的成因,通过系统的试验考查了压力损失与进口气流平均速度的关系,探讨了粉尘含量对旋风除尘器压力损失的影响和灰斗的压力分布,总结了排气芯管截面积与入口截面积A0/Ai之比的大小对除尘器压力损失的影响,从而为旋风除尘器的优化设计及操作性能的改善提供了重要的参考价值。 关键词:旋风除尘器;压力损失;分离

作者:吴克明 雷国元 刘 红 F.Concha

第2篇:旋风除尘器性能的影响因素

旋风除尘器利用离心力和惯性将粉尘从气流中分离出来,其对高温,高浓度的粉尘净化效率很高,那么,影响其除尘效率的因素有哪些?

1. 粉尘颗粒大小:旋风除尘器在处理风尘颗粒的时候,其外部旋流的交界就像滤网一样,将大于滤网孔的粉尘被截留并捕集下来,小的粉尘则通过滤网从排风管排出。旋风除尘器捕集下来的粉尘颗粒越小,该除尘器的除尘效率越高。

2. 进风口流速:提高进风口气流速度,可增大除尘器内气流的切向速度,使粉尘受到的离心力增加,有利提高除尘效率,同时也可提高处理含尘风量。

3. 进气口:旋风除尘器的进气口是形成旋转气流的关键部件,是影响除尘效率和压力损失的主要因素。切向进气的进口面积对除尘器有很大的影响,进气口面积相对于筒体断面小时,进入除尘器的气流切线速度大,有利于粉尘的分离。

4. 严密性:旋风除尘器下部的严密性是影响除尘效率的又一个重要因素。旋风除尘器内的压力分布,是轴向各断面的压力变化较小,径向的压力变化较大。气流在筒内作圆周运动,外侧的压力高于内侧,而在外壁附近静压最高,轴心处静压最低。所以,要使除尘效率达到设计要求, 就要保证排灰口的严密性,并在保证排灰口的严密性的情况下,及时清除除尘器锥体底部的粉尘。

第3篇: 旋风除尘器技术问题分析

旋风除尘器按其性能可分以下四大类:

①高郊旋风除尘器,其筒体直径较小,用来分离较细的粉尘,除尘效率在95%以上;

②大流量旋风除尘器,筒体直径较大,用于处理很大的气体流量,其除尘效率为50-80%以;

③通用型旋风除尘器,处理风量适中,因结构形式不同,除尘效率波动在70-85%之间,

④防爆型旋风除尘器,本身带有防爆阀,具有防爆功能。

根据结构形式,可分为长锥体、圆筒体、扩散式、旁路型。

按组合、安装情况分为内旋风除尘器、外旋风除尘器、立式与卧式以及单筒与多管旋风除尘器。

按气流导入情况,气流进入旋风除尘后的流路路线,以及带二次风的形式可概括地分为以下两种:

①切流反转式旋风除尘器

②轴流式旋风除尘器

了解了旋风除尘器的基本分类形式,根据现场烟气实际工况就比较容易选型了,一般旋风除尘器选型时应注意以下基本原则:

①旋风除尘器净化气体量应与实际需要处理风量一致。选择除尘器直径时应尽量小些,如果要求通过的风量较大,可采用若干个小直径的旋风除尘器并联为宜,如果处理气量与多管旋风除尘器相符,以选多管旋风除尘器为宜。

②旋风除尘器的入口气速要保持在18-23m/s,低于18m/s时,其除尘效率下降,高于23m/s时,除尘效率提高不明显,但阻力损失增加,能耗增大。

③选择旋风除尘器时,要根据工况考虑阻力损失和结构形式,尽可能做到既节省动力消耗又能得到最佳除尘分离效果及以便于制造、维护管理。

④陶瓷旋风除尘器能捕集到的最小尘粒应等于或稍小被处理气体的粉尘粒度。

⑤当含尘气体温度很高时,要注意保温,避免水分在除尘设备内凝结。假如粉尘不吸收水分,除尘器的工作温度要比露点温度高出30度左右。假如粉尘吸水性较强,除尘器的工作温度要比露点温度高出40-50度。以避免露点腐蚀。

⑥旋风除尘器结构的密封要好,确保不漏风。尤其是负压操作,更应该注意卸料锁风装置的可靠性。

⑦易燃易爆粉尘,应设有防爆装置。防爆装置的通常做法是在入口管道上加一个安全防爆阀门。

⑧当粉尘黍度较小时,最大允许含尘浓度与旋风筒直径有关,即直径越大,允许含尘质量浓度也越大。

同时必须注意影响旋风除尘器性能的主要因素:①旋风除尘器的直径(外筒直径D0);②旋风除尘器的高度;③旋风除尘器的进口;④排气管;⑤卸灰装置

旋风式除尘器维护和保养

1、旋风除尘器的正确操作

1.1启动前的准备工作

1)检查各连接部位是否连接牢固。

2)检查除尘器与烟道,除尘器与灰斗,灰斗与排灰装置、输灰装置等结合部的气密性,消除漏灰、漏气现象。

3)关小挡板阀,启动通风机、无异常现象后逐渐开大挡板阀,以便除尘器通过规定数量的含尘气体。

1.2运行时技术要求

1)注意易磨损部位如外筒内壁的变化。

2)含尘气体温度变化或湿度降低时注意粉尘的附着、堵塞和腐蚀现象。

3)注意压差变化和排出烟色状况。因为磨损和腐蚀会使除尘器穿孔和导致粉尘排放,于是除尘效率下降、排气烟色恶化、压差发生变化。

4)注意除尘器各部位的气密性,检查旋风筒气体流量和集尘浓度的变化。

1.3作业后的技术工作

1)为防止粉尘的附着和腐蚀,除尘作业结束后让除尘器继续运行一段时间,直到除尘器内完全被清洁空气置换后方可停止除尘器运行。

2)消除内筒、外筒和叶片上附着的粉尘,清除灰斗内的粉尘。

3)必要时修补磨损和腐蚀引起的穿孔。

4)检查各部位的气密性,必要时更换密封元件。

5)按照使用说明书的规定对风机进行例行保养。

2、旋风式除尘器的维护

旋风式除尘器运行时应稳定运行参数、防止漏风和关键部位磨损、避免粉尘的堵塞,否则将严重影响除尘效果。

2.1稳定运行参数

旋风式除尘器运行参数主要包括:除尘器入口气流速度,处理气体的温度和含尘气体的入口质量浓度等。

1)入口气流速度。对于尺寸一定的旋风式除尘器,入口气流速度增大不仅处理气量可提高,还可有效地提高分离效率,但压降也随之增大。当入口气流速度提高到某一数值后,分离效率可能随之下降,磨损加剧,除尘器使用寿命缩短,因此入口气流速度应控制在18~23m/s范围内。

2)处理气体的温度。因为气体温度升高,其粘度变大,使粉尘粒子受到的向心力加大,于是分离效率会下降。所以高温条件下运行的除尘器应有较大的入口气流速度和较小的截面流速。

3)含尘气体的入口质量浓度。浓度高时大颗粒粉尘对小颗粒粉尘有明显的携带作用,表现为分离效率提高。

2.2防止漏风

旋风式除尘器一旦漏风将严重影响除尘效果。据估算,除尘器下锥体或卸灰阀处漏风1%时除尘效率将下降5%;漏风5%时除尘效率将下降30%。旋风式除尘器漏风有三种部位:进出口连接法兰处、除尘器本体和卸灰装置。引起漏风的原因如下:

1)连接法兰处的漏风主要是螺栓没有拧紧、垫片厚薄不均匀、法兰面不平整等引起的。

2)除尘器本体漏风的主要原因是磨损,特别是下锥体。据使用经验,当气体含尘质量浓度超过10g/m3时,在不到100天时间里可以磨坏3mm的钢板。

3)卸风装置漏风的主要原因是机械自动式(如重锤式)卸灰阀密封性差。

2.3预防关键部位磨损

影响关键部磨损的因素有负荷、气流速度、粉尘颗粒,磨损的部位有壳体、圆锥体和排尘口等。防止磨损的技术措施包括:

1)防止排尘口堵塞。主要方法是选择优质卸灰阀,使用中加强对卸灰阀的调整和检修。

2)防止过多的气体倒流入排灰口。使用的卸灰阀要严密,配重得当。

3)经常检查除尘器有无因磨损而漏气的现象,以便及时采取措施予以杜绝。

4)在粉尘颗粒冲击部位,使用可以更换的抗磨板或增加耐磨层。

5)尽量减少焊缝和接头,必须有的焊缝应磨平,法兰止口及垫片的内径相同且保持良好的对中性。

6)除尘器壁面处的气流切向速度和入口气流速度应保持在临界范围以内。

2.4避免粉尘堵塞和积灰

旋风式除尘器的堵塞和积灰主要发生在排尘口附近,其次发生在进排气的管道里。

1)排尘口堵塞及预防措施。引起排尘口堵塞通常有两个原因:一是大块物料或杂物(如刨花、木片、塑料袋、碎纸、破布等)滞留在排尘口,之后粉尘在其周围聚积;二是灰斗内灰尘堆积过多,未能及时排出。预防排尘口堵塞的措施有:在吸气口增加一栅网;在排尘口上部增加手掏孔(孔盖加垫片并涂密封膏)。

2)进排气口堵塞及其预防措施。进排气口堵塞现象多是设计不当造成的——进排气口略有粗糙直角、斜角等就会形成粉尘的粘附、加厚,直至堵塞。

3、旋风式除尘器故障排除

旋风式除尘器常见故障的现象、原因分析及排除方法如下介绍:

故障现象:壳体纵向磨损

原因分析:(1)壳体过度弯曲而不圆,造成盛况凸块;(2)内部焊缝未打磨光滑;(3)焊接金属和基底金属硬度差异较大,邻近焊接处的金属因退火而软于基体金属

排除方法:(1)矫正消除凸形;(2)打磨光滑,且和壳内壁表面一样光滑;(3)尽量减小硬度差异

故障现象:壳体横向磨损

原因分析:(1)壳体连接处的内表面不光滑或不同心;(2)不同金属的硬度差异

排除方法:(1)处理连接处内表面,保持光滑和同心度;(2)减少硬度差异

故障现象:圆锥体下部和排尘口磨损,排尘不良

原因分析:(1)倒流入灰斗气体增至临界点;(2)排灰口堵塞或灰斗粉尘装得太满

排除方法:(1)单筒器,防止气体漏入灰斗或料腿部;对于多管器,应减少气体再循环;(2)疏通堵塞,防止灰斗中粉尘沉积到排尘口高度

故障现象:壁面积灰严重

原因分析:(1)壁面表面不光滑;(2)微细尘粒含量过多;(3)气体中水气冷凝,出现结露或结块

排除方法:(1)处理内表面;(2)定期导入含粗粒子气体擦清壁面;定期将大气或压缩空气引进灰斗,使气体从灰斗倒流一段时间,清理壁面,保持切向速度15m/s以上;(3)隔热保温或对器壁加热

故障现象:排尘口堵塞

原因分析:(1)大块物料式杂物进入;(2)灰斗内粉尘堆积过多

排除方法:(1)及时检查、消除;(2)采用人工或机械方法保持排尘口清洁,以使排灰畅通

故障现象:进气和排气通道堵塞

原因分析:进气管内侧和排气管内外侧的积灰

排除方法:检查压力变化,定时吹灰处理或利用清灰装置清除积灰

第4篇:旋风除尘技术原理

旋风集尘器的工作原理

旋风除尘器是利用含尘气流作旋转运动产生的离心力将尘粒从气体中分离并捕集下来的装置。旋风除尘器与其他除尘器相比具有结构简单、无运动部件、造价便宜、除尘效率较高、维护管理方便以及适用面宽的特点主要用于捕集5~10µm以上的非黏性、非纤维性的干燥尘粒。影响除尘器效率的因素主要包括两个方面一是旋风除尘器的结构参数二是旋风除尘器的运行管理。对于使用者来说设备的结构参数业已确定运行管理便是影响旋风除尘器的重要因素。因此研究运行管理方法对旋风除尘器的影响对提高旋风除尘器的净化能力具有更加重要的意义。旋风除尘器运行管理和重要性是 1稳定运行参数  2防止漏风 

3预防关键部位磨损  4避免粉尘堵塞。

因为旋风除尘器构造简单没有运动部件卸灰阀除外运行管理相对容易但是一但出现磨损、漏风、堵塞等故障时将严重影响除尘效率。

1、 稳定运行参数

1.1 入口气速 气体流量或者说旋风除尘器入口气速对旋风除尘器的压力损失、除尘效率都有很大影响。一般来说在一定范围内入口气速越高除尘效率也就越高这是因为增加入口气速能增加尘粒在运动中的离心力使尘粒易于分离使以除尘效率提高。但气速太高气流的湍动程度增加二次夹带严重。另外气速过高易使粉尘微粒与器壁磨擦加剧导致粗颗粒粉碎使细粉尘含量增加。过高的入口气速对具有凝聚性质的粉尘也会起分散作用当入口流速超过监界值时紊流的影响就比分离作用增加得更快以至于除尘效率随入口气速增加的指数小于1。若入口的气速进一步增加除尘效率反而降低因此旋风除尘器的入口气速不宜太高。另一方面从理论可以分析可知旋风除尘器的压力损失与气体流量的平方成正比。所以进气口气速成太大虽然除尘效率会稍有提高有时不提高甚至下降但压力损失却急剧上升即能耗增大同时入口气速过大也会加剧旋风除尘器筒体的磨损降低使用寿命。因此在设计除尘器的进口截面时必须使进入口气速为一适应值一般为18~20m/s最好不要超过30m/s 浓度高和颗粒粗的粉尘入口速度应选小些反之可选大些。

1.2 含尘气体的物理性质和进气状态 影响旋风除尘器性能的含尘器体的物理性质主要是气体的密度和黏度。而含尘气体的密度随进口温度增加而降低随进口压力增大而增大。气体密度越大临界粒径也就越大故除尘效率下降。但是气体的密度和尘粒密度相比特别是在低压下几乎可以忽略所以其对除尘效率的影响与尘粒密度来说可以忽略不计。另一方面是气体的密度变小使压降也变小。旋风除尘器的效率随气体黏度的增加而降低气体黏度变化直接与温度的改变有关当气体温度增加时气体黏度增大使颗粒受到的向心力加大因此在入口风速一定的情况下除尘器效率随温度的增加而上降。所以高温条件下运行的除尘器应有较大入口气速和较小的截面气速这在与旋风除尘器的运行管理中也应予以注意。

1.3气体含尘浓度 气体的含尘浓度对旋风除尘器效率和压力损失都有影响。实验结果表明处理含尘气体的压力损失要比处理清洁空气时小且压力损失随含尘负荷的增加而减小这是因为径向运动的大量尘粒拖曳了大量空气粉尘从速度较高的气流向外运动到速度较低的气流中时把能量传递给旋转气流的外层减少其需要的压力从而降低了压力损失。旋风除尘器的除尘效率随粉尘浓度增加而提高。但是除尘效率提高的速度要比含尘浓度增加的速度慢得多因此要根据气体的含尘浓度不断调整气体的流量和速度始终保证较高的除尘率。在选择含尘气体的容量时除浓度外还要考虑粉尘的黏结性粉尘的黏结强度。用于中等黏度结性粉尘净化时含尘气体的容量应为允许容量的1/4用于高等黏结性粉尘净化时含尘气体的容量应为允许容量的1/8以保证设备的可靠性。 1.4 固体粉尘的物理性质 固体粉尘物理性质主要有颗粒大小、密度与粉尘粒径分布是影响旋风除尘器的重要因素。含尘气流中固体颗粒粒径越大在旋风除尘器中产生的离心力越大越有利于分离。所以大颗粒粉尘中所占有的百分数越大则除尘效率越高。颗粒密度的大小直接影响到临界直径。颗粒密度越大临界直径越小除尘效率越高。但颗粒密度对压力损失影响很小设计计算中可以忽略不计。在处理粗颗粒腐蚀性粉尘时其浓度比允许浓度低1/2~1/3为此可设计前一级预除尘器。在处理腐蚀性粉尘时必须增加除尘器的壁厚或者在旋风除尘器下覆盖橡胶板、人造石板等其它抗腐蚀材料。

1.5 含湿量 气体的含尘量对旋风除尘器工况有较大影响。如分散度很高而黏着性很小的粉尘气体在旋风除尘器中净化不好。若细颗粒量不变含湿量增加5%~10%颗粒在旋风除尘器内相互黏结比较大颗粒这些大颗粒被猛烈冲击在器壁上气体净化将大为改善。所以有往除尘器内加些蒸汽来提高效率的做法。但是必须注意的是水蒸汽的量不宜过大将会引起粉尘粘壁甚至堵塞以致大大降低旋风除尘器的性能。 影响旋风除尘器性能的因素除上述外除尘器内壁粗糙度也会影响除尘器的性能。

2、防止漏风 除尘器的漏风对净化效率有显著影响尤其以除尘器的排灰口的漏风更为显著。因为旋风除尘器无论是在正压下还是在负压下运行其底部总是处于负压状态如果除尘器底部密封不严密从外部渗入的空气会把正在落入灰斗的粉尘重新带走使除尘器效率显著下降。 除尘器漏风原因主要有三种 

1) 除尘器进出口连接处漏风主要是由于连接件使用不当引起的例如螺栓没有拧紧垫片不够均匀法兰面不平整等 

2)除尘器本体漏风主要原因是灰斗因为含尘气流在旋转或冲击除尘器本体时磨损十分严重根据现场经验当气体含量真超过10g/m3时在不到100天时间里就可以磨坏3mm厚的钢板 

3)旋风除尘器卸风装置的漏风卸灰阀多用于机械自动式这些阀密封性较差稍有不慎就可能产生漏风这是除尘器管理的重要环节。 除尘器一但漏风将严重影响除尘效率。据估算旋风除尘器灰斗或卸灰阀漏风1%除尘效率下降10%。沉降室入口或出口的漏风对除尘效率影响不大如果沉降室本体漏风则对除尘效率有较大影响。因此必须保持旋风除尘器线管的气密性不允许有漏风正压操作时和吸风现象负压操作时。一般在制造前后要进行气密性试验。

3、 关键部位的磨损 3.1 影响磨损的因素 

1)磨损与负荷关系。在高浓度、高速度含尘气体不断冲刷下旋风除尘器极易被磨损。除尘器一般先在钢板上磨出沟槽然后被加速磨损直至磨穿。除尘器的磨损随灰尘负荷、灰尘密度和硬度以及气体速度的增加需加快随构成除尘器壁的材料的硬度的增加而减慢。灰尘浓度低时一般有较轻磨损浓度增大被磨损的面积也增大。  2)磨损与气体速度成指数关系。磨损和气体速度成指数关系。矩形弯头指数为2垂直射流的冲击大约是2.5~3.在相同的气流速度下20~30度时是磨损最严重的冲击角度。就低碳钢而言磨损就会迅速增加。  31))磨损与粒径关系。流体动力学理论认为空气中的小粒子造成的磨损应当较小。因为粒子的质量随直径的立方而变化所以小粒子的动量和动能要比相同速度的大粒子小得多。也有人认为小粒径粉尘因其总表面积较大产生的磨擦面积也大因此会随粒度的减小而增加。

3.2磨损部位  1) 壳体。除尘器壳体的内部沿着纵向气流给壳壁以相当大的冲击。在这冲击区产生最大的纵向磨损。焊接金属通常比基底金属硬靠近焊接处的金属常因为退火而软于基底金属硬度的差异使软的退火处比其它部位磨损快。这些都是造成纵向磨损的条件。横向磨损是沿着壳体壁一条或几条圆圈形磨损。在圆筒和圆锥部分任何圆周焊缝或法兰连接都可能产生断续流动和不同的金属硬度。因此在制造和运转时应注意保证连接处的内表面真正光滑并且同心。在圆筒变为圆锥处贴近壳壁部分产生的最大断续流动因而横向磨损增加。 2) 圆锥和排尘口的磨损。旋风除尘器圆锥部分直径逐渐减小所以通单位面积表面的灰尘量和流动速度都逐渐增加。这就使圆锥部分比圆筒部分磨损更严重。旋风除尘器从排尘口倒流进去的气体到临界点运行情况就会恶化。这时将没有多少灰尘排出而只是在圆锥的较低部位形成旋转尘环能使磨损的速度加快好几倍。这样的磨损可以利用防止气体流入灰斗的办法来减轻。如果排尘口堵塞或灰斗装得过满妨碍正常排尘则圆锥部分旋转的灰尘特别容易磨损圆锥。倘若这种情况持续下去磨损范围就上升到除尘壁愈来愈高的位置。解决磨损的办法。是防止灰斗中灰尘的沉积到接近排尘口的高度。 

3)叶片磨损。惯性除尘器的叶片磨损是最主要的磨损部位所以应定期检查叶片完好程度。为了防止叶片磨损优良的设计应该把叶片截面制成圆形-矩形而不应该是片状。 3.3 防止除尘器磨损的技术措施 

1)防止排尘口堵塞。选用优质的卸灰阀加强调节和检修。

2)防止过多的气体倒流入排尘口。使用卸灰阀要严密配合得当减轻磨损口。 3)就当常检修除尘器有无因磨损而漏气的现像以便及时采取措施。  4)尽量减少焊缝和接头。必须要有焊缝应磨平法兰连接处应仔细装配好。 

5)在灰尘冲击部位使用可以更换的抗磨板或增加耐磨层也可以用耐磨材料制造除尘器。 

6)除尘器的壁面的切向速度和入口流速应当保持在临界范围以下。 

7)采取有效的防腐措施在除尘器的外壳一般要刷一层红丹二层耐腐漆或耐热漆。

4、 避免灰尘堵塞和积灰 旋风除尘器的堵塞和积灰主要发生在排尘口附近其次发生在排尘的管道里。

4.1排尘口堵塞和预防措施 引起排尘口堵塞通常有两个原因一是大块物料或杂物二是灰斗内灰尘堆积过多不能及时排出。排尘口的堵塞会增加磨损降低除尘效率和加大设备压力损失。 预防排尘口堵塞的措施预防排尘口堵塞的措施 

1) 在吸气口增加栅网既不影响吸风效果又能防止杂物吸入。

2) 在排尘口上部增加手掏孔其位置应在易堵部位大小以150×150mm的方孔即可。手掏孔的法兰处应加垫片并涂密封膏避免漏风。平时检查中可用小锤易堵处听其声音以检查是否有堵塞。

4.2 进排气口堵塞及预防 进、排气口堵塞现象多是设计不理想造成的。与袋式吸尘器、电除器不同旋风除尘器的进气口或排气口形式通常不进行专门设计所以在进气出气口略有粗糙直角、斜角等就会形成粉尘粘附、加厚直至堵塞。 避免和预防堵塞的第一个环节是从设计中考虑设计时要根据粉尘性质和气体特点使除尘器进、出口光滑避免容易形成堵塞的直角、斜角。加工制造设备时要打光除突出的焊瘤、结疤等。运行管理旋风除尘器要时常观察压力、流量的异常变化并根据这些变化找出原因及时消除。总之防止旋风除尘器的堵塞和积灰要做到 

1)灰斗内的粉尘要在允许范围内  2)排灰运灰工具良好  3)及时清除灰斗中的灰尘

4)防止贮灰和集灰系统中的粉尘接块硬化。

5、 结束语

旋风除尘器的运行管理对除尘器的效率有重要影响因此必须加强对旋风除尘器的运行管理健全运行管理制度督促管理者和操作者严格按规程管理和操作。严密监视旋风除尘器的运行状态及时发现和排除运行故障定期进行检查和维护。除此之外还需要从设计、制造和安装入手。优化除尘器结构、合理匹配除尘器的相关尺寸提高除尘器的制造尺寸精度尤其是关键尺寸提高安装质量。只有这样才能确保旋风除尘器高效、安全、可靠运行提高空气净化程度。我们相信。随着各种新技术的出现旋风除尘器的性能将会越来越好应用前景会更加广泛

第5篇: 怎么选择旋风除尘器的型号

在实际的车间除尘过程中,选择正确的旋风除尘器型号,我们不但要依照旋风除尘器的固定参数,还要结合实际工况,做出正确选型,那么,旋风除尘器选型都要考虑哪些因素呢?朴华科技将为大家简单介绍:

旋风除尘器入口气速是个关键参数。对于尺寸一定的旋风除尘器,入口气速增大,虽然处理气量可提高,可有效地提高除尘器的分离效率,但压力损失也随之增大。当入口速度提高到某一个数值后,除尘效率可能随之下降,压力损失却一直在增大,这是因为气流及颗粒碰撞弹跳等因素促使沉积在壁面的颗粒重新被卷扬起来,使旋风除尘器的除尘效率下降。

此外,入口气速增大,磨损也会加剧,颗粒会被粉碎变细,除尘效果降低,并且旋风除尘器本身也会被磨损,寿命会缩短。所以一般常用的入口气速在14~20m/s间选择,浓度高的粉尘入口速度可选小些,反之可选大些。如特别需要,可增加旋风除尘器内部耐磨材料。

在实际生产中,由于处理气量总会有变动,所以我们都希望除尘器有较好的负荷适应性,负荷适应性在处理气量的60%~120%内变动,此时旋风除尘器的效率波动不致过大。

含尘气体的入口质量浓度和颗粒的分散度对旋风除尘器的分离效果也有不可忽视的影响。浓度高时,表现为效率提高。但浓度中含细微尘粒多时,又会影响到效率的提高。

第6篇:旋风除尘器的研究进展

白玉 20100970 旋风除尘器作为一种气固分离装置,具有结构简单、无运动部件、造价便宜、除尘效率较高、维护管理方便,可在高温、高压环境下工作等特点。其应用于工业生产以来,已有百余年的历史,对于捕集、分离5一l0µm以上的尘粒颗粒效率较高,其除尘效率可达90%左右。广泛应用于能源动力、化工等行业,是目前应用最广的气固分离装置之一。

但是传统的旋风除尘器普遍存在排气口短路流、锥体部分二次扬尘以及上灰环夹带等问题,而且放大效应显著。工业应用表明对于粒径为3µm以下的颗粒分离效率很低,即便是3~10µm粒径范围内的颗粒,分离效率也仅在80% ~90%左右。随着工业装置生产规模的提高,各项粉体工业的发展对大气环境的污染也越来越多,同时人们对大气环境的保护洁净意识也越来越强,对大气环境有着更高的要求。因此无论是大气环境保护,还是粉体工程都要求不断提高旋风除尘器的性能。一方面要求旋风除尘器有更强的捕集细粉的能力;另一方面要求旋风除尘器的压降进一步减少,以降低能耗。所以,迫切需要研究出高效能且低能耗的新型旋风除尘器。近年来,国内外已有许多学者基于这两方面对旋风除尘器做了大量试验研究,也提出了很多可行的措施和设计方案并已应用于实际工程中。在此,对近几年国内外有关提高旋风除尘器捕集细粉能力和降压力损失改进措施的研究进展进行综述。 1 旋风除尘器的结构及工作原理

是一种典型的旋风除尘器的结构示意图,由切向人口、圆筒、圆锥、排气管、排灰口等几部分组成。含尘气流从直筒段下部以切向方式进人内筒,做旋转上升运动,含尘气流中所含较大的固体颗粒在重力作用下直接沉人锥体。中等直径的固体颗粒随气流旋转上升时,由于离心作用而被甩向内简壁,然后沿内筒壁沉降进人锥体,一次分离后的大部分纯净气体直接从顶部排气管排出。而较小的固体颗粒随流体旋出内筒上端后,被甩向内外筒体间的环隙,连同部分气体环流而下进入锥体,在锥体内得到二次分离,被分离后的纯净气体沿轴向返回内筒,亦由排气管排出,最终固体颗粒在锥筒体底部富集,并由底部排灰口排出,从而使气固两相得到分离 。

收集的粉尘 图1 旋风除尘器结构示意

2 降低阻力方法的研究进展

旋风除尘器的流动阻力主要包括进气管的流动损失;气体在筒体内和桶壁摩擦造成的能量损失;气体进入旋风除尘器内,因流通截面突变造成膨胀或者压缩,旋转而造成的能量损失;排气芯管内的损失。这些损失里面有些是对捕集分离粉尘起有效作用的,可以称之为有效能;而有些是对捕集分离粉尘不起作用的,可以称之为消耗能。旋风分离器降低阻力的目标就是要增大有效能在总的能量损失中所占比例,减少消耗能所占比例。而对于旋风分离器的减阻研究,国内外已有很多研究人员做了相关工作,提出了很多减阻措施。以下介绍常见的减阻方式及其研究进展。

2.1 进口处结构改进

针对单进口旋风器内流场的轴不对称性问题,沈恒根等从结构上改单进口为双进口,通过双进口旋风器内流场实验研究表明,短路气流量比单进口少30%,双进口旋风器比单进口旋风器更有利于提高除尘效率,降低设备阻力。Lim等通过实验方法也对双进口结构旋风器的分离性能进行研究.结果表明双进口旋风器的分离效率比单进口结构高5%~15%。Gautam 和Moore等还对多进口旋风器进行了研究,结果表明多进口结构也能起到降阻增效的作用。

2.2 排尘口减阻方法

为了降低排气管内的漩涡程度,不改变排气管形状,而在排气管内部或后部附加减阻装置以便回收能量。常见的排气管处减阻方式有以卜几种:改变排气管结构、将排气管偏置或在排气管内部安装整流叶片可使阻力减少22.8%;在排气管口装设渐开线蜗壳可使阻力降低5%~1O%;在排气管出口加设圆锥形扩散器,若扩散角选取合适,可使阻力降低10% ~33%;在排气管弯头后水平安装双锥圆筒减阻器等,若采用优化尺寸的双锥圆筒,可使阻力减少7%~25%。

2.3 安装导流板

为了抑制入门进气偏向筒壁而产生的压缩现象,可以安装导板,从而改善旋风除尘器入门处的流场状态,减少阻力损失,而且导流板技术实施非常方便对老设备改造有着极其重大的意义。李利等人通过对旋风除尘器入口处流场状况的分析,揭示了导流板对改善旋风除尘塞入口流状况的作用机理。同时给出了在不同尺寸导流板存在下测得的旋内除尘器的阻力损失和除尘效率等数据,得出用恰当尺寸的导流板能够在不降低除尘效率的前提下降低阻力损失。华东冶金学院的祝立萍在这方面做了大量的实验研究,证明采用安装导向板的方法,确实可以降低除尘器的阻力,并且对弧形导向板和方形导向板进行了比较,发现弧形导向板的综合效果更好一些。2007年赵峰等对加设不同形式导流板的旋风分离器进行了试验研究,研究表明试验所安装导流板不同程度地降低了分离器的阻力,同时也对分离效率产生了影响。不同形式的导流板适用于不同的应用场合。

2.4 安装减阻器

旋风除尘器减阻杆减阻就是在旋风除尘器内适当位置安装一根特定形状的刚性杆件减阻杆形成尾涡与原流场中的涡旋相互作用改变流场结构来降低流动压力损失。随着该项技术在工业上应用范围的不断扩大,国内外研究者对该技术的研究也在不断的深入。

1996年王连泽和彦启森研究了减阻杆埘流场的影响,发现了减阻杆对流场结构改变的规律,为分析减阻杆的减阻机理提供了依据;同时他们还发现旋风分离器入口附近有近24%的短路流量,设法减小这郡分的短路流量是提高分离效率的一个研究方向。

2004年卫国强等首次利用数值模拟方法对旋风分离器进行了减阻杆减阻的研究。通过对比流场计算结果和试验数据,证明文中所采用的网格划分方法、RSM 湍流模型和边界条件是可靠的,为数值设计高效率的减阻杆提供了简便可靠的办法。

2005年王连泽等分别采用五孔形球形探针、激光多普勒测速仪和粒子图像测速仪对旋风除尘器内安装减阻杆前后的时均流场与湍流场进行了测量。结果发现减阻杆降低了流场中对粉尘分离无益的内旋流切向速度,削弱了中心区域的湍流强度,使湍流耗散减弱,从而实现了减阻。

2005年王建军等利用激光多普勒测速仪对装有减阻杆的旋风分离器内流场进行了详细的测量。结果表明减阻杆改变了旋风分离器内的流场结构,减阻杆后存在明显的扰流尾涡区。相同形状的减阻杆,迎风宽度越大,在杆后形成的绕流尾涡影响区的范围和强度越大。减阻杆后形成的绕流尾涡对旋风分离器内流场的影响是实现减阻的原因之一。

2006年龚安龙等利用Plv技术对stair-mand型旋风分离器中安装减阻杆前后的强湍流场进行了测量。结果表明安装减阻杆大幅降低了中心区域的湍流脉动和Reynolds应力,使湍流能量耗散大幅降低,从而降低了分离器的压力损失。

2007年张建等利用雷诺应力模型分别计算了在旋风分离器排气芯管下口安装双进口螺旋减阻装置前后旋风分离器压力损失和流场。通过对比数值模拟计算结果和试验数据,可以发现旋风分离器数值模拟结果与试验数据吻合较好;减阻装置使切向速度在上行流大幅度降低,使分离空间内的平均轴向速度下降,中心区域的切向速度梯度和轴向速度梯度明显降低;压降损失降低35%以上,并且分离效率没有受到不利影响。

2007年刘成文 等利用激光多普勒测速仪(LDV)测量了安装减阻杆前后的旋风分离器的流场,得到了时均速度、均方根速度、雷诺应力等参数分布。结果表明减阻杆使时均切向速度及其速度梯度大幅度降低,减弱或消除了中心滞流现象。除在减阻杆后局部区域外,大尺寸减阻杆对切向速度及其速度梯度的降低作用最明显,同时消除滞留的效果好。减阻杆的截面尺寸对旋风分离器的湍流强度有影响,小尺寸减阻杆使大部分区域湍流降低,而大尺寸减阻杆使大部分区域的湍流增强,两种尺寸的减阻杆都使杆后尾迹区的湍流得到增强。

2.5 采用下排气结构

采用此结构类型的除尘器取消了上排气芯管,采用下排气芯管,简体结构采用上部直径小,下部简体直径大,中间用以扩散锥体作为过渡段。其工作过程是含尘气体切向进人除尘器后,在稳流体与筒壁之间的环形区域做旋转运动,这股气流受到随后气流的挤压向下旋转,在这过程中尘粒在离心力作用下被甩向简体壁面,在气流推动和重力作用下下滑,当趋于洁净的气流旋至下排气芯管人口时,直接进入排气芯管排出少量气体继续下旋至锥体底,再折转向上最后经排气芯管排出.从其结构特点和工作过程看,由于它消除了内旋涡旋,外旋气流与洁净气流同向以及独特的筒体形状,使除尘器在保持高除尘效率的基础上,压力损失也大大降低。赵旭东等对该类型除尘器研制的理论依据、技术关键、结构特点、工作原理、试验台系统的设计以及主要性能的测试结果做了介绍。证明取消旋风除尘器的上排气芯管是降低除尘器阻力损失提高效率的有效途径。

3 提高细粉捕集能力方法的研究进展

随着对旋风除尘器的广泛研究和应用开发,旋风除尘器的新结构层出不穷,应用范围也在不断的扩大。细粉的捕集能力也在不断的提高,已经突破了旋风除尘器不能用于5微米以下微细粉分离的传统知识,下面就近几年有关国内外提高旋风除尘器细粉捕集效率的研究进展进行简要综述。

3.1 在旋风除尘器中抽出部分气体

早在l951年,C.J.StairmandL就认为灰斗抽气能提高旋风分离器分离效率,但一直没有受到重视.随后P.W.Sage和M.A.Wright 通过实验认灰斗抽气比排气管抽气更有效,灰斗抽气可以减少出口气体中粉尘浓度40%以上。H.Yoshida ,李敏等人也通过实验表明旋风除尘器的分离效率随着抽气率的提高而明显增大。吴淑虹,张建等人研究结果都表明灰斗抽气可以提高锥体内旋转气流切向速度,轴向速度,减少能够降低气流携带颗粒返混能力,并减小排气芯管下口短路流,提高旋风分离器分离效率,并且对于给定的旋风除尘器,抽气率应有一最优值。但是进一步的研究还发现,灰斗抽气对效率提高的幅度与分离器入口的颗粒浓度密切相关,人口颗粒浓度越高,灰斗抽气的影响越显著;当入口颗粒质量浓度低于5 g/m3 时,灰斗抽气几乎没有影响。因此,若入口颗粒浓度较高,仅采用灰斗抽气往往不能使尾气达标排放;且从灰斗抽气对于尾气排放控制则显得更为直接,抽出的尘量大,处理费用也会相应的增加。基于此邵国兴提出一种称为R—s型旋风分离器的排气管抽气分离系统,此结构在压降相近的条件下,处理气量大于两级串联,分离效率优于两级旋风分离器串联;与三级串联旋风除尘器的分离效率相近,而压降仅为三级串联的60% 。

3.2 在排气管下口增设分离元件

在旋风除尘器中,由于内旋流进入排气管时仍处于旋转状态,同时在排气管底端还存在“短路流”,影响了细颗粒的分离。因此,改进排气管结构对于旋风器消旋减阻和分离效率的提高具有实际意义。部分研究者在排气管内加装各种挡板、翼片等构件,实验结果往往是压降降低,效率也降低,主要原因是降低了旋涡旋转强度。但在排气管下适当位置增设圆盘和导流翼片等构件,以及将分离器的排气管下端封闭,并在边上开槽(或孔),这些结构不仅防止上旋气流携带细颗粒进入排气管,提高了分离效率,还能降低阻力损失。倪文龙设计了双出风口旋风分离器,用于替代水泥生产过程中的选粉机,与单排气口的旋风分离器相比,阻力损失减小15%~4l%,除尘效率增加2.6%~l1.3%,获得了明显的降阻提效效果;中国石油大学(北京)近年开发出了一种排气管末端分离结构——塔式排气管,研究结果表明其分离效率比PV型高效旋风分离器同比提高2%左右,同时压降还可降低13%以上,使细粉的捕集效率明显提高。

3.3 在旋风分离内部加入机械旋转部件

作为静态设备的普通旋风除尘器,如果在其内部加入机械旋转部件,利用其高速旋转获得人为可控、比气流自然旋转更强的强制离心力场,则可显著提高分离效率,可分离5µm及以下超细颗粒,为超细粉尘的气固分离提供另一个新方法,这便是动态旋风分离器.机械回转机构是动态旋风分离器的关键部件,现已试验过多种结构方案。陈海焱将旋风分离器的排气管改为旋转涡轮,用电机带动涡轮旋转,做成一种最简单的动态旋风分离器。实验结果显示涡轮除尘器可以满足高湿高粘附性微细粉尘的收集要求,对含有d小于4µm微细粉,含尘质量浓度达l2g/m3 的气固流,通过涡轮除尘器后,出口的含尘质量浓度可控制为36mg/m3,收集效率达99.7%。在运转过程中,收集系统可以保持稳定、可靠地运行。除尘涡轮叶片及筒壁无明显粘附现象。波兰ChmielniakT和Bryczkowski A也设计了类似的叶片涡轮旋转结构,他们的排气管从分离器下部引出。在试验室内将这神带旋转结构的分离器和同直径的Stairmand高效旋分器进行性能试验对比。结果收尘效率随叶轮转速增加而增加;对试验的中位粒径10µm的白云石粉,分离效率为94.O%一96.1%,位粒径8m的粉料,分离效率为90.O%~95.2%;对应的Stairmand高效旋分器的效率则是84.2%与83.0%。分离器压降总体上差别不大,高气量时还略低Stairmand型。

动态旋风分离器的缺点也很明显,它结构复杂,机械回转机构难以用于高温等苛刻工况;离心力场和层流耦合的结构还存在设备单位体积的处理气量较小等问题,还需要不断深人研究。

4 结论

综上所述,在旋风除尘器的众多性能指标中,压力损失和细粉捕集效率一直为旋风除尘器研究者所关注。鉴于此人们已做了相当多的努力,研究出多种结构形式的旋风除尘器,但是要真正达到低阻高效的目的,满足各种工业要求还需要进行更加深入的研究。另外,随着计算机数值模拟等现代技术的发展,应用汁算流体动力学技术优化旋风除尘器的结构来降低研究成本是很有必要的. 参考文献

[1] 化工设备设计全书编辑委员会.除尘设备设计.上海:上海科学技术出版社,1985.17—37;44—155. [2] 梁朝林.化工原理.广州:广东高等教育出版社,20o0.82—89.

[3] Craw F ord M.Air pollution control theory[M].NewYork:Mc Graw—Hill,1976.64—105. [4] Sandboch F.Principles of poHution control[M].NewYork:Long,nan,1982.16—31. [5] 王清华.旋风分离器结构改进的研究现状和发展趋势[J].锅炉技术,2007.

[6] 张亚青,高军凯,黄超,王成伟.旋风除尘器改进措施的研究进展[J].江苏环境科技,2007. [7] 稽敬文.除尘器[M].北京:中国建筑工业出版社,1981.

[8] 姜江,金晶,屈星星,江鸿,刘瑞传统旋风除尘器的阻力影响分析与改进措施.发电厂节能减排2008(3). [9] 沈恒根,党义荣,刁永发,等双进121旋风器内流场的实验研究(J].西安建筑科技大学学报,1997,29 (3):275—277.

[10J Lim K S,Kwon S B,Lee K W .Characteristics oftimcollection eficiency for a double inlet cyclone withclean air[J].Aerosol Science,2003,34:1 085—1O95.

[11] GautamM,Streenath A.Performance of a respirablemulti—inlet cyclone sampler[J].Joumal of Aerosol Science,1997,28(7):1 265—1 281.

[12] MooreME,Mefarland AR.Design methodology for multiple inlet cyclones[J].Environmental Science and Technology ,1996,30:271—276.

[13] 赵萍,等.旋风除尘器的压力损失及减阻措施[J].工业安全与环保,2003,(1):l】一12. [14] 李利,熊万荣,等.导流板在旋风除尘器中的应用研究[J].武汉工业大学学报,1992,(2). [15] 祝立萍.旋风除尘器弧形导向板技术实验研究[J].冶金动力,2003,(3):46—49.等.

第7篇:旋风除尘器除尘效率的提高及改进

旋风除尘器效率的提升和改进

论旋风除尘器除尘效率提升及改进

Theory of dust cyclone dust removal efficiency improvement and improvement

作者:赵德政

摘要:在旋风除尘器筒体中部,安装筒状钢板网整理稳固气流流型,主要不是过滤作用,重点是整理涡旋流型、延长筒体、增加旋转时间提高除尘效率 。

Abstract: in the dust cyclone central cylinder, installation tubular steel nets tidy stable airflow pattern, not filter function, the key is to finishing vortex flow type and prolong barrel, increase rotation time to improve the dust removal efficiency. 关键字:旋风除尘 网状装置 整理流型 提高效率

Key word: cyclone dust、 reticular device、 arrangement flow type 、 improve efficiency 引言

旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。旋风除尘器于1885年开始使用,已发展成为多种型式。普通旋风除尘器由简体、锥体和进、排气管等组成。旋风除尘器结构简单,易于制造、安装和维护管理,设备投资和操作费用都较低,已广泛用来从气流中分离固体和液体粒子,或从业体重分离固体粒子。在普通操作条件下,作用于粒子上的离心力是重力的5~2500倍,所以旋风除尘器的效率显著高于重力沉降室。大多用来去除.3μm以上的粒子,并联的多管旋风除尘器装置对3μm的粒子也具有80~85%的除尘效率。旋风

1 旋风除尘器效率的提升和改进

除尘器结构简单、体积小、使用维修方便在通风除尘工程中广泛应用。

一、 旋风除尘器除尘效率的因素分析

1) 旋风除尘器内气流与尘粒的运动

普通的旋风除尘器是由筒体、锥体、和排出管三部分组成,如图。含尘气流由切线进入除尘器后,延外壁由上向下作旋转运动,这股向下旋转的气流为外旋流。外旋流到达锥体底部后,转而向上,延轴心向上旋转,最后经排出管排出。这股向上的气流称为内涡旋。向下的外涡旋和向上的内涡旋,两者的旋转方向是相同的。气流作旋转运动时尘粒在惯性离心力的推动下,要向外壁移动。到达外壁的尘粒在气流和重力的共同作用下,延壁而落入灰斗。

气流从除尘器顶部向下高速旋转时,顶部的压力发生下降。一部分气流会带着细小的尘粒延外壁转向上,达到顶部后,再沿排出管外壁旋转向下,从排出管排出。这股旋转气流称为上涡旋。

实际旋风除尘器的气流是很复杂的,除了切向和轴向的运动外,还有径向的运动, 外涡旋的径向速度是向心的,内涡旋的径向速度是向外的。

2) 切向速度和径向速度

涡旋的切向速度是随半径的减小尔增加,内涡旋的切向速度是随半径的减小而减小,径向速度沿高度的分布是不均匀的,上部大下部小。

外涡旋气流的向心运动对尘粒的分离是不利的,有些细小的尘粒会在向心气流的带动下进入内涡旋,然后从排出管排出。

3) 旋风除尘器的计算

外涡旋内的尘粒在径向受到的力 = 惯性离心力 + 向心运动的气流对尘粒的作用力

如果惯性离心力大于向心运动的气流对尘粒的作用力,尘粒在惯性离心力的作用下向外壁移动;如果惯性离心力小于向心运动的气流对尘粒的作用力,尘粒在向心气流的推动下进入内涡旋,最后排出除尘器。

二、 影响旋风除尘器性能的因素 1 除尘器结构

旋风除尘器的各个部件都有一定的尺寸比例,每一个比例关系的变动,都能影响旋风除尘器的效率和压力损失,其中除尘器直径、进气口尺寸、排气管直径为主要影响因素。在使用时应注意,当超过某一界限时,有利因素也能转化为不利因素。另外,有的因素对于提高除尘效率有利,但却会增加压力损失,因而对各因素的调整必须兼顾。 3.1.1 进气口

旋风除尘器的进气口是形成旋转气流的关键部件,是影响除尘效率和压力损失的主要因素。切向进气的进口面积对除尘器有很大的影响,进气口面积相对于筒体断面小时,进人除尘器的气流切线速度大,有利于粉尘

2 旋风除尘器效率的提升和改进

的分离。

2 圆筒体直径和高度

圆筒体直径是构成旋风除尘器的最基本尺寸。旋转气流的切向速度对粉尘产生的离心力与圆筒体直径成反比,在相同的切线速度下,简体直径D越小,气流的旋转半径越小,粒子受到的离心力越大,尘粒越容易被捕集。因此,应适当选择较小的圆筒体直径,但若简体直径选择过小,器壁与排气管太近,粒子又容易逃逸;筒体直径太小还容易引起堵塞,尤其是对于粘性物料。当处理风量较大时,因筒体直径小处理含尘风量有限,可采用几台旋风除尘器并联运行的方法解决。并联运行处理的风量为各除尘器处理风量之和,阻力仅为单个除尘器在处理它所承担的那部分风量的阻力。但并联使用制造比较复杂,所需材料也较多,气体易在进口处被阻挡而增大阻力,因此,并联使用时台数不宜过多。筒体总高度是指除尘器圆筒体和锥筒体两部分高度之和。增加筒体总高度,可增加气流在除尘器内的旋转圈数,使含尘气流中的粉尘与气流分离的机会增多,但筒体总高度增加,外旋流中向心力的径向速度使部分细小粉尘进入内旋流的机会也随之增加,从而又降低除尘效率。 3 排气管

排风管的直径和插入深度对旋风除尘器除尘效率影响较大。排风管直径必须选择一个合适的值,排风管直径减小,可减小内旋流的旋转范围,粉尘不易从排风管排出,有利提高除尘效率,但同时出风口速度增加,阻力损失增大;若增大排风管直径,虽阻力损失可明显减小,但由于排风管与圆筒体管壁太近,易形成内、外旋流“短路”现象,使外旋流中部分未被清除的粉尘直接混入排风管中排出, 从而降低除尘效率。 4 排灰口

排灰口的大小与结构对除尘效率有直接的影响,增大排灰口直径对提高除尘效率效率有利,但排灰口直径太大会导致粉尘的重新扬起。 5操作工艺参数

在旋风除尘器尺寸和结构定型的情况下,其除尘效率关键在于运行因素的影响。 6 流速

旋风除尘器是利用离心力来除尘的,离心力愈大,除尘效果愈好。旋转的路程越长效率越高。 7粉尘的状况

粉尘颗粒大小是影响出口浓度的关键因素。处于旋风除尘器外旋流的

3 旋风除尘器效率的提升和改进

粉尘,在径向同时受到两种力的作用,一是由旋转气流的切向速度所产生的离心力,使粉尘受到向外的推移作用;另一个是由旋转气流的径向速度所产生的向心力,使粉尘受到向内的推移作用。在内、外旋流的交界面上,如果切向速度产生的离心力大于径向速度产生的向心力,则粉尘在惯性离心力的推动下向外壁移动,从而被分离出来;如果切向速度产生的离心力小于径向速度产生的向心力,则粉尘在向心力的推动下进入内旋流,最后经排风管排出。如果切向速度产生的离心力等于径向速度产生的向心力,即作用在粉尘颗粒上的外力等于零,从理论上讲,粉尘应在交界面上不停地旋转。

旋风除尘器捕集下来的粉尘粒径愈小,该除尘器的除尘效率愈高。离心力的大小与粉尘颗粒有关,颗粒愈大,受到离心力愈大。当粉尘的粒径和切向速度愈大, 径向速度和排风管的直径愈小时,除尘效果愈好。

三、 除尘器结构改进

由于除尘器中间深入的侯部3采用钢板风管,喉部的长短影响除尘器的效率,太短了没有流型太长了就会将尘粒从出口吹出风道,反而启不到除尘的作用。鉴于此原因同时又为了更好的组织空气进入除尘器中的流型保证较高的离心力,因此可设想在旋风除尘器中间的喉管延伸处4采用钢板网制作形成一个有过滤作用的假想的圆柱喉管,这样既方便施工和工业制作,又有较好的流型和流道可很好的提高旋风除尘器的整体效率,对锅炉除尘等旋风除尘设备是个较好的改进,中间的钢板网密度和网孔目数要根据粉尘大小和湿度情况进行实验后确定。同时钢板网的进伸长度要以不阻挡风量为准。同时由于在中间设置网状主体保证了气流的稳定性,还可延长旋风除尘器的5筒体长度,是尘粒在筒内的行程更加延长,这样就可大大提高除尘器的效率。还可以减少二次扬尘,而且使高速旋转的上、下灰环消失,提高了除尘效率。

四、 改进的旋风除尘装置工业意义和对环保节能降耗的影响

4 旋风除尘器效率的提升和改进

1) 2) 3) 4) 设备改动小易实现成本低。

工业应用广泛,产生的社会和环保效益显著。

减少下级湿式和布袋的除尘量,降低风机耗电量。 现阶段节能降耗的重大突破。

五、 结语

如何提高旋风除尘器除尘效率是当前粮食行业需要解决的一个重要课题。研究和分析影响旋风除尘器除尘效率的因素,是设计、选用、管理和维护旋风除尘器的前提,也是探求提高旋风除尘器除尘效率途径的必由之路。这里设想的装置还需在网格的密度,网格的外观形状上做相应实验,以便在行业里广泛使用。由于旋风除尘器内气流速度及粉尘微粒的运动等都较为复杂,影响其除尘效率的因素较多,需要我们进行全面分析,综合考虑,特别是在控制气流流型上寻求最优设计方案和运行管理方法。当前,旋风除尘器许多理论还待研究和探讨,尽管如此,旋风除尘器仍以其结构简单、体积小、制造维修方便、除尘效率较为理想等优点,成为目前粮食企业主要除尘设备之一。随着对旋风除尘器认识的进一步的深入和完善,它必将在粮食行业除尘中发挥更大的作用。

上一篇:金融助推乡村振兴总结下一篇:小学优秀教师先进材料