四色定理的初等证明

2022-08-30 版权声明 我要投稿

第1篇:四色定理的初等证明

从《正弦定理的发现与证明》微课教学设计谈起

[摘要]微课是当下教学的热点话题,它是课堂教学的有益补充,如能加以合理使用,一定会为我们的高效教学搭建起好的平台。正弦定理是高中数学一个重要的定理。对定理的由来和把握应是我们教学的一个重点,对其进行微课教学设计,并以此为例谈谈有关话题。

[关键词]微课;教学设计;正弦定理

正弦定理是高中数学一个重要的定理。对定理的由来和把握应是我们教学的一个重点。前一段时间看了一个教师的微课教学设计。在此提出来与大家共享。

教学背景

本节课是苏教版必修4第一章“解三角形”的第一节课的内容。“正弦定理”是初中“解直角三角形”内容的直接延伸。进一步揭示了任意三角形的边与角之间的客观规律。是三角函数知识和平面向量知识在三角形中的交汇运用。也是解决实际生活中三角形问题的重要工具。具有广泛的应用价值

对于定理的学习。在以往的教学中发现大部分学生只关注定理的内容本身和其解决相关问题的应用。而根本没注意定理是如何被发现及证明的。本节课分为两课时。本次微课是正弦定理的前奏。其目的和主要任务是发现和引入并证明正弦定理。而正弦定理的应用放到第二课时。这样学生才能真正地把握正弦定理。对帮助他们发现几何现象。并且自主探究、处理问题有一定的积极意义。

学情分析

学生学习本节课之前。已经掌握了如何解直角三角形,并学习了平面几何、三角函数、三角恒等变换、向量等知识,也具备了一定的观察分析、解决问题的能力。但学生对前后知识间的联系、理解以及综合应用所学知识上还有所欠缺,思维也不够缜密。尤其向量、三角函数知识学过的时间较长,学生不容易把三角函数和向量自然地连接在一起。所以设置了本节微课的教学目标:

(1)知识与技能:通过对三角形的边长和角度关系的探索。发现并证明正弦定理。

(2)过程与方法:经历完整的发现和证明正弦定理的过程。让学生体会分类讨论、化归、类比、猜想以及由特殊到一般等数学思想方法。提高他们解决问题的能力。

(3)情感态度与价值观:通过利用向量证明正弦定理。了解向量的工具性。体会知识的内在联系,体会事物之间的相互联系与辩证统一。

(4)教学重点:正弦定理的形成和获得过程。

(5)教学难点:正弦定理的证明方法。

教学方法

采用探究式教学模式。在教师的启发引导下。以“正弦定理的发现过程”为基本探究内容。让学生的思维由问题开始,到得出猜想,探究猜想,推导定理,并逐步得到深化。借助多媒体和几何画板。激发学生学习的兴趣。设计符合学生知识水平和学习心理的教学。鼓励学生大胆猜想。积极探索。

学法分析

指导学生掌握“观察-猜想-证明-应用”这一思维方法。将自己所学知识应用于对任意三角形性质的探究。增强学生由特殊到一般的数学思维能力。形成实事求是的科学态度。

教学过程

1。展示图片。引出课题

展示生活中的三角形图片。回忆初中所学三角形中经常用到的结论。如“大边对大角。小边对小角”。是定性地研究三角形中的边角关系。我们能否更深刻地、从定量的角度研究三角形中的边角关系呢?从而引出课题。

[设计意图]从联系的观点,从新的角度看过去的问题。使学生对于过去的知识有了新的认识。同时使新知识建立在已有知识的坚实基础上。形成良好的知识结构。

2。观察特例。发现猜想

(1)探讨直角三角形中角与边的关系。得出直角三角形中各个边与它所对的角之间存在着某一确定的数量关系。提出猜想:对于任意一个三角形,关系式成立吗?

[设计意图]以直角三角形这个特例作为切入点。符合从特殊到一般思维的过程。

(2)对于猜想用几何画板进行验证。任意画出一个三角形。度量出三边的长度和三个角的度数。计算显示出一组的值,然后不断拖动三角形的一个顶点,改变三角形的形状。观察各组比值的变化。

[设计意图]通过几何画板的演示。学生能直观且主动地投入到数学发现的过程中来。另外。注意引导学生数学实验只能作为对数学猜想的检验。不能作为猜想的证明。

3。证明猜想。得出定理

用平面几何“作高法”对猜想进行证明,分锐角三角形、直角三角形、钝角三角形三大类分别证明。得出正弦定理的文字叙述和符号表达。

[设计意图]通过作辅助线,把斜三角形转化为直角三角形。把学生不熟悉的问题转化为熟悉的问题。引导学生体会利用已有知识解决新的知识的数学思想。让学生感受“观察-猜想-证明”的科学研究问题的思路。

4。探求其他证明方法

(1)向量法:向量融长度和角度于一体。借向量为载体证明正弦定理

(2)外接圆法:利用外接圆法不仅可以证明正弦定理。而且可以得出各个比值等于三角形外接圆的直径2R。

[设计意图]了解向量的工具性,体会知识间的内在联系。

5。课堂小结

(1)正弦定理的发现过程:由特殊到一般。观察-猜想-检验-证明。

(2)正弦定理的证明过程:①作高法:②向量法:③外接圆法。

[设计意图]明确本节课所学的知识和数学思想方法。

6。课后思考题

(1)你还能用其他方法证明正弦定理吗?

[设计意图]除了本节课介绍的三种证法。启发学生还可以考虑用其他方法。比如面积法等证明正弦定理。

(2)正弦定理可以解决哪类实际问题呢?请举例说明。

[设计意图]此问题既为正弦定理的应用。也为下节课做铺垫。

7。教学总结

本节课的设计使学生经历了“观察-猜想-检验-证明-应用”的思维历程。让学生学会研究数学问题的基本思想方法。从初中学习过的三角形的边角定性关系出发。对三角形的边角关系进行定量探索。从特殊的直角三角形人手。结合学生的已有知识经验。进行发散式猜想与探究。提出猜想。并通过几何画板进行检验其次。在证明猜想的教学环节。通过建立新旧知识的有机联系。力求引导学生寻求合理的证明思路与策略。在证明过程中,让学生体会分类讨论、数形结合等数学思想方法。并提高运用所学知识解决实际问题的能力。

教学特色

运用PPT的动态效果和几何画板的直观显示,激发学生学习的兴趣:设计符合学生知识水平和学习心理的教学。使学生掌握“观察-猜想-检验-证明-应用”的研究数学问题的基本思想方法:通过让学生经历正弦定理的发现过程。让学生体会类比、猜想以及由特殊到一般等数学思想方法:运用多种方法证明正弦定理。让学生掌握知识之间的内在联系,体会分类讨论、化归、数形结合等思想。提高解决问题的能力。

从上面的微课设计可以看出。一节好的微课应体现在:①微课的选题。这位教师选择的这个课题能够紧扣课本和教材,与教学实际相关,值得肯定。②微课的理解。筆者认为微课应该是指利用较短时间。讲解一个非常单一化的知识点、考点或概念或是处理某一具体问题的一种微型教学方式。它可以用于课堂的新知识教学的前奏和后延。是一种不受时间、空间限制的一种课堂组织形式。本节课就是本着正弦定理的前奏展开的。③微课的目的在于培养学生自主学习、自主探索的优良学习习惯,实现学生个性化学习。从而唤起学生内心的自信和自主学习的需求。从设计方案和事实的流程看。本节课的目的也达到了。正如德国教育家斯普朗格所说:“教育的最终目的不是传授已有的东西。而是要把人的创造力量诱导出来,将生命感、价值感唤醒。唤醒。是一种教育手段。父母和教师不要总是叮咛、检查、监督、审查他们。孩子们一旦得到更多的信任和期待,内在动力就会被激发出来,会更能干、聪明、有悟性。”比如有些数学概念的教学。完全可以设置成一个微课。数学概念是学生学习数学、接受新知识的基础。准确而又彻底地理解和掌握数学课堂学习中的概念是学生学好数学的必备条件。如何能让学生在彻底理解的基础上把概念记牢。重要的是要把概念翻译得通俗易懂,能够举一反三、融会贯通。从而理解概念的内涵和外延。这一点可以利用微课做到。把概念用通俗易懂的语言录制好视频。让学生可以随时随地地回顾概念。对学生掌握数学概念很有帮助。再比如。某些重要的定理。课本上也许是简单地处理一下。但是学生对这个定理的掌握可能就不清晰了。这种不清晰会影响到其他内容的学习。如果我们能通过微课的形式加以处理。效果就会不一样了。

综上所述。我们平常的教学,应针对学生掌握知识过程中的薄弱的地方。开展一些微课的尝试。使得微课教学和课堂教学相互补充。真正有益于学生的学习。

作者:瞿春燕

第2篇:四色定理的简单证明

虽然现在已经有不少人用不同方法证明出了四色定理,但我认为四色定理的证明还是有点复杂,所以给出以下证明。(注:图形与图形的位置关系可分为相离、包含、内向接、内向切、外向接、外向切,在此文中由于题意关系不妨重新分为以下关系:1 把包含、内向接、内向切,统一划分为包含关系。2 把外向接单独划分为相接关系。3把相离、外相切统一划分为相离关系。)

此证明过程中把图的组合形式按照其位置关系而抽离出了以下四种基本有效模式:

1 若要存在只需用一种颜色便能彼此区分开来的地图,则该图中所有图形必定满足彼此相离。如下图:

图(1)

分析:这是最简单的一种图形关系模式暂且称为模式a。

2 若要存在只需用两种颜色便能彼此区分开来的地图,则该图中的所有图形必定满足最多只存在两个图形的两两相交的图形。各种有效图形关系如下图:

图(2)

分析:两个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之

一。由于图(1)存在包含关系,被包含的图形是对外部无影响的,所以图(1)仍属于模式a。所以两个图形的两两相交只有图(2)的相交关系模式的图形有效的,我们暂且称之为模式b。

3 若要存在只需用三种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在三个图形的两两相交图形。各种有效图形关系如下图:

图(3)

分析:三个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之

一。由于图(2)属于存在包含关系,同理整体回归于模式a。所以三个图形的两两相交只有图(1)的相接关系模式的图形是有效图形模式,我们暂且称之为模式c。

4 若要存在只需用四种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在四个图形的两两相交图形。各种有效图形关系如下图:

图(4)

分析:四个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系。由于图(2)属于存在包含关系,同理可得出整体也就回归于图形模式a。同样我们暂且称图(1)的图形关系模式为模式d。观察易得,已经拥有四个有效图形的模式d有一个图形是被包围的,所以在此基础上在球面或是平面上是不可能诞生有五个图形两两相交而组成的模式e了,由于以上的四种基本的有效模式均可由四种以内的颜色彼此分开。所以在平面或球面上四种颜色已足以把它们彼此区分。另外至于在环形体或丁形体上,则可用此方法得出五色定理和六色定理。

第3篇:四色定理

四色定理指出每个可以画出来的无飞地地图都可以至多用4种颜色来上色,而且没有两个相接的区域会是相同的颜色。被称为相接的两个区域是指他们共有一段边界,而不是 一个点。

这一定理最初是由Francis Guthrie在1853年提出的猜想。很明 显,3种颜色不会满足条件,而且也不难证明5种颜色满足条件且绰绰有余。但是,直到1977年四色猜想才最终由Kenneth Appel 和Wolfgang Haken证明。他们得到了J. Koch在算法工作上的支持。

证明方法将地图上的无限种可能情况减少为1,936种状态(稍后减少为1,476种),这些状态由计算机一个挨一个的进行检查。这一工作由不同的程 序和计算机独立的进行了复检。在1996年,Neil Robertson、Daniel Sanders、Paul Seymour和Robin Thomas使用了一种类似的证明方法,检查了633种特殊的 情况。这一新证明也使用了计算机,如果由人工来检查的话是不切实际的。

四色定理是第一个主要由计算机证明的理论,这一证明并不被所有的数学家接受,因为它不能由人工直接验证。最终,人们必须对计算机编译的正确性以及运 行这一程序的硬件设备充分信任。参见实验数学。

缺乏数学应有的规范成为了另一个方面;以至于有人这样评论“一个好的数学证明应当像一首诗——而这纯粹是一本电话簿!”

虽然四色定理证明了任何地图可以只用四个颜色著色,但是这个结论对于现实上的应用却相当有限。现实中的地图常会出现飞地,即两个不连通的区域属于同一个国家的情况(例如美国的阿拉斯加州),而制作地图时我们仍会要求这两个区域被涂上同样的颜色,在这种情况下,四个颜色将会是不够用的。

第4篇:正弦定理与余弦定理的证明

在△ABC中,角A、B、C所对的边分别为a、b、c,则有

a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆的半径)

正弦定理(Sine theorem)

(1)已知三角形的两角与一边,解三角形

(2)已知三角形的两边和其中一边所对的角,解三角形

(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。

证明

步骤1

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点HCH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤2.

证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.

连接DA.

因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠ACB.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

余弦定理的证明:

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

cosB=(c^2+a^2-b^2)/2ac

第5篇:

上一篇:合肥装饰公司选择技巧下一篇:计划生育证明在哪里开