热力学第二定律教案

2022-06-16 版权声明 我要投稿

作为一位兢兢业业的人民教师,时常需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。如何把教案做到重点突出呢?下面是小编整理的《热力学第二定律教案》,欢迎大家借鉴与参考,希望对大家有所帮助!

第1篇:热力学第二定律教案

从人文视角构想热力学第二定律的教学

在新课标高中物理教材中,无论是侧理类选修3-3,还是侧文类的选修1-2,都有热力学第二定律的内容出现,而且教材明确提出了熵的概念. 热力学第二定律即使在大学普通物理中也是一块艰涩的内容,对于理解能力和数学基础尚有一定差距的高中学生来说,的确是一个难点. 编者的意图何在?作为教师该如何找准教学的定位?

诚如天体和大气物理学家埃姆顿所云:“在自然过程的庞大工厂里,熵原理起着经理的作用,因为它规定着整个企业的运营方式和方法,而能仅仅充当簿记,平衡贷方和借方. ”熵这个概念的重要性不亚于能,它不仅应用于对社会发展起到关键作用的热科学领域,还广泛地应用于物质结构、低温物理、化学动力学、生命科学和宇宙学,而且已经延伸到诸如经济、社会、信息技术等领域. 从新课程应充分体现时代性的理念来看,在高中物理中安排这块内容的确顺理成章. 再从当前人类面临的社会问题看,几乎可以这样说,除了文化冲突和民族纷争以外,人口、能源和环境是一切社会问题发生之源. 为了子孙后代的生存发展必须节约能源的观点,保护环境就是保护人类自身的意识,是本块内容应该体现的人文内涵. 由于上述诸多因素,在本块内容的教学设计中,应体现定性优于定量,人文性大于科学性的原则. 如何落实新课程所要求的三维教学目标,充分体现本块内容的人文性呢?笔者认为可以从以下几个方面入手.

一、运用人文手段,理解、诠释热力学第二定律

实验手段、数学手段、逻辑手段等是属于科学的手段,运用比喻、典故、故事、成语俚语等可以说是人文手段. 在本块内容教学中,教师要尽量避开或者降低定量和逻辑推理要求,而以学生易于接受且能引起共鸣的一些人文方法,以加深对热力学第二定律的理解.

克劳修斯指出:热量不能自发地从低温物体传向高温物体,说明热传递是有方向的. 如果我们在学生耳熟能详的成语“水往低处流,人往高处走”后面添加一句“热往低温传”,体现自然过程发生是有方向的,学生就觉得很好理解.

当然,热量从高温物体向低温物体散发,也存在一个流畅性的问题. 比如一个人热得出汗了,要向周围空间散发热量,我们就希望周围的空气流动,以加快散发的速度. 我们地球持续地接收着太阳的辐射热量,为了使地球的环境温度稳定在一个恰当的值,就必须向周围空间以红外线的形式散发热量. 以前这种接收和散发长时间维持在适当的比例上,使得地球上的生灵得以生存和发展,但近几十年来由于二氧化碳的过量排放,它像一件保暖内衣包裹着地球,使红外线的外散辐射被抑制,结果导致温室效应,地球变暖,出现了严重的环境问题. 如果不有效地控制二氧化碳的排放,物种灭绝的现象将愈演愈烈,生态环境越来越恶化. 以保暖内衣比喻温室效应,显得形象生动.

1986年8月在日本东京举行的国际物理教学研究会上(ICPE),一位代表对“微观过程是可逆的,宏观过程是不可逆的”的物理现象作了一个比喻,好比两条狗,一条黑狗上生满了跳蚤 ,另一条黄狗是干净的,两条狗站在一起,跳蚤可以从黑狗身上跳到黄狗身上,当然也可以再从黄狗身上跳回黑狗身上,跳蚤跳来跳去的过程相当于微观过程是可逆的,但最后无论是黄狗还是黑狗都不可能是干净的,即从宏观上看,跳蚤从黄狗身上完全跳回黑狗身上,使黄狗重新成为干净这一宏观的逆过程是不可能发生的,这一比喻形象生动,受到与会代表赞赏,“狗蚤回跳”,也成为了热力学第二定律教学案例的一个典故.

二、体现人文价值,培养学生节能环保方面的正确价值观和社会责任感

如果说科学的第一要义是求真,那么人文的第一要义是求善. 通过热力学第二定律的学习,使学生理性地认识到能量是一切物质运动的源泉,是一切生命活动的基础. 能量在数量上虽然守恒,但其转移和转化是具有方向性的,人们的一切生产、生命活动中,都在把机械能、电能、核能、生物能……概而言之一句话,把千古积累的和正在接收到的太阳能,最终转化为内能,把有序度大的能量变成无序度大的能量,即能量耗散. 随着能量的耗散,能量从高品质转化为低品质,虽然能量不会减少但能源却越来越少. 化石能源不但资源有限,而且对环境造成很大的破坏.

学生只有通过对于能量耗散和环境破坏原因的深刻理解,才能逐渐自觉树立节能环保的责任意识,并转化成自觉行动和良好习惯. 你今天开车烧掉了10升汽油,地球的资源就减少了10升. 全世界的人合起来,就是一个庞大的数字. 反过来同样是一个巨大的数字,若每一个人日常生活中节约一点,那么对全球能源应用的意义同样重大. 从另一个角度看,还应该开发新能源,如太阳能,你使用太阳能热水器洗一个澡,单纯地从成本核算看,可能并不比电热器省,或者说也完全可以负担得起,但从节能环保的角度看,却完全是两码事. 因此从人文教育的角度审视,通过本块内容的学习,应该使学生们从小就被要求养成的一些良好习惯,诸如随手关灯的习惯,尽量少开空调的习惯,节约一张纸的习惯等等,提升到理性的高度.

三、挖掘人文意蕴,在学习热力学第二定律过程中领略物理美

在奥地利物理学家玻耳兹曼的墓碑上,镌刻着这样的碑文:

S=KlnW

这正是定量表示熵S和微观态数W之间关系的玻耳兹曼公式,其中K就是著名的玻耳兹曼常数. 这个公式闪烁着物理大师的创造和发现的智慧之美,而这块雕刻着公式的墓碑更闪烁着后人尊重科学尊重大师的人文之美.

我们学习过的物理定律和定理,一般都有法定的严密的逻辑表达形式,可是学生会发现,教材中热力学第二定律有好几种表达. 德国物理学家克劳修斯在1850年指出:热量不可以自发地从低温物体传到高温物体;英国物理学家开尔文于1851年在分析了热机及其他涉及做功的热学过程后指出:不可能从单一热源吸热,使之完全变成功,而不产生其他影响;从微观的角度也可以这样表达:一切自然过程总是沿着分子运动无序性增大的方向进行;还有一种比较专业的表达:在任何自然过程中,一个孤立系统的总熵不会减少,所以把热力学第二定律又叫做熵增加原理;在气体对真空膨胀的过程中又表述为“气体向真空的膨胀是不可逆的”:甚至在化学里被表述为“自发的化学过程总是朝着释放热量或无序程度增加的方向进行”等等.

物理学的理论体系呈现高度的和谐美、统一美和简洁美. 上述几种表述和谐统一互通,最终以熵增原理简洁而完美地表达,正是物理美的体现. 正如宋代诗人苏轼描绘庐山诗中所云:“横看成岭侧成峰,远近高低各不同. ”热力学第二定律如同一座雄伟秀美的山川,多角度的表述,正是其丰富而深刻的内涵和物理学家们为认识客观世界而付出的创造性劳动的体现.

四、拓展人文视角,注重与相关学科的交叉综合

在生物学中,生物进化过程意味着从低级向高级,从无序到有序. 而热力学第二定律指出自然过程从有序到无序. 二者是否矛盾?

其实,根据耗散结构理论,有机体作为一个开放的耗散结构,它的产生既要靠外界不断提供物质和能量,还必须要向这个开放系统提供“负熵流”,也就是输入系统的熵必须小于输出的熵,系统有净熵输出. 对于动物来说,生命攸关的低熵物质有两类:低熵高能的食物(如碳水化合物)和低熵低能的净液态水,排出的高熵物质如二氧化碳、水汽、尿、汗和其他排泄物. 如图1,正是有机体作为开放系统自身熵的不断减少,导致生物体从无序向有序的进化. 热力学第二定律和生物进化论,同属19世纪科学上最伟大的发现,得到很好的统一.

在高中化学中,其教学进度先于物理就出现了“焓变”和“熵变”的概念. 用焓变的正负、大小来描述化学反应中物质的能量状态改变情况. 如果能量状态降低,则焓变就能够自发地进行化学反应,其焓变值越大,就标志释放的热量越多,反应进行得越彻底;用熵变的正负、大小来描述化学反应前后物质的无序程度,如果无序程度增大则熵变,就能够自发地进行化学反应,熵变越大,越有利于反应自发进行. 在2009年浙江省高考自选模块的调测卷中,有一个其中选项为“一杯30℃的水放在空气中,温度慢慢降到10℃,这杯水的熵增加”的选择题,许多物理老师想当然地认为自发的热传递过程熵必定增加,这完全符合热力学定律,错误地选取了这个选项,而学生却多能从化学的角度出发,认为这杯水的温度降低,分子热运动的有序度变好,所以它的熵是减少的. 这里从物理的角度讲,是没有注意到“孤立系统”的前提,应该是这杯水的熵减少,环境空气的熵增加,这杯水和环境空气组成的孤立系统的熵增加.

在高中地理教学中非常强调能源问题和环境问题,在政治经济学中,也多次讨论能源和环境. 如其各自为政,孤军作战,不如相互联系,相互穿插,综合性地解决问题,这样可以大大提高教学的有效性,有利于学生人文素质和综合能力的提高.

作者:杨科军

第2篇:高二物理热力学第二定律教案

【教材分析】

本节介绍热力学第二定律,该定律与热力学第一定律是构成热力学知识的理论基础,热力学第一定律对自然过程没有任何限制,只指 出在任何热力学过程中能量不会有任何增加或损失,热力学第二定律解决哪些过程可以发生,教学时要注意讲清二者的关系。

对于热力学第二定律,教材先从学生比较熟悉的热传导过程的方向性入手,研究与分子热运动有关的过程的方向性问题,以期引起学生思维的深化,也作为学习热力学第二定律的基础。

教材介绍了热力学第二定律的两种表述:一种是按照热传导过程的方向性表示,另一种是按照机械能与内能转化过程的方向性表述,这两种表述都表明:自然界中一切与热现象有关的实际宏观过程都是不可逆的,教学时,要注意说明这两种不同表述的内在联系,讲清这两种表述的物理实质。

第二类永动机是指设想中的效率达到100%的热机,由于在自然界中把热转化为功时,不可避免地把一部分热传递给低温的环境,所以第二类永动机不可能制成。

【设计思想】 1. 从实际问题导入,从简单的实验开始,尽可能引导学生联系自己熟悉的,身边的生活现象的实例,在教学内容上使物理贴近学生生活、联系社会实际,体现《标准》倡导的“从生活走向物理,从物理走向社会”的理念。

2. 积极创设情景,开展师生、生生间的对话交流,开展小组合作讨论学习,使教学过程能够确立学生在教学活动中的中心地位,让学生从自己的学习体验和感悟中获得知识,向学生学习活动要效益,体现以学生为中心的原则。

3.热力学第二定律不象以往的实验定律可以推导和验证,是在大量实验事实的基础上总结出来,内容的表述比较抽象和难以理解,教师要引导学生对关键词的作深刻地理解,要引导学生多运用实例来辅助理解。

4.夯实知识基础,灵活运用技能是三维教学目标中第一要素,本节课除了使用教材中“问题与练习”外,还设计了四道练习题,在教学过程中结合学生的学习状况灵活使用,帮助学生更好理解定律。《课后思考题》有助于学生更深刻地理解定律。

【教学目标】

一、 知识与技能

1.了解热传递过程的方向性。

2.知道热力学第二定律的两种不同的表述,以及这两种表述的物理实质。 3.知道什么是第二类永动机,为什么第二类永动机不可能制成。

二、 过程与方法

1.热力学第二定律的表述方式与其他物理定律的表述方式有一个显著不同,它是用否定语句表述的。

2.热力学第二定律的表述不只一种,对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述,学习本节时注意这一方法。

三、 1. 情感、态度与价值观

通过学习热力学第二定律,可以使学生明白热机的效率不会达到100%,我们只能想办法尽量提高热机的效率,但不能渴求达到100%。

2. 生。

【重点、难点分析】:

重点:热力学第二定律两种常见的表述。

难点:1.热力学第二定律的开尔文表述。

2.自然界中进行的涉及热现象的宏观过程都具有方向性。 【课时安排】: 1课时 【课前准备】:

教师:多媒体课件,一个电冰箱模型,一盆凉水,准备一个酒精灯和一个铁块,铁钳。 学生:课前预习课文,在家观察自家的电冰箱。 【教学设计】:

引入新课:

【问题】我们在初中学过,当物体温度升高时,就要吸收热量;当物体温度降低时,就要放出热量。而自然界发生的一切过程中的能量都是守恒的,但不违背能量守恒定律的宏观过程并都能发

且热量公式Q = cm△t,这里有一个有趣的问题:地球上有大量的海水,它的总质量约为1.4×10t , 如果这些海水的温度降低0.1C,将要放出多少焦耳的热量?海水的比热容为C=4.2×10J/(kg·℃)。下面请大家计算一下。

学生计算:Q = 4.2×10×1.4×10×10×0.1 J = 5.8×10J 这相当于1800万个功率为100万千瓦的核电站一年的发电量。为什么人们不去研究这“新能源”呢?原来,这样做是不可能的,这涉及物理学的一个基本定律,这就是本节要讨论的热力学第二定律。

【设计意图】:从实际问题入手,唤起学生对学习的兴趣。从学生已有的热学知识出发引入新的知识,使过渡自然,减少学生对新知识的唐突性。

【板书】 第四节 热力学第二定律

【板书】

一、热传递的方向性

教师实验,点燃酒精灯,用钳夹住事先准备好的铁块,在火焰上灼烧一段时间后,问学生现在如果用手摸会出现什么现象?下面把灼热的铁块放入冷水中,过一段时间,拿出铁块现在你们敢用手摸吗?通过这个实验说明什么问题?

学生思考,教师给予启发

学生答:热量从温度高的物体自发地传给温度低的物体

再让学生列举一些这样的例子,例如:雪花落在手上就融化,挨着火炉就温暖等等。 利用课本中“思考与讨论”开展小组讨论并进行对话交流。

教师反问学生:有没有可能发生这样地现象,热量自发地从低温物体传给高温物体,使低温物体的温度越来越低,高温物体的温度越来越高。这里所说的“自发地”,指的是没有任何外界的影响或帮助。学生思考讨论一会后,有的同学可能产生疑问:电冰箱内部的温度比外部低,为什么致冷系统还能够不断地把冰箱内的热量传给外界的空气?

事前我们让大家观察自家的电冰箱,请同学做简要的回答,教师进行点拨。然后,展示电冰箱模型给学生简要讲解(多媒体课件)。

318

323o

3

18

这是因为电冰箱消耗了电能,对致冷系统做了功。一旦切断电源,电冰箱就不能把其内部的热量传给外界的空气了。相反,外界的热量会自发地传给电冰箱,使其温度逐渐升高。

【学生总结】热传导的方向性:两个温度不同的物体相互接触时,热量会自发地从高温物体传给低温物体。要实现相反过程,必须借助外界的帮助,因而产生其他影响或引起其他变化。

【板书】结论:热力学第二定律的一种表述:热量不能自发地从低温物体传到高温物体。这是热力学第二定律的克劳修斯表述。

老师讲解对定律的理解:这里阐述的是热传递的方向性.在这个表述中,“自发”二字指的是:当两个物体接触时,不需要任何第三者的介入、不会对任何第三者产生任何影响,热量就能从一个物体传向另一个物体.当两个温度不同的物体接触时,这个“自发”的方向是从高温物体指向低温物体的。

教师指出:热力学第二定律的克劳修斯表述实质上就是:热传递过程是不可逆的。 【设计意图】:

1. 联系学生熟悉的,身边的生活现象,使知识的学习贴近学生的生活,使学生感受物理知识就在身边,存在于生活,强化学生的实践意识,使情感成为学习动力。

2. 通过师生的对话交流,在互动中实现思维的碰撞,突出学生的学习过程,体现以学生为中心的原则,从自己的学习体验和感悟中获得知识,向学生学习活动要效益。

3. 热力学第二定律的克劳修斯表述中的“自发”是定律表述的关键词,教师要引导学生作深刻理解。 【板书】

二、热力学第二定律的另一种表述(第二类永动机)

前面我们学习了第一类永动机,不能制成的原因是什么?(违背了能量守恒),什么是第二类永动机呢? 分组合作学习,思考讨论下列问题: 1.热机是一种把什么能转化成什么能的装置? 2.热机的效率能否达到100%? 3.第二类永动机模型 4.机械能和内能转化的方向性

然后由各小组代表回答,教师进行思路点拨 1.热机是一种把内能转化成机械能的装置 2.热机的效率不能达到100% 原因分析:

以内燃机为例,气缸中的气体得到燃烧时产生的热量为Q1,推动活塞做工W,然后排出废气,同时把热量Q2散发到大气中,

由能量守恒定律可知:Q1 = W + Q2

我们把热机做的功W和它从热源吸收的热量Q1的比值叫做热机的效率,用η表示 η=W / Q1

实际上热机不能把得到的全部内能转化为机械能,热机必须有热源和冷凝器,热机工作时,总要向冷凝器散热,不可避免的要由工作物质带走一部分热量Q2,所以有:Q1>W 因此,热机的效率不可能达到100%,汽车上的汽油机械效率只有20%~30%,蒸汽轮机的效率比较高,也只能达到60%,即使是理想热机,没有摩擦,也没有漏气等能量损失,它也不可能把吸收的热量百分之百的转化成机械能,总要有一部分散发到冷凝器中。

师生总结:热力学第二定律的另一种表述: 【板书】不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响。这是热力学第二定律的开尔文表述 (也称第二类永动机)。

教师应该强调定律内容“而不产生其他影响”这个条件,举出“绝热膨胀”的例子加以说明。 第二类永动机并不违反能量守恒定律,人们为了制造出第二类永动机作出了各种努力,但同制造第一类永动机一样,都失败了。

为什么第二类永动机不可能制成呢?

因为机械能和内能的转化过程具有方向性。机械能全部转化成内能,内能却不能全部转化为机械能,同时不引起其他变化。

再举实例,说明有些物理过程具有方向性。

〈学生思考回答,教师引导点拨〉 1.气体的扩散现象。

2.书上连通器的小实验(气体向其中膨胀)。 【板书】热力学第二定律的两种表述

表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化

(按照热传递的方向性来表述的)

表述二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。也可表述为第二类永动机是不可能制成的。(机械能与内能转化具有方向性)

这两种表述是等价的,可以从一种表述导出另一种表述,所以他们都称为热力学第二定律。

热力学第二定律揭示了有大量分子参与的宏观过程的方向性。(自然界中进行的涉及热现象的宏观过程都具有方向性)。

因此,对任何一类宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述。如图中,盒子中间有一个挡板,左室为真空,右室有气体。撤去挡板后右室的气体自发地向左室扩散,而相反的过程不可能自发地进行。因此,热力学第二定律也可以表述为:气体向真空的自由彭胀是不可逆的。

【注意】 :不管如何表述,热力学第二定律的实质在于揭示了:一切与热现象有关的实际宏观过程都是不可逆的。

【本节小结】:回过头分析引入的例子,学生应用热力学第二定律分析,老师点拨总结。进一步说明第二类永动机不能制成的,违背热力学第二定律。

【设计意图】:

1.热力学第二定律的开尔文表述比较抽象和难以理解,需要学生通过合作学习,在讨论和交流中认识规律,再通过教师的点拨指导才能更好的理解和掌握规律。

2. 热力学第二定律是在大量实验事实的基础上总结出来的,教学过程要引导学生多运用实例来辅助理解。

3. 分析引入的例子,学生应用热力学第二定律分析,师生共同小结本节内容,首尾呼应,学以致用。

第3篇:高二物理教案分子热运动 能量守恒-热力学第二定律

热力学第二定律

课时:1 课时

教学要求:

1、以热传导和机械能与内能的相互转化为例,让学生知道宏观热学过程是有方向性的;

2、让学生知道第二类永动机是不可能制成的;

3、让学生初步了解热力学第二定律的两种内容 表述,并能用之去解释一些简单的现象;

教学过程:

一、引入新课:

有趣的问题:地球上有大量海水,它的总质量约为1.4×1018 t,只要这些海水的温度0.1℃,就能放出5.8×1023 J的热量,这相当于1800万个核电站一年的发电量。为什么人们不去研究这种“新能源”呢?原来,这样做是不可能的。这涉及物理学的一个基本定律。

二、新课讲授:

(一)热传导的方向性:

大家都有这样的经验:两个温度不同的物体相互接触时,热量会自发地从高温物体传给低温物体,使高温物体的温度降低,低温物体的温度升高。从未有过这样的现象:热量会自发地从低温物体传给高温物体,使低温物体的温度越来越低,高温物体的温度越来越高。(这里所说的“自发地”,指的是没有任何外界的影响或者帮助)也许会产生一个疑问:电冰箱内部的温度比外部低,为什么致冷系统还能不断地把箱内的热量传给外界的空气?这是因为电冰箱消耗了电能,对致冷系统做了功。一旦切断电源,电冰箱就不能把箱内的热量传给外界的空气了。相反,外界的热量会自发地传给电冰箱,使箱内的温度逐渐升高。

在这里,我们看到,热传导的过程是有方向性的,这个过程可以向一个方向自发地进行,但是向相反方向却不能自发地进行。要实现相反方向的过程,必须借助外界的帮助,因而产生其化影响或引起其化变化。

(二)第二类永动机:

一个在水平地面上运动的物体,由于克服磨擦力做功,最后要停下来。在这个过程中,物体的动能转化为内能,使物体和地面的温度升高。但是,人们决不会看到这样的现象:一个放在水平地面上的物体,温度降低,可以把内能自发地转化为动能,使这个物体运动起来!

有人可能提出一种设想:发明一种热机,它可以把物体和地面磨擦所生的热量都吸收过来,对物体做功,将内能全部转化为动能,使物体在地面上重新运动起来,而不引起其他变化。 这是一个非常诱人的设想。这个设想并不违反能量守恒定律,若真能制成这种热机,本节开始时提到的,单从海水中吸取热量来做功,就成为可能了,“能源问题”也就解决了。

热机是一种把内能转化为机械能的装置。以内燃机为例:气缸中的气体得到燃料燃烧时产生的热量Q1,推动活塞做功W,然后排出废气,同时把热量Q2。

我们把热机做的功W和它从热源吸收的热量Q1的比值叫做热机的效率,用表示,则有:

= W / Q1实际上,热机不能把它得到的全部内能转化为机械能。以汽车内燃机为例:只有当气缸中工作物质的温度比大气温度高时内燃机才能工作,所以Q2这部分热量是不可避免的。热机工作时,总要向冷凝器散热,总要由工作物质带走一部分热量Q2,所以总有Q1>W。因此,热机的效率不可能达到100%,汽车上的汽油机,效率只有20%∽30%,燃气轮机的效率比较高,也只能达到60%。即使是理想热机,没有磨擦,也没有漏气等能量损失,它也不可能把吸收的能量百分之百地转化成机械能,总要有一部分热量散发到冷凝器中。

第4篇:高二物理教案分子热运动 能量守恒-热力学第二定律2

热力学第二定律

教学目标

①、了解热力学第二定律的发展简史,

②、了解什么是第二类永动机,为什么第二类永动机不可以制成。 ③、了解热传导的方向性,

④、了解热力学第二定律的两种表述方法,以及这两种表述的物理实质, ⑤、了解什么是能量耗散 教学重点

热力学第二定律及所反映出的热现象的宏观过程的方向性。 教学难点

热力学第二定律中所描述的 "不发生其他变化" 教学方法

多媒体辅助教学,分析讨论讲解相结合 教学器材

多媒体演示系统、自制电脑教学软件 教学过程

一、引入新课

1、复习提问

①热力学第一定律的内容是什么? ②第一类永动机为什么没有制成? ③能量守恒定律是怎样表述的?

2、引入新课

教师说明:在能量守恒定律中,存在着能量的 "转移"和 "转化",具体到热力学第二定律,内能和内能之间存在着"转移"以及内能和机械能之间也存在着"转化"的过程,引入课题:热力学第二定律。

二、新课教学

(一)内能的转移

内能转移实质就是热传递。 举例:

1 冰箱中的冰激凌在停电时的融化过程,引导学生分析融化的原因。 (热量可以从高温物体传递给低温物体)

2 冰箱里的冰激凌在冰箱正常工作时并没有融化。

进一步引导学生思考热量只能从高温物体传递给低温物体这种说法是否妥当。如果不妥当应该怎样说。从而得出所谓的热量从高温物体向低温物体传递是一个自发的过程,热量从低温物体向高温物体转移需要其他的物理过程参与。以模拟动画说明内能转移过程的方向性)得出热力学第二定律克劳修斯表述:不可能使热量从低温物体传递到高温物体而不产生其他变化。

内能转移过程的方向性

说明: 不产生其他变化是指没有其他物理过程参与

(二)内能和机械能之间的转化

瓦特蒸汽机的发明说明人们开始了热机理论的研究,("热机"就是一种把内能转化为机械能的机械)

1824年,卡诺在《论火的动力》中指出 "凡是有温度差的地方就能够发生动力" 1834年,克拉珀龙把卡诺这一思想几何化为"卡诺循环" 热机从高温热源吸收热量Q,其中一部分对外做功W,另一部分被释放给低温热源,根据能量守恒定律

Q1 = Q2 + W η=W/ Q1 = (Q1- Q2) /Q1 =1 - Q2/ Q1

可以知道Q2 越少,η越高

于是人们就考虑能否让Q2不存在,这样就可以产生一个η=100%的热机,就可以产生另一种永动机,可以看到这种机械并不违反能量守恒定律,这一类永动机叫第二类永动机。 第二类永动机:能从单一热源吸收热量全部用来做功而不引起其他变化的机械。

如果这一类永动机能够制成,它就可以从外界诸如空气、海洋、土壤等单一热源中不断地吸取能量,而对外做功。众所周知在空气和海洋中内能是取之不尽的,这样的话飞机不用带油箱,轮船不用带燃料。人们为此做出了许多努力,做了大量的尝试,但是第二类永动机始终还是没能制成。伴随着一次次的失败,终于认识到第二类永动机是不可能制成的。 这个结论是开尔文首先提出来的。

开尔文表述:不可能从单一热源吸收热量并把它全部用来做功,而不产生其他变化。即:第二类永动机是不可能制成的。

说明热力学第二定律两种表述形式实质是一样的,只是侧重角度不同:

1、克劳修斯表述体现热传导的方向性

2、开尔文表述体现机械能和内能之间转化的方向性 能量耗散

引导学生阅读46页能量耗散的内容并归纳出自然界中的能量有的便于利用而有的不便于利用,内能作为能量发展的最终形式是没有办法把这些流散的内能重新收集起来加以利用。

举例:电能转化为光能再转化为内能:烤火时高温物体的内能变为低温物体的内能都是无法将散失的内能重新再利用能量耗散是从能量转化的角度反映出自然界中的宏观过程具有的方向性。说明能量耗散不是能量损失,只是可便于利用的能量减少了。 第四环节:强调"方向性"进行小结,使课堂难点、重点突出。

总结扩展:热力学第二定律提示了有大量分子参与的宏观过程的方向性,使得它成为独立于热力学第一定律的一个重要自然规律。

说明:不仅仅在物理上存在这种"方向性",在其他领域也都存在。比如:化学中的不可逆反应;生物中的进化过程的不可逆都说明了这一点。

第五环节:思考练习:以简答的形式来巩固"方向性"和对热力学第二定律内容的理解。

第5篇:10.5《热力学第二定律的微观解释》教案(新人教版选修3-3)

热力学第二定律的微观解释 教案

目标导航

1.了解有序和无序,宏观态和微观态的概念。 2.了解热力学第二定律的微观意义。

3.了解熵的概念,知道熵是反映系统无序程度的物理量。 4.知道随着条件的变化,熵是变化的。

诱思导学

1.有序和无序

有序:只要确定了某种规则,符合这个规则的就叫做有序。

无序:不符合某种确定规则的称为无序。

无序意味着各处都一样,平均、没有差别,有序则相反。 有序和无序是相对的。 2.宏观态和微观态

宏观态:符合某种规定、规则的状态,叫做热力学系统的宏观态。

微观态:在宏观状态下,符合另外的规定、规则的状态叫做这个宏观态的微观态。 系统的宏观态所对应的微观态的多少表现为宏观态无序程度的大小。如果一个“宏观态”对应的“微观态”比较多,就说这个“宏观态”是比较无序的,同时也决定了宏观过程的方向性——从有序到无序。

3.热力学第二定律的微观意义

一切自然过程总是沿着分子热运动的无序性增大的方向进行。 4.熵和系统内能一样都是一个状态函数,仅由系统的状态决定。从分子运动论的观点来看,熵是分子热运动无序(混乱)程度的定量量度。

一个系统的熵是随着系统状态的变化而变化的。在自然过程中,系统的熵是增加的。 在绝热过程或孤立系统中,熵是增加的,叫做熵增加原理。对于其它情况,系统的熵可能增加,也可能减小。

从微观的角度看,热力学第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着较为无序,所以自发的宏观过程总是向无序程度更大的方向发展。

典例探究

例1 一个物体在粗糙的平面上滑动,最后停止。系统的熵如何变化?

解析:因为物体由于受到摩擦力而停止运动,其动能变为系统的内能,增加了系统分子无规则运动的程度,使得无规则运动加强,也就是系统的无序程度增加了,所以系统的熵增加。

友情提示:本题考查的是对熵增加原理的理解和应用。

课后问题与练习点击:

1.解析:①全是甜的,对应的微观态1个,宏观态出现的概率是1/32;②全是咸的,对应的微观态1个,宏观态出现的概率是1/32;③1甜4咸,对应的微观态5个,宏观态出现的概率是5/32;④4甜1咸,对应的微观态5个,宏观态出现的概率是5/32;⑤2甜3咸,对应的微观态10个,宏观态出现的概率是10/32;⑥3甜2咸,对应的微观态10个,宏观态出现的概率是10/32; (3)概率

(4)无序性增大了

3.略

基础训练 1.一定质量的气体被压缩,从而放出热量,其熵怎样变化? 2.保持体积不变,将一个系统冷却,熵怎样变化?

多维链接

1.熵与熵增加原理

“熵”是什么?“熵”是德国物理学家克劳修斯在1850年创造的一个术语,他用熵来表示任何一种能量在空间分布的均匀程度。能量分布得越均匀,熵就越大。如果对于我们所考虑的那个系统来说,能量完全均匀地分布,那么这个系统的熵就达到最大值。简单的说,“熵”就是微观粒子的无序程度、能量差别的消除程度。

在克劳修斯看来,在一个封闭的系统中,运动总是从有序到无序发展的。比如,把一块冰糖放入水中,结果整杯水都甜了。这就是说,糖分子的运动扩展到了整杯水中,它们的运动变得更加无序了。对于一个封闭的系统,能量差也总是倾向于消除的。比如,有水位差的两个水库,如果把它们连接起来,那么,重力就会使一个水库的水面降低,而使另一个水库的水面升高,直到两个水库的水面均等,势能取平为止。

克劳修斯总结说,自然界中的一个普遍规律是:运动总是从有序到无序,能量的差异总是倾向变成均等,也即“熵将随着时间而增大”。 2.宇宙热寂说

克劳修斯把他的熵增加原理应用到无限的宇宙中去,得出了“宇宙热寂说”。

“宇宙热寂说”主要有以下几个结论:第一,宇宙的离散度不断增加。第二,所有的机械运动都转化为热运动。第三,热量停止传递。最后我们可以设想出这么一个宇宙的图景:宇宙的有效生命将停止。能量还保存着,但已失去一切活动的能力,它无力再使宇宙运动,正如一潭死水不能使水车转动起来一样,我们将处在一个死寂的、热的宇宙中。

但宇宙真会热寂吗?首先,热力学试验成果是以有限的、孤立封闭的系统为研究对象的。以有限的范围、有限的事件得出的规律能否推广到全宇宙呢?其次,自然界的规律是否同样适用于高级的生命运动呢?第三,黑洞理论指出,宇宙的离散度并非不断增加。宇宙中存在的黑洞在不断地吸引物质。所以说,克劳修斯的“宇宙热寂说”仅仅是一种形而上学的自然观,我们不必杞人忧天地担心宇宙会进入“热寂”。 3.大爆炸理论

大爆炸宇宙理论认为,宇宙的演化是从物质分布为均匀的状态演化到非均匀状态。宇宙膨胀是引力理论的一个结果,在宇宙范围内,引力是主导的,引力系统的热力学与无引力的热力学会导致十分不同的结论。比如,原来密度均匀的物质由于涨落可产生密度差,在引力占主导的条件下,高密度区域会吸引更多的物质而使密度变得更高,更多的物质会逃离低密度区而使密度变得更低。各种星体就是通过这种非均匀化过程聚集而成的。经典热力学的结论是不考虑引力,在静态空间下证明的,不适用于引力占主导地位的膨胀宇宙。

应该指出,在一个非孤立的、有能量输入的系统中,熵是完全可以减小的。比如地球就是这样一个系统,它源源不断地吸收太阳能,而最终进化出了一个和谐有序的生物世界。

第6篇:热力学第二定律教学设计

热力学第二定律

【教材分析】 本节介绍热力学第二定律,该定律与热力学第一定律是构成热力学知识的理论基础,热力学第一定律对自然过程没有任何限制,只指出在任何热力学过程中能量不会有任何增加或损失,热力学第二定律解决哪些过程可以发生,教学时要注意讲清二者的关系。

对于热力学第二定律,教材先从学生比较熟悉的热传导过程的方向性入手,研究与分子热运动有关的过程的方向性问题,以期引起学生思维的深化,也作为学习热力学第二定律的基础。

教材介绍了热力学第二定律的两种表述:一种是按照热传导过程的方向性表示,另一种是按照机械能与内能转化过程的方向性表述,这两种表述都表明:自然界中一切与热现象有关的实际宏观过程都是不可逆的,教学时,要注意说明这两种不同表述的内在联系,讲清这两种表述的物理实质。

第二类永动机是指设想中的效率达到100%的热机,由于在自然界中把热转化为功时,不可避免地把一部分热传递给低温的环境,所以第二类永动机不可能制成。 【设计思想】

1. 从实际问题导入,从简单的实验开始,尽可能引导学生联系自己熟悉的,身边的生活现象的实例,在教学内容上使物理贴近学生生活、联系社会实际,体现《标准》倡导的“从生活走向物理,从物理走向社会”的理念。

2. 积极创设情景,开展师生、生生间的对话交流,开展小组合作讨论学习,使教学过程能够确立学生在教学活动中的中心地位,让学生从自己的学习体验和感悟中获得知识,向学生学习活动要效益,体现以学生为中心的原则。 3.热力学第二定律不象以往的实验定律可以推导和验证,是在大量实验事实的基础上总结出来,内容的表述比较抽象和难以理解,教师要引导学生对关键词的作深刻地理解,要引导学生多运用实例来辅助理解。

4.夯实知识基础,灵活运用技能是三维教学目标中第一要素,本节课除了使用教材中“问题与练习”外,还设计了四道练习题,在教学过程中结合学生的学习状况灵活使用,帮助学生更好理解定律。《课后思考题》有助于学生更深刻地理解定律。 【教学目标】

一、 知识与技能

1.了解热传递过程的方向性。

2.知道热力学第二定律的两种不同的表述,以及这两种表述的物理实质。 3.知道什么是第二类永动机,为什么第二类永动机不可能制成。

二、 过程与方法

1.热力学第二定律的表述方式与其他物理定律的表述方式有一个显著不同,它是用否定语句表述的。

第7篇:六、热力学第一定律 能量守恒定律 教案示例

亿库教育网

http://

二、热力学第一定律

能量守恒定律

教学目的

1.理解、掌握物体跟外界做功和热传递的过程中W、Q、ΔU的物理意义. 2.会确定W、Q、ΔU的正负号. 3.理解热力学第一定律ΔU=W+Q. 4.会用ΔU=W+Q分析和计算问题. 5.理解、掌握能量守恒定律及重要性.

6.会用能量守恒的观点分析、解决有关问题,明确它的优越性. 7.知道第一类永动机不可能成功的原因. 教具

柴油机模型、电动机、灯泡、打气筒、多媒体. 教学过程 ●引入新课

我们在前面学习了改变内能的两种方法:做功和热传递,那么它们之间有什么数量关系呢?以前我们还学习过电能、化学能等各种形式的能,它们在转化过程中遵守什么样的规律呢?今天我们就来研究这些问题.

【板书】

一、做功W、热传递Q、内能变化ΔU的物理意义

1.做功:做功使物体内能发生变化,本质是能量的转化,是一种形式的能向另一种形式的能转化,功是能量转化的量度.

2.热传递:是能量的转移,内能由一个物体传递给另一个物体,传递的能量用热量Q表示.

3.内能的改变:是物体内所有分子动能和势能之和发生了变化,宏观表现在温度变化和体积变化. 【板书】

二、W、Q、ΔU正负号确定

1.W,外界对物体做功,W取正;物体对外界做功,W取负. 2.Q,物体吸热,Q取正;物体放热,Q取负.

3.ΔU,物体内能增加,ΔU取正;物体内能减少,ΔU取负. 【板书】

三、W、Q、ΔU三者之间关系

在一般情况下,如果物体跟外界同时发生做功和热传递的过程,它们遵守下列关系: ΔU=W+Q 这就是势力学第一定律,它表示了功、势量跟内能改变之间的定量关系.

例:一定量的气体从外界吸收了2.6×105J的热量,内能增加了4.2×105J.是气体对外界做了功,还是外界对气体做了功?做了多少焦耳的功?

启发学生讨论:1.引起物体内能变化的物理过程有哪两种?2.物体内能增加量大于物体从外界吸收的热量是什么原因?3.怎样找W、Q、ΔU的正负值.

引起物体内能变化的物理过程有两种,做功和热传递;物体内能增加量大于物体从外界吸收的热量,是由于还有做功,一定是外界对气体做了功.W=?,Q=2.6×105J,ΔU=4.2×105J,根据热力学第一定律ΔU=W+Q,代入4.2×105=2.6×105+W ∴W=(4.2-2.6)×105=1.6×105(J) W为正值,说明是外界对气体做了1.6×105J的功.

观看柴油机模型,用热力学第一定律解释柴油机正常工作时压燃的原理.

活塞压缩气体,活塞对气体做功,由于时间很短,散热可忽略,机械能转化为气体内能,温度升高,达到柴油燃点,可“点燃”柴油.

做功和热传递能使物体内能改变,能量在转化或转移过程中守恒.不仅机械能,其它形式的能也可以与内能相互转化,如电流通过灯泡钨丝变热发光,电能转化为内能和光能(出示电灯泡).燃料燃烧生热,化学能转化成内能,实验证明:在这些转化过程中,能量都是守恒的.

亿库教育网

http://

亿库教育网

http:// 【板书】

四、能量守恒定律 同学们看课文

再看一段录像:风力发电、电动机带动水泵抽水,汽车在公路上行驶,水电站、植物生长等,同时利用投影仪打出讨论题目:

1.能量守恒定律的内容? 2.各种机器的作用是什么?

3.风力发电是什么能转化成什么能?

4.化学上电解食盐的过程,是什么能转化成什么能? 5.为什么说:能量守恒定律是伟大的运动基本规律? 6.第一类永动机为什么不能成功? 7.举出一些生活中能量守恒的实例. 讨论总结: 1.见课本.

2.各种机械都是能量转化器. 3.是机械能转化为电能. 4.是电能转化成化学能.

5.能够把各个领域联系起来,具有共同语言. 6.因为它违背了能量守恒定律.

7.举不胜举.能量守恒是自然界最普遍的规律之一. 能量守恒,就是能量既不会多,也不会少,总量不变. ●巩固练习

1.某一家庭用高压锅煮饭,由于皮垫用久了,当水煮沸时跑气了,大量的热气喷到了距高压锅2米以外的小张手上,但并没有烫伤,为什么?

2.一定质量的气体,从外界吸收了2.6×105J的热量,内能只增加了1.6×105J,做功情况如何? 3.进入冬季,教室与教研室采暖设计一样,但教室温度比教研室高,为什么? 参考题

1.炮兵训练打靶时,炮弹在炮膛中加速飞出炮口的过程中,炮膛中的火药气体温度是变化很大还是很小?说明理由.

2.一瀑布,落差30m,假如在下落过程中机械能减少量全部转化成水的内能,水的温度升高多少?[水的比热容为4.2×103J/(kg℃)] 3.说明下列现象中能量是怎样转化的?[

] A.水电站发电时,水轮机被水流冲击转动,带动发电机发电.

B.利用地热发电. C.化学上的电镀过程.

D.植物生长过程. 说明

1.热力学第一定律ΔU=W+Q中各字母正负值确定是个难点,难就难在物理意义不清楚.

2.各种能量在一定条件下可以相互转化,转化过程中总能量守恒.这是一个意识问题,或者说是悟性,从内心深处感觉到总能量不变.这是很重要的物理思想.

3.以前我们学习的机械能守恒定律,动能定理等,还有刚学的热力学第一定律,都可以统一在能量守恒定律之中.比如说,汽车刹车直到停下的过程中,动能减少,内能增加.或者说,汽车克服摩擦力所做的功等于增加的汽车动能.

三理想气体状态方程

一、理想气体状态方程

亿库教育网

http://

亿库教育网

http:// 1.理想气体

提问:什么气体可以看做是理想气体? 学生活动

能严格遵守气体实验定律的气体.

压强不太大、温度不太低(常温、常压)的实际气体. 2.一定质量的某种理想气体的状态方程

(1)推证理想气体的状态方程的理论依据是什么? 气体实验定律.

补充:气体状态参量间的变化与过程无关. (2)推证过程:(要求学生在课下完成) (3)结论:

此式反映的是n个状态间过程的联系. (4)推论:

对一定质量的理想气体,设密度为ρ,有V=m/ρ,则

[例1]教室的容积是100m3,在温度是7℃,大气压强为1.0×105Pa时,室内空气的质量是130kg,当温度升高到27℃时大气压强为1.2×105Pa时,教室内空气质量是多少?

分析:

(1)研究对象是教室内的气体吗? (2)气体的初末态如何确定? 学生回答问题: (1)教室内的气体不能作为研究对象,因为教室内气体的质量发生了变化,有可能是外面的气体跑进教室,也有可能是教室的气体跑到外面.所以以原来教室内的130kg的气体为研究对象,才能根据理想气体的状态方程求解.

(2)初态:p1=1.0×105pa,V1=100m3,T1=273+7=280K 末态:p2=1.2×105Pa,V2=?,T2=300K根据理想气体状态方程:

二、热力学第一定律在理想气体等值变化过程中的应用 1.理想气体的内能

理想气体的分子间作用力为零,分子势能为零,所以理想气体的内能等于分子动能.那么决定一定质量的某种理想气体的内能的宏观标志是什么?

亿库教育网

http://

亿库教育网

http:// 温度T 2.几个等值变化过程 (1)绝热过程.

绝热一般指封闭气体的材料绝热或过程完成得迅速,此过程的特点是热量Q=0,那么同学们可以讨论当一个绝热气缸内的气体向外膨胀的过程中,气体的内能如何变化?气体的温度如何变化?

当一个绝热气缸内的气体向外膨胀的过程中,气体的体积变大,气体对外做功,又因为是绝热过程,气体既不吸热也不向外界放热,根据热力学第一定律,其内能减小,气体的温度降低.

(2)等温过程.

等温过程中气体的温度保持不变,所以其内能不变.那么当一定质量的理想气体的压强增大,系统是吸热还是放热?

因为是等温过程,所以系统的内能不变;根据玻-马定律,当气体压强增大时,气体的体积变小,外界对气体做功;根据热力学第一定律,系统向外界放热.

(3)等容过程.

等容过程的特点是什么?那么当一定质量的理想气体的压强增大,系统是吸热还是放热?

体积不变,所以做功W=0;根据查理定律,气体的压强增大,则温度升高,内能变大;根据热力学第一定律,系统从外界吸热.

(4)等压过程.

等压过程的特点是什么?那么当一定质量的理想气体的体积增大,系统是吸热还是放热?

第四节

空气的湿度

一、引入 [放录像]

地上的水、江河湖海里的水,以及动植物的表皮以及动物的呼吸也在不断地散发出水蒸汽,使得我们周围的空气中含有水蒸汽.

[教师]一定体积的空气中含的水蒸气越多,空气就越潮湿,含的水蒸气越少,空气就越干燥,本节课我们就来学习空气的湿度.

二、新课教学

(一)空气的湿度 [投影]阅读思考题

1.什么叫空气的绝对湿度?为什么空气的湿度不用单位体积的空气中所含水蒸气的质量来表示? 2.水蒸发的快慢,动物感觉到的干燥和湿润,与什么有关?有什么关系? 3.什么叫相对湿度?

[学生活动]阅读课文有关内容并解答阅读思考题 [师生总结]

1.空气中所含水蒸气的压强叫做空气的绝对湿度.

2.由于直接测量空气中水蒸气的密度比较困难,所以不用空气中所含水蒸气的密度来表示空气的绝对湿度.

3.水蒸发的快慢,动物感觉到的干燥或湿润,不是完全由空气绝对湿度的大小决定的,而是跟空气中的水蒸气离饱和状态的远近有关系.

在空气的绝对湿度一定的情况下,气温高时水蒸气离饱和状态远,水蒸发的快,气温低时水蒸气离饱和状态近,水蒸发的慢.

当人体中的水蒸发的快时,我们就感到空气比较干燥,反之,我们就感到空气很潮湿. 4.某温度时空气的绝对湿度跟同一温度下水的饱和气压的百分比,叫做此温度下空气的相对湿度. 求解公式为:

亿库教育网

http://

亿库教育网

http:// B=p×100% psp→空气的绝对湿度→单位(Pa)

pS→同一温度下水的饱和气压→单位(Pa) B→相对湿度 [强化训练]

1.在潮湿的天气里,洗了的衣服不容易晾干,为什么?

2.在绝对湿度相同的情况下,夏天和冬天的相对湿度哪个大?为什么?

3.当空气的绝对湿度是1.2×103Pa,气温是15℃时,空气的相对湿度是多大? [学生活动] 解答强化训练题

1.在潮湿的天气里,空气的湿度大,空气中的水蒸气接近饱和,水份不容易蒸发,所以洗了的衣服不容易晾干.

2.在绝对湿度相同的情况下,水的饱和汽压ps在温度高时大,温度低时小,根据B=冬天的相对速度大.

3.解:

∵p=1.2×103Pa

查表得ps=1.705×103Pa

p夏天和冬天相比,ps1.2103p∴B===70.4% 3ps1.70510[讨论]

1.当空气的绝对湿度一定时,白天为什么我们感觉到比较干燥,而夜晚却感到很潮湿? 2.水的饱和汽压随温度如何变化? [学生活动] 解答讨论题

1.由课文饱和汽压表可知:

在绝对湿度一定的情况下,在白天,水蒸气离饱和状态较远,我们就感觉到空气比较干燥,而在夜晚气温降低,饱和汽压降低,水蒸气接近饱和,我们就感觉到空气很潮湿.

2.水的饱和汽压随温度的升高而升高. [教师]

由于水的饱和汽压随温度的升高而升高,所以当绝对湿度一定时,空气里的未饱和汽将逐渐接近饱和,当气温降到某一温度时,水蒸气将达到饱和状态,这时将有水蒸气凝结成水,在物体表面上形成一层细小的露滴.

[板书]

使空气里的水蒸气刚好达到饱和时的温度叫做露点. [讨论]

根据露点和气温的差值,能否判断出相对湿度的大小? [学生活动] 解答讨论题

空气中含的水蒸气多,气温只要少许降低一点,就达到露点,水蒸气就达到饱和,反之空气中含的水蒸气

亿库教育网

http://

亿库教育网

http:// 少,气温要降低很多,才能达到露点,水蒸气才达到饱和,所以根据露点和气温的差值,可以大致判断出空气中水蒸气的饱和程度,从而判断出相对湿度的大小.

(二)湿度计

[实物投影]课本图13~24的干湿泡湿度计. [投影]

介绍干湿泡温度计的构造:

1.干湿泡温度计是由两支完全相同的温度计组成的. 2.分别观察两支温度计的特征: 从实物投影观察到:

温度计B的感温泡上包着棉纱,棉纱的下端浸在水中 而A中的感温泡是干燥的

→这就是干湿泡温度计名称的由来.

3.学生阅读课文,叙述干湿泡温度计的原理: 由于水的蒸发,温度计B指示的温度总是低于温度计A的,空气的相对湿度越小,其中的水汽离饱和越远,湿泡温度计B上的水蒸发得越快,温度就降得越低,两支温度计的温度差越大.空气的相对湿度越大,其中的水汽越接近饱和,温度计B上的水蒸发得越慢,A、B的温度差就越小,所以干湿泡温度计的温度差的大小跟空气的相对湿度有直接关系.

把不同温度时相应于不同的干湿泡温度差的相对湿度计算出来,绘制成表或画成曲线,根据干湿包湿度计上A、B两支温度计的读数,从表或曲线上很快就可以算出空气的相对湿度.

三、小结

本节课我们主要学习了:

1.空气的湿度是指空气的干湿程度,它是由空所中所含水蒸气的多少来决定的,空气的湿度可以用绝对湿度和相对湿度来表示.

2.空气越潮湿,空气中所含水蒸气的密度越大,水蒸气的压强也越大,由于测量水蒸气的压强要比测量水蒸汽的密度容易得多,因而人们便利用空气中所含水蒸气的压强来表示空气的湿度,称为空气的绝对湿度.

3.人们对空气湿度的关注,往往不直接体现在空气中所含水蒸气的多少上,而是体现在空气中的水蒸气离离饱和状态的远近上,空气中的水蒸气越接近饱和状态,那么空气中水蒸气的压强跟同温度下水的饱和汽压就越近,它们的比值必然越大.

某温度时空气的绝对湿度p与同一温度下水的饱和气压ps的百分比来表示空气的湿度,称为空气的相对湿度B.

即B=p×100% ps4.空气的湿度可以用湿度计来直接测量,常用的湿度计有干湿泡湿度计.

四、作业

课本P85练习六:

五、板书设计

亿库教育网

http://

亿库教育网

http://

六、本节优化训练设计

1.当气温突然下降时,空气的相对湿度将___________.

A.增大

B.减小

C.不变

D.不能确定 2.下列说法正确的是___________. A.空气的绝对湿度大时,水的蒸发慢

B.水蒸气的密度一定时,湿度越高相对湿度越小 C.气温低时空气的相对湿度一定大

D.气温降至露点时空气的相对湿度为100%

3.已知20℃时水的饱和汽压是2.338×103Pa,12℃时水的饱和汽压是1.402×103Pa,若20℃时空气的相对湿度是70%,则此时的露点t是___________

A.t>20℃

B.12℃

C.t=12℃

D.t<12℃

4.用测定露点的方法可以确定空气的绝对湿度和相对湿度,设气温为t1,测得其露点为t2,如何得出气温为t1时的绝对湿度和相对湿度.

参考答案:

1.A

2.BD

3.B

4.p=ps2,B=

ps2×100% ps1亿库教育网

http://

上一篇:公司运营部工作职责下一篇:文学学士学位