功率放大器的作用

2022-12-10 版权声明 我要投稿

第1篇:功率放大器的作用

在初产妇产后护理中应用母婴床旁护理对于提高母乳喂养成功率及降低并发症发生率的作用观察

[摘要]目的:分析母婴床旁护理应用于初产妇产后护理的价值。方法:以本院2020年1月至2021年1月75例产妇为研究对象,随机将其分为常规组(37例)与观察组(38例),比较两组产妇心理状态、母乳喂养成功率、并发症发生率、乳头疼痛率、产后恢复状况、护理水平、生活质量评分、护理满意度。结果:观察组产妇母乳喂养成功率高于常规组产妇(P<0.05);观察组产妇乳头疼痛率低于常规组产妇(P<0.05);观察组产妇护理水平高于常规组产妇(P<0.05);观察组产妇产后恢复状况低于常规组产妇(P<0.05);观察组产妇产后恢复状况高于常规组产妇(P<0.05);观察组产妇生活质量评分均明显高于常规组产妇(P<0.05);观察组产妇并发症发生率低于常规组产妇(P<0.05);观察组产妇满意度高于常规组产妇(P<0.05)。结论:母婴床旁护理效果显著,是能够提高喂养成功率,并减少并发症发生率,可以考虑积极推广。

[关键词]初产妇;产后护理;母婴床旁护理;母乳喂养成功率;并发症发生率

[

[文献标识码]A.

[

分娩属于女性正常生理过程,许多产妇会因为分娩疼痛等情况造成交感神经过度兴奋,进而使得产程时间延长,再加上初产妇缺少分娩经验,所以更容易产生焦虑、抑郁等情绪,不利于产妇恢复。母婴同室理念对新生儿健康成长以及产妇预后有着积极作用,但部分产妇及产妇家属缺乏足够的护理重视度,容易出现喂养损害,从而威胁母婴健康与生活质量,所以给予产妇行之有效的护理措施就显得尤为重要[1]。本文的研究对象为初产妇,以此为基础来对该护理模式展开探讨,其结果如下。

1对象与方法

1.1研究对象

本文研究对象为初产妇,共75例,研究时间为2020年1月至2021年1月。将其分为两组,即常规组(37例)与观察组(38例),其中常规组初产妇年龄为(28.25±1.57)岁;观察组初产妇年龄为(28.63±1.42)岁,年龄比较差异无统计学意义(P>0.05)。

纳入标准:(1)足月妊娠;(2)头位单胎;(3)临床资料完整。排除标准:(1)妊娠高血压、妊娠糖尿病者;(2)精神疾病或认知障碍者;(3)严重心肝肾功能不全者。

1.2方法

给予常规组产妇常规护理,产后2h内将产妇送至病房,同时给予产妇休息、清洁以及按摩等护理,婴儿早吸吮后,将其送至新生儿室,由护理人员统一对婴儿进行抚触、洗浴以及换尿布等护理,同时在治疗室中给予婴儿预防接种;护理人员需每日抱新生儿与病房母亲接触,但家属不参与护理;产后第2天,对产妇展开健康宣教,其内容包括母乳喂养、护理方法、产后保健等,但护理人员不监督产妇执行;产后第3天,如果母婴情况正常,则给予产妇产后复查、避孕指导、出院指导等措施。

将母婴床旁护理应用于观察组产妇,其方法如下。(1)母婴同室。明确分娩后产妇与新生儿健康情况,并核对产妇各项信息,之后在产妇床旁新生儿车内放置新生儿,之后给予产妇个性化的饮食方案与卫生护理。(2)健康宣教。新生儿出生后与母亲24h同室,护理人员向产妇以及家属进行示范性操作与细致讲解,然后让产妇利用专用的床旁护理车实施新生儿护理工作,并给予产妇一对一的指导,并告知产妇母乳喂养的好处,同时指导产妇入耳抚摸以及头部护理等基础措施。健康宣教过程中,需要耐心为产妇进行答疑解惑,同时给予產妇足够的肯定与支持,并普及健康教育知识。护理人员需要密切观察心理情况,针对负性情绪进行及时的疏导,使得产妇保持良好心态接受干预[2]。分娩2h属于产后出血高发期,所以护理人员还需要重视产后2h护理服务,密切检测产妇恶心、眩晕、呕吐等临床症状,并关注产妇脉搏、血压、心率等生命体征变化,出现异常需要及时汇报医师,然后采取针对性护理措施。(3)产后第1天。对新生儿的吸吮姿势进行密切观察,同时对产妇的错误姿势进行纠正,同时为新生儿沐浴,在沐浴过程中需要观察新生儿的情绪以及脸色,然后对节奏与力度进行适当调整。护理人员需要保证产妇在产后第1天掌握新生儿护理方法,同时学会喂奶体位及婴儿含接姿势。(4)产后第2天。加强床旁沐浴和抚触指导,详细讲解并发症防范方法与新生儿沐浴、抚摸的步骤与注意事项,同时对产妇泌乳情况进行明确,并对新生儿听力情况进行检查[3]。由产妇及家属开始新生儿护理,在新生儿床旁护理车上操作,注意打开保暖设置,及时更换一次性用品。新生儿预防接种等操作由护士在床旁操作。(5)产后第3天。鼓励产妇对新生儿进行皮肤与臀部护理,并交代护理过程中的一些不良症状与注意事项。

1.3观察指标

(1)比较两组产妇母乳喂养成功率、护理水平得分、产妇泌乳状况、心理状态、产后恢复、生活质量评分、并发症发生率、护理满意度。(2)产妇母乳喂养成功率。仅用纯母乳进行喂养,不需要添加任何饮料与食物。(3)乳头疼痛率。采用疼痛强度量表(NRS)[4]对其进行评估。(4)护理水平得分。采取100分制,分数高则优,分数低则差。(5)产妇泌乳状况。包括泌乳频率、初次泌乳时间。(6)心理状态。通过心理状态评估量表(MSSNS)[5]进行评估,分数高则差,分数低则优。选择PSS知觉压力量表对产妇自觉压力进行评估,总分为40分,分数高则差,分数低则优。采取中文版育儿胜任感量表(C-PSOC)来测量产妇对自己养育子女行为的效能感与满意度,总分为17~102分,分数高则优,分数低则差。使用社会支持评定量表(SSRS)对客观支持(总分为22分)、主观支持(总分为32分)以及对支持的利用度(总分为12分)进行评价,分数高则优,分数低则差。(7)产后恢复。包括肠胃功能恢复时间、离床活动时间。(8)生活质量评分。采取36条简明健康状况调查(SF-36)量表[6]来进行评定,总分为100分,分数低则差,分数高则优。(9)并发症发生率。包括感染、产后抑郁、急性乳腺炎等。(10)护理满意度。使用100分制自制的满意度调查表调查。

1.4统计学方法

利用统计学软件SPSS20.0对产妇的相关数据进行分析和处理。计数资料采取[n(%)]表示,计量资料采取(x±s)表示,分别采用及t检验。当P<0.05时则代表差异有统计学意义。

2结果

2.1两组产妇母乳喂养成功率比较

观察组产妇高于常规组产妇(P<0.05),见表1。

2.2两组产妇乳头疼痛率比较

常规组产妇产后1周乳头疼痛率为12例(32.43%)、产后2周疼痛率为11例(29.72%)、产后4周疼痛率为8例(21.62%);观察组产妇产后1周乳头疼痛率为4例(10.52%)、产后2周疼痛率为2例(5.26%)、产后4周疼痛率为1例(2.63%),观察组产妇乳头疼痛率低于常规组产妇(P<0.05)。

2.3两组产妇护理水平比较

观察组产妇护理水平高于常规组产妇(P<0.05),见表2。

2.4两组产妇产后恢复状况比较

常规组产妇肠胃功能恢复时间为(22.79±3.32)h、离床活动时间(20.35±2.65)h;观察组产妇肠胃功能恢复时间为(18.06±3.22)h、离床活动时间(14.36±2.33)h。观察组产妇肠胃功能恢复时间、离床活动时间均低于常规组产妇(P<0.05)。

2.5两组产妇泌乳状况比较

常规组产妇泌乳频率为(2.87±0.22)次/d,初次泌乳时间为(10.41±2.18)h;观察组产妇泌乳频率为(3.64±0.23)次/d,初次泌乳时间为(7.63±1.04)h。观察组产妇泌乳频率高于常规组产妇,初次泌乳时间低于常规组产妇(P<0.05)。

2.6两组产妇心理状态比较

观察组产妇知觉压力评分为(12.09±2.54)分,育儿胜任感评分为(74.83±2.34)分,效能总分为(37.98±3.53)分,满意度总分为(39.22±3.84)分,社会支持总分为(46.01±3.69)分,客观支持总分为(11.67±2.98)分,主观支持总分为(26.92±3.02)分,对支持利用度总分为(7.94±2.44)分;常规组产妇知觉压力评分为(17.85±2.91)分,育儿胜任感评分为(68.52±2.74)分,效能总分为(39.85±2.35)分,满意度总分为(34.25±2.28)分,社会支持总分为(42.24±2.85)分,客观支持总分为(9.14±2.72)分,主观支持总分为(25.15±2.38)分,对支持利用度总分为(7.62±2.28)分。两组产妇在知觉压力、育儿胜任、效能感、满意度、社会支持、客观支持、主观支持方面有差异,与常规组产妇相比,观察组产妇的产妇心理状态评分较低(P<0.05),见表3。

2.7两组产妇生活质量评分比较

两组患者有差异,且观察组患者评分更高(P<0.05),见表4。

2.8两组产妇并发症发生率比较

常规组产妇并发症发生率为21.62%(8/37);观察组产妇并发症发生率为2.63%(1/38),观察组产妇并发症发生率低于常规组产妇(χ2=6.401,P<0.05)。

2.9两组产妇满意度比较

常规组产妇非常满意7例、满意18例、一般8例、不满意4例,护理满意度为67.57%;观察组产妇非常满意13例、满意20例、一般3例、不满意2例,护理满意度为86.84%。满意度比较差异有统计学意义(χ2=3.973,P<0.05)。

3讨论

在产科护理中,产后母婴护理属于难点所在,会对新生儿健康发育产生影响[7]。产后护理不仅影响产妇的产后恢复,同时还会影响新生儿的健康成长,在常规护理操作中,产妇与婴儿有着比较长的分离时间,所以不利于早期母乳喂养以及母婴感情的建立,同时常规护理的护理重心是讲解理论知识,无法确保产妇能够正确掌握护理技能。多数初产妇都缺少照料新生儿的经验,所以母婴床旁护理是能够最大程度的降低护理风险[8]。母婴床旁护理是指产妇围产期内给予母婴同室护理,从而持续性的为母婴提供服务,使得产妇以及产妇家属能够承担婴儿护理工作,从而降低初为人母的焦虑与不安,有助于产妇更加勇敢的承担养育后代的责任[9]。“母-婴”分离、“婴-婴”同室护理容易诱发交叉感染,而母婴床旁护理是能够降低感染分析,有助于减低产科出错率,从而使得医务人员的精神压力得到很好的缓解,进而能够更人性化的为产妇提高护理服务[10]。母婴床旁护理的内容包括新生儿沐浴、新生儿注射、新生儿抚触,护理人员指导产妇及其家属护理要点以及相关注意事项后,产妇离院后也能够利用所学知识来为婴儿提高持续、安全、有效的高质量服务。在本次研究中,观察组产妇母乳喂养成功率、乳头疼痛率、护理水平、产后恢复状况、心理状态、生活质量评分、并发症发生率、护理满意度均明显优于常规组产妇(P<0.05)。分析其原因,是因为早吸吮、母乳喂养,是能够对新生儿的神经功能发育有加快作用,并极大的改善产妇肠道功能,对新生儿免疫能力提升有积极作用,进而能够将感染等不良风险降低[11]。除此之外,母乳喂养以及早吸吮是能够加快产妇产后恢复,同时抚触等措施能够降低产妇黄疸等并发症,对母婴健康有重要作用[12]。

综上所述,母婴床旁护理是能够提高母乳喂养成功率与护理质量,同时能够降低产妇不良情绪与不良事件,并且能够加快产妇产后恢复,对产妇生活质量提升有着积极作用,有助于产妇满意度的提高,值得临床将其广泛应用。

参考文献

[1]谢彩云,邓慧冰,黄菊,罗迪.母婴床旁责任制护理模式在剖宫产术后产妇中的应用[J].齐鲁护理杂志,2021,27(14):145-147.

[2]贾莉.母婴床旁护理联合家庭协同护理模式对初产妇产后心理和生活质量的影响[J].临床医学研究与实践,2021,6(2):170-172.

[3]张颖莉,马倩.产前护理教育联合产后母婴床旁护理对初产妇自护能力、泌乳功能及新生儿喂养情况的影响[J].临床医学研究与实践,2020,5(32):184-186.

[4]罗彬.母婴床旁护理联合亲情化干预对初产妇自我保健能力和新生儿照护技能的影响[J].全科护理,2020,18(27):3661-3663.

[5]马过银.母婴床旁护理模式对产妇恢复的影响及对新生儿护理质量的改善作用分析[J].人人健康,2020(8):149-150.

[6]陈星红,张远.母婴床旁护理对产妇心理情绪和产妇康复的影响研究[J].中国医药科学,2019,9(23):178-180.

[7]程海燕,张丽.母婴床旁联合移动学习护理模式在初产妇产后护理中的应用效果[J].临床医学研究与实践,2019,4(27):186-187.

[8]李玲.母婴床旁护理模式对初产妇新生儿护理能力及护理满意度的影响观察[J].饮食科学,2019(12):273-274.

[9]钟金慧,邓秋艳,许爱娣,巫庚足,谭淑明,李桂宝,杨淑妙.母婴床旁护理模式在产科护理中的临床应用[J].中国医药科学,2019,9(10):137-140.

[10]王纳.母婴床旁护理模式对新生儿护理技能掌握情况和护理服务的影响[J].西藏医药,2019,40(2):109-111.

[11]陳鲸西,马玉燕,章朋,王晓文.母婴床旁护理模式在产科分层护理中的应用及效果[J].当代护士(中旬刊),2021,28(7):38-42.

[12]韩蓉,柴嘉,张小艳.母婴床旁护理对初产妇的新生儿护理能力及护理满意度的影响[J].贵州医药,2021,45(5):819-820.

(收稿日期:2021-08-19)

作者:张海颜 麦美红 李敏婷

第2篇:基于功率合成器的北斗射频功率放大器设计

摘 要:针对当前应用于北斗卫星系统的射频功率放大器的小功率、低效率、高成本等缺点,本文提出一种基于功分合路器的改进型三级级联射频功率放大器设计方案。利用负载牵引法对末级功率放大器进行设计,利用集总参数与分布参数相结合的技巧对微带低通滤波器进行设计,利用小信号S参数法对前置级放大器进行设计。通过详细的理论分析和仿真优化,结合射频硬件电路和结构的设计要求,实际制作并实现稳定高效的30 W射频功率放大器设计。该方案可使低供电电压的小功率射频器件实现较大功率输出,并较好地兼顾线性度和效率。

关键词:中国北斗卫星导航系统;射频功率放大器;功分合路器;微带滤波器

中圖分类号:TN722.7

文献标识码: B

随着中国北斗卫星导航系统的不断完善,北斗卫星导航系统正逐步从区域性卫星导航系统发展成为全球性卫星导航系统。北斗系统所独具特色的短报文通信功能,使其在国防、民生等领域得到越来越广泛的作用[1-2]。射频功率放大器作为北斗卫星导航与通信终端设备的末级信号放大器,其性能的好坏直接关乎发往卫星信号的质量和终端设备的电源效率。然而,由于通常采用的大功率射频功率放大器存在线性度不理想、电源效率低、供电电压高、成本高、易受温度影响等问题[3-4],制约了其在北斗通信终端中的应用。目前,北斗卫星相关产业发展缓慢,大功率射频放大器方案主要采用进口芯片,通过高电压供电,成品移动性较差。

为解决上述问题,本文在传统三级级联射频功率放大器结构基础上,通过引入功率分配器和功率合成器,形成对称性电路的解决方案,从而在保证足够的线性输出功率的前提下,降低供电电压要求,并提高电路稳定性。同时,通过结合微带低通滤波器设计,进一步减低系统的谐波干扰。

1 系统组成

本文提出的射频功率放大器结构如图1所示,它主要由前置级放大器、功率分配器、驱动级放大器、末级功率放大器、功率合成器和低通滤波器等单元电路组成。

射频功率放大器的输入信号为北斗射频发射通道输出的中心频率1.61568 GHz、功率为0 dBm的BPSK调制信号。考虑到功率分配器的插入损耗约为3 dB、功率合成器增益约为3 dB、输出滤波器的插入损耗接近于0 dB,为达到30 W(44.8 dBm)线性输出功率,要求上下两路末级射频功率放大器的P1dB应大于15 W(41.8 dBm)。综合考虑线性度、增益、供电电压和封装等因素,末级射频功率放大器选用LDMOS工艺的场效应晶体三极管PD20015C。LDMOS工艺具有良好的线性度、稳定性和温度特性,能够较好地解决效率和线性度的问题。同时,采用LDMOS工艺的单级功放可提供较大的功率增益(约12 dB),故驱动级放大器的P1dB输出功率确定为1 W(30 dBm)、增益为25 dB。低通滤波器、功率分配器和功率合成器均采用微带线形式实现,既可以确保低插损,也可以提高稳定性。综合以上分析,前置级射频功率放大器增益只要大于8 dB即可满足射频链路要求。

2 射频链路分析与设计

2.1 功率分配器与功率合成器

功率分配器和功率合成器的主要指标包括回波损耗、插入损耗、隔离度、工作频段等。由于无源结构的功率分配器与功率合成器是一对互易网络,二者具有完全一致的结构和性能,故对其中一种的分析设计同样适用于另一种[5-6]。以下以功率分配器为例进行分析设计。

本文采用的功率分配器结构如图2所示。图中,端口1为输入端口,其源阻抗为Z0;端口2和端口3为输出端口,其负载阻抗分别为R2和R3;两段1/4波长传输线的特性阻抗分别为Z02和Z03,电阻R为隔离电阻。则输出端口2和3的输出功率分别为为了满足功率分配器输出端口的平衡性,可令功分比k2=1,端口源阻抗Z0=50 Ω。由上式可得,Z02=Z03=70.7 Ω,隔离电阻R=100 Ω,λ/4=4.62 cm。

结合电路结构图和电路参数进行实际电路的仿真优化设计,仿真结果如图3所示。从图可以看出,在频率为1.616 GHz处,所设计的功率分配器的插入损耗为3.038 dB,输出端口的反射损耗达41.89 dB(即反射系数很小),两个输出端口之间的隔离度达38.4 dB。可见,所设计的功率分配器的各项性能指标均符合设计要求。

2.2 末级功率放大器

射频功率放大器主要由输入输出匹配电路、偏置电路、有源器件三部分组成[7]。通常的设计方法是:在工作频段内绝对稳定的条件下,设置的偏置电路应使有源器件的静态工作点位于线性放大区,并保证具有最大的线性度区间[8];通过输入输出匹配电路的合理设计,实现有源器件对源阻抗和负载阻抗的匹配,从而保证功率放大器的增益、效率和输出功率。

为了最大化器件性能,本文采用负载牵引和源牵引相结合的方法设计匹配电路。牵引法设计的核心思想是在大信号的持续激励下,通过自动调节阻抗变换器,得到器件在不同阻抗下的效率值和功率值,并绘出等功率曲线和等效率曲线[9]。首先,调用负载牵引模板寻找最佳阻抗ZL,通过调整匹配网络、圆心和半径等参数,找到最大效率点和最大功率点,仿真结果如图4所示。

从图4可以看出,在最大功率点处,负载阻抗=1.436+j0.878,根据阻抗参数可运用史密斯圆图完成输出共轭匹配,并将输出匹配网络导入原理图中。源牵引法仿真过程同负载牵引法类似,这里不再赘述。针对输入输出匹配网络进行仿真设计和优化后,得到末级功率放大器的输入输出特性如图5所示。

由图5可知,当输入功率为30 dBm时,输出功率为41.809 dBm(满足15 W设计要求),且工作点位于P1dB压缩点以内,在保证输出功率和线性度的同时,也兼顾了效率。

2.3 微带滤波器

随着频率的升高,集总参数滤波器的幅频特性受寄生参数的影响将越来越大,而分布参数滤波器在频率高端具有插入损耗小、一致性高的优点,但占用面积较大[10]。本文采用集总参数与分布参数相结合的电路设计方法,并通过Richards变换和Kuroda规则进行巴特沃兹低通滤波器设计,以获得体积较小、抑制谐波能力强、输出阻抗匹配和输出端隔离度好的效果[11]。

2.4 前置级和驱动级放大器

由链路分析可知,前置级射频功率放大器增益为8 dB,驱动级射频功率放大器增益为25 dB。为了适应输入信号的变化范围,前置级射频功率放大器设计成增益可调式,故选用了专用射频集成放大器,其功率增益范围为0~22 dB、P1dB压缩点输出功率为17.8 dBm。通过输入输出阻抗匹配网络的设计,分别实现与50 Ω实阻抗的匹配。

驱动级射频功率放大器选用线性增益为25 dB,在1.616 GHz处的最大输出功率可达30 dBm的射频集成放大器,以满足推动末级射频功率放大器的要求。

2.5 系统联合仿真

结合以上各单元电路的设计结果,对整个电路做系统联合仿真。三级级联射频功率放大器的总体仿真电路如图7所示。

3 实物验证与测试

进行实物设计时,结合射频硬件电路的设计原则,准确设计走线阻抗,严格控制走线长度,并注意接地散热和腔体屏蔽等问题。板材选用Rogers4350B,该板材具有低插损、温度稳定性好等优点。完成PCB版图设计、电路板加工和元器件焊接后,实际设计结果如图9所示。

通电后,借助于频谱分析仪、网络分析仪等对电路参数进行调试,使其处于最佳工作状态。用伪码发生器调制单载波来模拟北斗BPSK调制信号,并作为本射频功率放大器的输入信号(输入功率电平为0 dBm),可测得输出功率的频谱图如图10所示。

从频谱图可以看出,此时带内功率44.787 dBm(满足30W的设计要求)。当逐渐增大输入信号时,输出功率不再呈现线性地同步增大,说明射频功率放大器已开始进入非线性状态;而当逐渐减小输入信号时,输出功率随之线性地减小。可见此时功放工作状态刚好处于P1dB压缩点附近,功率放大器的线性度和效率都处于较高的水平。

4 结论

本文提出一种改进型三级级联射频功率放大器的设计方案。通过合理分配系统中各功能单元电路的技术指标,并对系统中的增益、线性度和S参数做详细分析,经过仿真设计和实物测试,验证了本设计方案的可行性。采用本文方法設计制作的30 W射频功率放大器具有稳定性好、效率高、谐波干扰小等特点,已应用于北斗卫星导航通信终端上。

参考文献:

[1]周亮.浅析北斗卫星导航系统的应用与发展[J]. 科技展望, 2017, 20(1) :126-129.

[2]蔡亮明, 曾文华, 张小波,等. 基于北斗的交互式示位标[J]. 贵州大学学报(自然科学版), 2017, 34(2):91-96.

[3]魏迁. 一种北斗功率放大器的温度补偿电路设计[J]. 电子世界, 2017, 16(8):190-191.

[4]王凯. 高效率连续F类功率放大器及SIW背腔阵列天线的研究[D]. 浙江:杭州电子科技大学, 2017.

[5]赵世巍, 唐宗熙, 戴伟. 一种多层Hybrid Ring结构功分器/合路器的设计[J]. 电子测量与仪器学报, 2010, 24(4):402-405.

[6]黄梦琪. 小型化微波四端口功分器件研究[D]. 四川:电子科技大学, 2014.

[7]闫燕勤. X波段固态功率放大模块的设计[D]. 陕西:西安工业大学, 2015.

[8]陈飞展. 北斗与TD-LTE频段的低噪声放大器设计[D]. 黑龙江:齐齐哈尔大学, 2015.

[9]陈卓伟, 游彬. 基于Load-Pull系统的射频功率放大器的设计[J]. 电子器件, 2009, 32(5):912-915.

[10]杨玉岗, 许平静. EMI滤波器高频寄生参数分析[J]. 电源技术, 2010, 34(9):953-955.

[11]林思宏. 一种基于ADS的微带低通滤波器优化设计[D]. 河南:河南师范大学, 2013.

[12]徐兴福. ADS2008射频电路设计与仿真实例[J]. 安全与电磁兼容, 2009, 33(5) :68-72.

[13]杨金伟. 基于Richards变换与Kuroda规则的射频滤波器设计[J]. 台州学院学报, 2006, 28(3):41-46.

[14]陈军. 基于ADS软件的微带线带通滤波器的设计[J]. 电子设计应用, 2014, 18(39):200-201.

(责任编辑:周晓南)

作者: 高贵虎 苏凯雄

第3篇:高频功率放大器的中和问题

【摘要】以真空电子管为核心放大器件的大功率高频功率放大器,其电子管极间电容的存在,会引起高频功率放大电路直通和反作用的不良影响,进而影响高频功率放大器的稳定工作。本文通过分析极间电容直通和反作用产生的原理,给出了几种消除极间电容寄生参数的方法,并总结了实际中用中和电路消除极间电容寄生参数的调整方法,对高频功率放大器发射机的实际调试与维护有很强的理论与实际指导意义。

【关键词】高频功率放大器;电子管;直通;反作用;中和;调整方法

1.前言

以真空电子管为核心放大器件的大功率高频功率放大器,理论上电子管栅极电压对阴极的控制作用,完全是通过栅极电压所产生的电场对阴极发射出的电子加速作用而实现的,但实际上由于电子管极间电容的存在,尤其是板极和栅极之间的极间电容,使电子管的栅极回路和板极回路互相耦合,引起高频功放电路直通和反作用的不良影响,从而引起高频功放工作不稳定。板栅极间电容对高频功放电路的影响程度与放大器使用频率有关。在长波发射机中,由于频率低,板栅极间电容的影响可以忽略不计;对中波机来说就要考虑其影响,对于短波机特别是超短波发射机来说,不但要考虑极间电容的影响,还要考虑引线电感的影响,这主要是随着工作频率的升高,极间电容容抗会随之变小,而引线电感的感抗会随之产生且逐渐变大。所以,在实际工作中,必须采取有效的措施,采用中和电路的方式,消除电子管极间电容及线路引线等效电感对高频功放的危害,使高频功率放大器安全、稳定的运行。

2.极间电容所产生的不良影响

2.1 直通作用

如图1-1(a)所示为电子管共阴电路,电路中除有用的激励电压Ug和板极谐振回路外,还有元件结构性引起的极间电容,板极和栅极之间的板栅极间电容Cag,板极和阴极之间的板阴极间电容Cak,栅极和阴极之间的栅阴极间电容Cgk等寄生参量。Cak、Cgk可分别合并为输入和输出回路,而Cag跨接在两个回路之间,这样激励信号产生的高频电流的一部分通过Cag直接送到了板极回路,在谐振回路两端产生压降,等效电路如图1-1(b)所示,其工作频率越高,则影响越大,这个现象就叫直通。

直通作用所造成的不良影响是,当电子管的板极电流截止时,由于直通的存使激励信号产生的高频电流的一部分会通过Cag直接送到了板极回路,使板极回路的电流不能完全的截止,当有调幅时,得不到100%的调幅,造成调幅信号的失真,同时也增加了激励信号的功率消耗。

2.2 反作用

在探讨电子管极间电容对高频功放电路的反作用之前,首先对电子管高频功率放大器典型的、被广泛使用的电路形式进行一下说明,电子管高频功率放大器以电子管的阴极作为高频公共点,信号被送到栅极和阴极之间,从板极和阴极之间输出,以谐振回路作为负载,工作在丙类(效率高)状态,具有较高功率增益,板极谐振回路形式多用并联谐振回路。高频功率放大器要实现最大功率值输出,就是主要完成板极回路电容、电感的调谐,满足其并联谐振的条件。在回路谐振时,电路中的电压、电流参量有如下特征:栅压和板压反相1800;板流直流分量和栅流直流分流量变化相反,板流直流分量最小与栅流直流分流量最大值应同时出现。

下面我们就探讨电子管极间电容对高频功放电路的反作用,反作用就是板极电流的一部分通过Cag反馈到本级栅极回路,引起输入回路阻抗变化而失谐的影响。

如图1-1(a)所示,反作用电流为,反作用电流对激励电压的影响可用导纳来表示,即。由于在谐振时,栅极回路电压与板极回路的相角差为零,故有。这说明反作用是输入导纳变成容性,输入电容的数值为,它使放大器的输入阻抗变化,且因起前级板极回路失谐,工作不稳定。对于本级板流来说,因栅极失谐,使谐振时板流的最小值和栅流的最大值不同时出现。这就是电子管极间电容对高频功放电路的反作用。

除了电子管极间电容,板极和栅极之间还会存在其他的杂散耦合,还有板极、栅极元件布局,各槽路间高电位和低电位之间,也都会产生类似极间电容那样的寄生耦合。

3.消除极间电容不良影响的方法

电子管的极间电容,放大器各级和板、栅极之间产生寄生耦合,都会因直通和反作用影响高频功率放大器的稳定工作。而消除此不良影响的方法有以下几种:

●采取中和电路。就是在原电路中加入另外一个电路,其作用与Cag作用相反,以抵消其对电路所产生的影响。

●选用隔离效果更好的四、五极是电子管。虽然Cag不大,但还是可能产生不稳定现象,所以也必须加中和电路。

●采用倍频法。由于倍频器的栅极和板极回路的谐振频率相差很远,因此,直通和反作用将大为减弱。但此法应用有限,一般仅在激励器中使用。

●采用栅极接地电路,即栅地电路。在这种电路中,板栅极间电容不再是板极电路和栅极电路的主要耦合元件,耦合元件是板极和阴极之间的极间电容。因为栅地电路的这个优点,故被广泛应用。但即使板阴极间电容很小,但在工作频率很高时,有时还是需要针对板阴极间电容而加中和电路。

4.中和电路的调整

为了高频功率放大器设备的安全,消除电子管极间电容及线路引线等效电感的危害,特别是大、中型的高功放发射机,在调试时,必须首先调整好中和电路后,然后才能加板压,使高频功率放大器工作。

在实际工作中,由于制造、安装和电子管参量误差等原因,实际的极间电容,中和电容,引线电感等数值,不可能是一个定值。因而中和元件一般都做成可以调整的,以便按照实际情况进行适当调整。一般的方法是,首先从消除直通开始,然后在消除反作用。

下面介绍几种调整中和的方法。

4.1 栅流凹落中和法

调整时利用放大器本身的栅流表作为指示器,不加板压,开启灯丝,加适当的激励电压。观察栅流表,调谐板极回路,若电路中中和不完善,则栅流表的变化如图3-1。

原理:当板极回路调谐到栅极激励电压频率时,由直通效应送到板极回路的功率最大,结果使前级板极回路(本级的栅极回路)的电压最小,因而使激励电压减小。因为栅极电流与栅极激励电压成比例的,所以在调整板极回路时,有栅流凹陷,且在谐振点最小。

调整方法:调整中和电容,使栅流慢慢回升,同时必须保持前级回路处于谐振状态,如此反复调整,直到完全消除直通。即在谐振点附近调整板极回路,栅流不再变动。为什么要反复调整呢?因为中和电容的引入,其阻抗构成前级板极回路的一部分,因此在调整中和电容的同时,前级板极回路也就发生了失谐变化,所以在调整中和电容消除直通作用的同时,必须得同时调整前级板极回路的其它调谐元件,使前级始终处于谐振状态,即调整前级板级回路,使栅流始终处于最大点。

4.2 观测板极槽路电压法

原理:理论上讲在功率放大器电路中直通被抵消后,不加板压的中和级功率放大器,板极槽路中应该没有高频电压存在。所以实际中可以用多种方法对这个高频电压进行监测,调整中和电容,使高频电压监测指示最小,此时中和电容器值就是中和点,这样就认为中和被调好了。

方法:在功率放大器板极槽路两端接示波器或高频电压表作为监测仪器,加激励电压,灯丝电压可加可不加,不加板压。

先将中和电容减到最小,调谐板极槽路,使监测有明显的高频电压指示,再逐渐增加中和电容,观测高频电压指示,直到高频电压指示最小。和上一方法一样,当中和电容的调整影响前级板极回路谐振时,必须反复调整前级板极回路调谐元件使其始终处于谐振状态。

4.3 板栅流反向检查法

按照上述两种方法消除了直通现象以后,为更细致的检查中和是否完善,应进一步检查是否还存在反作用。

原理:理论上讲,在中和良好的高频功率放大器电路中,电子管板极回路处于谐振状态,回路电压达最大值,而电子管板压为最小值,栅极电压达最大值,故板流最小值和栅流最大值应该同时出现如图3-2。如果存在反作用,栅极的输入阻抗将随反作用电流而变化,使前级工作状态发生变化,因此调谐板极回路时,板流最小值和栅流最大值不同时出现。

方法:功率放大器电路加上正常的板压、栅压和激励电压,在调谐点附近转动板极回路电容,同时观察板流和栅流的情况,板流最小值和栅流最大值不同时出现,则应重新调整中和电容,直到其两者同时出现。

5.结束语

电子管由于其结构性极间电容的存在,在以其为核心放大元件的高频功率放大器中,必然产生着寄生耦合,引起放大器的不稳定工作。引入中和电路,能有效的消除了极间电容造成的不良影响,从而使高频功率放大器正常稳定的工作。

参考文献

[1]张肃文,陆兆熊.高频电子线路[M].北京:高等教育出版社,2000,9.

[2]方建邦,宁帆,高立.通信电子电路基础[M].北京:人民邮电出版社,2000,5.

[3]张学田.广播电视手册[M].北京:国防工业出版社, 2000,6.

[4]冯炳铨,黄贯光.无线电发送设备[M].北京:人民邮电出版社,2003,1.

作者简介:孙英男,男,陕西西安人,大学本科,工程师,主要研究方向:电子信息与通信。

作者:孙英男

第4篇:电感和电容在无功功率中的作用

电力系统电压与无功补偿

现代生产和现代生活离不开电力。电力部门不仅要满足用户对电力数量不断增长的需要,而且也要满足对电能质量上的要求。所谓电能质量,主要是指所提供电能的电压、频率和波形是否合格,在合格的电能下工作,用电设备性能最好、效率最高,电压质量是电能质量的一个重要方面,同时,电压质量的高低对电网稳定、经济运行也起着至关重要的作用。 信息请登陆:输配电设备网

1. 电压与无功补偿

电压顾名思义就是电(力)的压力。在电压的作用下电能从电源端传输到用户端,驱动用电设备工作。

交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。在电力系统中,除了负荷无功功率外,变压器和线路的电抗上也需要大量无功功率。

国际电工委员会给出的无功功率的定义是:电压与无功电流的乘积为无功功率。其物理意义是:电路中电感元件与电容元件活动所需要的功率交换称为无功功率。 信息来自:

电容和电感并联接在同一电路时,当电感吸收能量时,正好电容释放能量;电感放出能量时,电容正好吸收能量。能量就在它们中间互相交换。即电感性负荷所需的无功功率,可以由电容器的无功输出得到补偿,因此我们把具有电容性的装置称为“无功补偿装置”。

电力系统常用的无功补偿装置主要是电力电容器和同步调相机。 信息来源:http://

若电力负荷的视在功率为S,有功功率为P,无功功率为Q,有功功率、无功功率和视在功率之间的关系可以用一个直角三角形来表示,以有功功率和无功功率各为直角边,以视在功率为斜边构成直角三角形,有功功率与视在功率的夹角称为功率因数角。有功功率与视在功率的比值,我们称为功率因数,用cosf表示,cosf = P/S。它表明了电力负荷的性质。

P = UIcosf

Q = UIsinf

S = (P2 + Q2)1/2 = UI 信息来自:输配电设备网

有功功率的常用单位为千瓦(kW),无功功率为千乏(kvar),视在功率的单位为千伏安(kVA)。

无功功率按电路的性质有正有负,Q为正值时表示吸收无功功率,Q为负值时表示发出无功功率,在感性电路中,电流滞后于电压,f > 0,Q为正值。而在容性电路中,电流超前于电压,f < 0,Q为负值。(f表示电流与电压的方向,是滞后还是超前)信息来源:http://tede.cn

这就是人们通常称电动机等设备“吸收”无功而电容器发出“无功”的道理。

2. 电压水平与无功功率补偿

当输电线路或变压器传输功率时,电流将在线路或变压器阻抗上产生电压损耗,下面以一条输电线路为例来分析这个问题。一段输电线路的单相等值电路,其中R、X分别为一相的电阻和等值电抗,U

1、U2为首未端相电压,I为线路中流过的相电流。 信息来自:输配电设备网

为了说明问题,以线路末端电压U2为参考轴,设线路电流I为正常的阻感性负荷电流,它滞后于U2一个角度f,电流流过线路电阻产生一个电压降IR,它与电流向量同方向,同时,线路电流也在线路上产生一个电压降IX,它超前于电流向量90度,U1就是U

2、IR、IX三个电压的和。

线路的电压损耗DU为电压DU1和DU2之和,U1 = IRcosf,DU2 = IXsinf,所以线路的电压损耗为DU = DU1 + DU2 = I(Rcosf + Xsinf),如果电流I用线路末端的单相功率S和电压U2来表示,即

P = U2Icosf, Q = U2Isinf

则可得: 信息来自:输配电设备网

DU = (PR + QX)/U2

由此可见,电压损耗由两部分组成,即有功功率在电阻上的压降和无功功率在电抗上的压降。

一般说来,在超高压电网的线路、变压器的等值电路中,电抗的数值比电阻大得多。所以无功功率对电压损耗的影响很大,而有功功率对电压损耗的影响则要小得多。因此,可以得出结论,在电力系统中,无功功率是造成电压损耗的主要因素。 信息来自:输配电设备网

从前面的分析我们知道,当线路、变压器传输功率时,会产生电压损耗,因而影响了电网各处电压的高低。如果能改变线路、变压器等电网元件上的电压损耗,也就改变了电网各节点的电压状况。

由电压损耗表达式DU = (PR + QX)/U可知,要改变电压损耗有两种办法。

(1)改变元件的电阻;(2)改变元件的电抗,都能起到改变电压损耗的作用。

可采取的一种办法是增大导线截面减小电阻以减小电压损耗,这种办法在负荷功率因数较高、原有导线截面偏小的配电线路中比较有效。适宜负荷不断增加的农村地区采用。

而电网中用的最多的办法是减少线路中的电抗,在超高压输电线路中广泛采用的分裂导线就可以明显降低线路的电抗。在我国,220kV线路一般采用二分裂、500kV线路采用四分裂导线。采用分裂导线,降低线路电抗,不仅仅减少了电压损耗,而且有利于电力系统的稳定性,能提高线路的输电能力。现在已逐步采用的紧凑型结构输电线路,还可以进一步降低输电线路的电抗,不仅提高了电网的稳定性,同时,也降低了线路的电压损耗。

减小线路电抗的另一种办法是采用串联电容补偿,就是在线路中串联一定数值的电容器,大家知道,同一电流流过串联的电感、电容时,电感电压与电容电压在相位上正好差180度.采用串联电容补偿其主要目的也是增加线路的输电能力,提高电网的稳定性,同时,也降低了线路电压损耗。

串联电容器补偿,现在主要应用于超高压、大容量的输电线路上,山西大同到北京的500kV输电线路全长300多km,在加装了串联电容补偿后电网线损降低,电压质量改善,电网运行的稳定性得到加强,而且输电能力提高了30%以上。 信息请登陆:输配电设备网

为了更直观的说明改变电抗对降低电路电压损耗的作用,我们举一个简单的例子:

有一110kV线路,输送有功功率15MW,无功功率20Mvar,线路电阻R为2W,线路电抗XL为6W(这里只是假设的数值,因线路的电抗和线路的长度、截面、材料,结构等诸多因素有关,计算比较复杂) 信息来自:

求:在电抗XL = 6W和经补偿后电抗XL = 2W时的压降。

解:XL = 6W时电压损耗:

DU = (PR + QXL)/U = (15×106×2 + 20×106×6)/(110×103×31/2) = 788(V)

XL = 2W时电压损耗:

DU = (PR + QXL)/U = (15×106×2 + 20×106×2)/(110×103×31/2) = 368(V) 信息来自:

减少电压损耗 = 788V14.528 = 25.472Mvar。 信息来自:输配电设备网

补偿前后有功损耗相差219kW。由计算结果可知补偿无功功率25.472Mvar后每小时可降低线损219kWh。 信息来自:输配电设备网

无功补偿对电力系统的重要性越来越受到重视,合理地投停使用无功补偿设备,对调整电网电压、提高供电质量、抑制谐波干扰、保证电网安全运行都有着十分重要的作用。 信息来自:

无功补偿装置的合理使用可以给供电企业带来巨大的经济效益。对于像北京电力公司这样的大企业来说,线损每降低0.1个百分点,就可以增加上千万元收入。 信息请登陆:输配电设备网

从根本上说,要维持整个系统的电压水平,就必须有足够的无功电源来满足系统负荷对无功功率的需求和补偿线路和变压器中的无功功率损耗。

如果系统无功电源不足,则会使电网处于低电压水平上的无功功率平衡,即靠电压降低、负荷吸收无功功率的减少来弥补无功电源的不足。同样,如果由于电网缺乏调节手段或无功补偿元件的不合理运行使某段时间无功功率过剩,也会造成整个电网的运行电压过高。

我国电网曾在20世纪70年代由于缺乏无功功率补偿设备而长期处于低电压运行状态。有些地方想用调节变压器分接头的办法来解决本地区电压低的问题。开始,这种办法也有一些效果,某些供电点电压升高了,但这是以降低别处电压为代价的,因为总的无功电源不足,局部地区电压升高无功负荷增大,必然使别处无功功率更少、电压更低。各处普遍采用调节变压器分接头的结果,不仅没能提高负荷的供电电压,而是使得无功损耗加大,整个系统低电压问题更加严重。在这种情况下,首要的问题应该是增加无功功率补偿设备。

低压运行同时对电网安全带来巨大危害,系统稳定性差,十分脆弱,经受不起事故异常及负荷强烈变化对系统的冲击、十分容易造成大面积的停电和系统瓦解的后果,国内外均有此先例。

3 .各种无功补偿设备及补偿方式

下面我们介绍各种无功功率补偿设备及补偿方式。 信息来源:http://tede.cn

3.1 同步调相机

同步调相机实质上是一种不带机械负载的同步电动机,它是最早采用的一种无功补偿设备,在并联电容器得到大量采用后,它退居次要地位。其主要缺点是投资大,运行维护复杂。因此,许多国家不再新增同步调相机作为无功补偿设备。但是同步调相机也有自身的优点: 信息来源:http://

①调相机可以随着系统负荷的变化,均匀调整电压,使电网电压保持规定的水平。电容器只能分成若干个小组,进行阶梯式的调压。

②调相机可以根据系统无功的需要,调节励磁运行,过励磁时可以做到发出其额定100%的无功功率,欠励磁时还可以吸收其额定的50%的无功功率。电容器只能发出无功,不能吸收无功。 信息来源:http://

③调相机可以安装强行励磁装置,当电网发生故障时,电压剧烈降低,调相机可以强行励磁,保持电网电压稳定,因而提高了系统运行的稳定性。电容器输出无功功率与运行电压的平方成正比,电压降低,输出的无功将急剧下降,比如,当电压下降10%,变为0.9Ue时,电容器输出的无功功率变为0.81Q,即其输出的无功功率将下降19%,所以,电容器此时不能起到稳定系统电压的作用。

3.2 并联电容器

作为无功补偿设备,电容器有以下显著优点:

①电容器是最经济的设备。它的一次性投资和运行费用都比较低,且安装调试简单。

②电容器的损耗低,效率高。现代电容器的损耗只有本身容量的0.02%左右。调相机除了本身的损耗外,其附属设备还需用一定的所用电,损耗2%~30%,大大高于电容器。

③电容器是静止设备,运行维护简单,没有噪音。调相机为旋转电机,运行维护很复杂。 信息来自:输配电设备网

④电容器的应用范围广,可以集中安装在中心变电站,也可以分散安装在配电系统和厂矿用户。而调相机则只能固定安装在中心变电站,应用有较大的局限。

并联电容器是电网中用得最多的一种无功功率补偿设备,目前国内外电力系统中90%的无功补偿设备是并联电容器。

3.3 并联电抗器 信息来自:

并联电抗器是一种感性无功补偿设备,它可以吸收系统中过剩的无功功率,避免电网运行电压过高。

为了防止超高压线路空载或轻负荷运行时,线路的充电功率造成线路电压升高,一般装设并联电抗器吸收线路的充电功率,同时,并联电抗器也用来限制由于突然甩负荷或接地故障引起的过电压从而危及系统的绝缘。

并联电抗器可以直接接到超高压(275kV及以上)线路上,其优点是:可以限制高压线路的过电压,与中性点小电抗配合,有利于超高压长距离输电线路单相重合闸过程中故障相的消弧,从而提高单相重合闸的成功率。高压电抗器本身损耗小,但造价较高。并联电抗器也

有干式的和油浸的两种,这种方式的优点是造价较低,操作方便。从发展趋势看,更多的将采用高压电抗器。

大型并联电抗器的技术、结构和标准与大型电力变压器类似,也有单相和三相,心式和壳式之分,心式还可以分为带间隙柱的和空心式的,目前我国制造的高压大容量并联电抗器只采用心式结构。

心式电抗器的结构与心式变压器类似,但是只有一个绕组,在磁路中加入间隙以保证不饱和,维持线性。 信息来源:http://tede.cn

3.4 静止补偿器(SVC-Static Var Compensator) 信息来源:http://

静止补偿器是近年来发展起来的一种动态无功功率补偿装置,电容器、电抗器、调相机是对电力系统静态无功电力的补偿,而静止补偿器主要是对电力系统中的动态冲击负荷的补偿。根据负荷变动情况,静止补偿可以迅速改变所输出无功功率的性质或保持母线电压恒定。

静止补偿器实际上是将可控电抗器与电容器并联使用。电容器可发出无功功率,可控电抗器可吸收无功功率。其控制系统由可控的电子器件来实现,响应速度远远高于调相机,一般只有20ms。它主要用于冲击负荷如大型电炉炼钢、大型轧机以及大型整流设备等。另外,在电力系统的电压枢纽点、支撑点也可以用静止补偿器来提高系统的稳定性,同时,静止补偿器还可以抑制谐波对电力系统的危害。在我国湖南、湖北、广东、河南等多个500kV枢纽变电站都采用了这种装置。 信息来自:

例如我国某大型炼钢厂使用电弧炉炼钢,严重影响供电质量,电弧炉运行时使电压下降15%~20%,谐波的干扰使众多用户的电视不能收看,电器设备不能正常使用,群众反应强烈。

在装了静止补偿装置后,供电质量显著改善,电压波动很小,完全在允许范围内,谐波干扰明显降低。在周围广大用户普遍受益的同时,该厂也降低了线损,减少了电费支出,提高了产品的产量和质量,获得了良好的经济效益。 信息来源:http://

静止补偿器的最大特点是调节快速。为了充分发挥它在需要无功功率时的快速调节能力,在正常情况下应经常运行在接近零功率的状态。但因正常负荷变动引起的电压变化过程缓慢,用一般价格比较便宜的电容器与电抗器等投切配合,完全可以满足要求,没有必要选用这种设备。 信息来自:输配电设备网

4 .各种调压方法的比较和应用

电力系统电压的调整可以通过对中枢点电压的调整来实现。

如果中枢点供电至各负荷点的线路较长,各负荷点的变化规律大致相同,而负荷变动较大,则应在高峰负荷时适当提高中枢点的电压以补偿线路上增大的电压损耗,在低谷负荷时,供电线路电压损耗较小,中枢点电压适当降低,以防止负荷点电压过高。这种高峰负荷时电

称为"逆调压"。中枢点采用逆调压方式的,在高峰负荷时一般保持电压比线路额定电压高5%,在低谷负荷时电压下降至线路额定电压。 信息来自:输配电设备网

对供电线路不长,负荷变化不大的中枢点,可以采用"顺调压",顺调压就是在高峰负荷时中枢点电压略低,低谷负荷时电压略高。顺调压一般要求高峰负荷中枢点电压不低于线路额定电压的102.5%,低谷负荷时中枢点电压不高于线路额定电压的107.5%。 信息请登陆:输配电设备网

介于"逆调压"与"顺调压"之间的是"恒调压",恒调压是指在任何负荷时,保持中枢点电压基本不变。一般保持102%~105%的额定电压。 信息来自:

电压调整是个比较复杂的问题,因为整个系统每一个节点的电压都不相同,运行条件也有差别。因此,电压调整要根据系统具体情况,选用合适的方法,才能达到目的。

发电机调压,是各种调压手段中首先被考虑的,因为它不需要附加设备,从而不需要附加投资,而是充分利用发电机本身具有的发出或吸收无功功率的能力。但是这种方法往往只能满足电厂附近地区负荷的调压要求,对于远端负荷,还需要采用其它调压措施才能保证其电压质量。合理使用发电机调压常常可以在很大程度上减轻其它调压措施的负担。

在无功功率不足的系统中,首要的问题是增加无功功率补偿设备,而不能只靠调整变压器电压的方法。通常,大量采用并联电容器作为无功补偿设备,其突出的优点是投资低,安装维护方便。只是在有特殊要求的场合下,才需要采用静止补偿器或同步调相机。而静止补偿器是一种性能良好,维护方便的新型补偿装置,在价格相当的条件下,应优先选用。 信息来自:

对于500kV、330kV及部分220kV线路,以及大量使用电缆作为出线的电网,要装设足够的并联电抗器,以防止线路轻载时充电功率过剩引起电网电压过高。

在无功电源充裕的系统中,应该大力推广有载调压变压器,这是在各种运行方式下保证电网电压质量的关键手段之一。随着我国经济的发展和人民生活水平的提高,电网负荷的峰谷差也越来越大,线路、变压器上高峰负荷与低谷负荷产生的电压损耗的差别,已经大到无法仅仅用发电机调压或无功补偿的方法来满足两种运行方式下用户电压的要求了,其结果不是高峰负荷时用户电压太低,就是低谷负荷时电压太高。在这种情况下,输电系统中的一级变压器或多级变压器,采用有载调压是保证用户电压质量最有效的办法.

5. 并联电容器组的接线方式

电容器的接线通常分为三角形和星形两种方式。此外,还有双三角形和双星形之分。 信息请登陆:输配电设备网

三角形接线的电容器直接承受线间电压,任何一台电容器因故障被击穿时,就形成两相短路,故障电流很大,如果故障不能迅速切除,故障电流和电弧将使绝缘介质分解产生气体,使油箱爆炸,并波及邻近的电容器。因此这种接线已经很少在10kV系统中使用,只是在380V配电系统中有少量使用。

在高压电力网中,星形接线的电容器组目前在国内外得到广泛应用。星形接线电容器的极间电压是电网的相电压,绝缘承受的电压较低,电容器的制造设计可以选择较低的工作场强。当电容器组中有一台电容器因故障击穿短路时,由于其余两健全相的阻抗限制,故障电流将减小到一定范围,并使故障影响减轻。

星形接线的电容器组结构比较简单、清晰,建设费用经济,当应用到更高电压等级时,这种接线更为有利。 信息来自:

星形接线的最大优点是可以选择多种保护方式。少数电容器故障击穿短路后,单台的保护熔丝可以将故障电容器迅速切除,不致造成电容器爆炸。 信息来源:http://

由于上述优点,各电压等级的高压电容器组现已普遍采用星形接线。

高压电力系统的电容器组除广泛采用星形接线外,双星形接线也在国内外得到广泛应用。所谓双星形接线,是将电容器平均分为两个电容相等或相近的星形接线电容器组,并联到电网母线,两组电容器的中性点之间经过一台低变比的电流互感器连接起来。

这种接线可以利用其中性点连接的电流保护装置,当电容器故障击穿切除后,会产生不平衡电流,使保护装置动作将电源断开,这种保护方式简单有效,不受系统电压不平衡或接地故障的影响。

大容量的电容器组,如单台容量较小,每相并联台数较多者可以选择双星形接线。如电压等级较高,每相串联段数较多,为简化结构布局,宜采用单星形接线。

电容器一次侧接有串联电抗器和并联放电线圈。放电线圈的作用是将断开电源后的电容器上的电荷迅速、可靠地释放掉。由于电容器组需要经常进行投入、切除操作,其间隔可能很短,电容器组断开电源后,其电极间储存有大量电荷,不能自行很快消失,在短时间内,其极间有很高的直流电压,待再次合闸送电时,造成电压叠加,将会产生很高的过电压,危及电容器和系统的安全运行。因此,必须安装放电线圈,将它和电容器并联,形成感容并联谐振电路,使电能在谐振中消耗掉。放电线圈应能在电容器断开电源5s内将电容器端电压下降到50V。

对串联电抗器的作用,我们做一下重点介绍: 信息来自:输配电设备网

电容器配套设置的串联电抗器是为了限制合闸涌流和限制谐波两个目的,串联电抗器限制合闸涌流的作用非常浅显,不言而喻。但是限制谐波的原理我们需要解释一下:

所谓谐波,是指电网运行中存在的与工频频率不同的电磁波。我国电网使用50Hz频率,波形按正弦规律变化的三相对称的电源,而谐波(主要是指高次谐波),如3次、5次、7次„„的存在,将对电网工频的波形造成影响,使其不再是正弦波,而是波形发生畸变的非正弦波。波形的畸变会危及电气设备的安全运行,造成继电保护和自动装置的误动,会影响电力用户的产品质量,甚至会影响我们家用电器的正常使用,因此消除和抑制谐波,做为一项课题日益受到有关部门的重视。

电网在运行时不可能没有谐波,很多电气设备和用电设备在运行时都会产生谐波,只不过一般情况下对电网波形影响不大,不会危及正常的供电和用电,但某些情况则不同,如变压器铁心饱和、电弧炉炼钢,大型整流设备,都会对电网带来严重的谐波干扰,影响供电质量,因此必须加以治理。

为了回避谐波的影响,必须采取消除谐波影响的措施,其中一条重要的措施就是在电容器回路中串联一定数值的电抗器,即造成一个对n次谐波的滤波回路。

在实际运行中,3次、5次、7次谐波分量往往偏高,是电容器滤波回路的主要目标。所谓3次、5次、7次„„谐波,指的是谐波的频率相当于工频的3倍、5倍或7倍。当串联电抗器的n次谐波感抗与电容器的n次谐波容抗相等时,即nwL = 1/(nwC)时构成串联谐振条件,则母线的n次谐波电压将被抑制得干干净净。

对于3次谐波:3XL = (1/3) XC,则XL = (1/9) XC = 0.11XC;对于5次谐波:5XL = (1/5) XC,则XL = (1/25) XC = 0.04XC。

实际运行中,各变电站普遍采有在回路中串联12%电抗构成3次谐波滤波器,12%电抗率的含义是指串联电抗器的感抗值为该回路电容器容抗值的12%,而用串联6%电抗构成5次谐波滤波器。不正好采用11%和4%,而是稍大一点,目的是使电容器回路阻抗呈感性,避免完全谐振时电容器过电流。 信息来自:

当变电站母线上具有两组以上电容器组,且既有串联大电抗的电容器组又有串联小电抗的电容器组时,电容器组的投切顺序是一个应该考虑的问题。投切顺序不合理可能造成不良后果。由对谐波电流的分析可知:当电容器回路呈电感性时,电容器回路和系统阻抗并联分流,可使流入系统的谐波电流减小。 信息来自:输配电设备网

当电容器回路呈电容性时,由于电容器的“补偿”作用,电容器回路在谐波电压作用下,将产生的谐波电流流入系统,这时将使系统谐波电流扩大,并使母线电压波形发生畸变。

也就是说,仅当电容器回路对谐波呈电感性时,才不会发生对系统的谐波放大。 信息请登陆:输配电设备网

当变电站母线上既有串大电抗的电容器组又有串小电抗的电容器组时,电容器组回路各元件对谐波的阻抗如表1:

谐波 12%电抗器 6%电抗器 电容器 信息来源:http://tede.cn

基波 12% 6% 100% 信息来自:

三次谐波 36% 18% 33.3%

五次谐波 60% 30% 20% 信息来自:输配电设备网

由表1可见,串12%电抗的电容器回路对3次和5次谐波均呈电感性。

而串6%电抗器的电容器回路对5次谐波呈电感性,而对3次谐波却呈电容性。

也就是说,串6%电抗的电容器组会在抑制5次谐波的同时,放大3次谐波,如果此时系统恰有较大的3次谐波分量,谐波电流就会造成电容器组过电流,使电容器过热、振动和发出异音,严重时将造成熔断器熔断甚至烧损电容器。如果该容性回路与系统感抗出现不利组合,还会引发谐振。造成严重后果。

回避上述隐患的办法是:在电容器组投停顺序上作出规定,当母线具有2组以上电容器组时,电容器组的投停顺序应按所串电抗器百分电抗大小匹配进行。即:电抗值大的先投,回避对可能存在的3次谐波的放大效应,使3次、5次谐波均受到抑制后,再投入串小电抗电容器组,停用时相反。在并联电容器组操作规定和并联电容器组保护及VQC装置的整定时,均应遵守这一原则。

6 .并联电容器的保护方式

6.1 保护熔丝

现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。

6.2 过电流保护 信息请登陆:输配电设备网

过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。

为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。

6.3 不平衡电压保护 信息请登陆:输配电设备网

电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 信息来自:输配电设备网

根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。

单星形接线的电容器组目前国内广泛采用开口三角电压保护。

对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。

6.4 不平衡电流保护

这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种:

6.4.1双星形中性点间不平衡电流保护

保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

这种保护方式比较简单,系统电压不平衡,一相接地故障、高次谐波电流及合闸涌流,都不会引起保护误动,所以在国内外得到广泛应用。

6.4.2 桥式差动电流保护

电容器组每相分为两个支路,每相的串联段数为双数,其中部桥接一台电流互感器。正常运行时,桥路中电流为零,任意一台电容器因故障被切除后,桥接电路中将有电流流过,保护采集到该电流后即动作掉闸。

6.5 过电压保护和低电压保护 信息来自:输配电设备网

电容器在过高的电压下运行时,其内部游离增大,可能发生局部放电,使介质损耗增大,局部过热,并可能发展到绝缘被击穿。因此应保持电容器组在不超过最高容许的电压下运行。安装过电压保护就是为了这个目的。过电压保护的整定值一般取电容器额定电压的1.1~1.2倍。

低电压保护主要是防止空载变压器与电容器同时合闸时工频过电压和振荡过电压对电容器的危害。这种情况可能出现变电站事故跳闸、变电站停电、各配电线切除。电容器如果

将使电压升高。变压器和电容器构成的振荡回路也可能产生振荡过电压,危及设备绝缘。因此安装低电压保护,当母线电压降到额定值的60%左右时即动作将电容器切除。

7. 并联电容器的运行

7.1 投运前的检查验收

新装电容器在投入运行前应做如下检查:

·电容器组及附属设备投入运行前应按试验规程进行试验并合格。

·瓷质部分应完整、清洁无裂纹,遮栏应完好加锁,防小动物措施可靠。

·外壳应无鼓肚及渗漏油现象。 信息来自:

·各部分连接严密可靠,不与地绝缘的每个电容器外壳和架构均应有可靠的接地。

·放电线圈回路应完整,接线正确。

·避雷器的额定电压与持续运行电压应符合《交流电气装置的过电压保护和绝缘配合(DL/T 620-1997)》的规定。

·保护回路和监视回路应完好并全部投入。

·室内电容器组通风应良好。

·熔断器安装角度正确,熔断器熔丝的额定电流为电容器额定电流的1.43~2倍。

·电容器引线采用软连接,电容器安装牢固、螺丝紧固。 信息来自:

7.2 运行监督注意事项

运行中的电容器组,应严格监视其运行情况,并应注意以下几点:

·新投入运行的电容器组第一次充电时,应在额定电压下冲击合闸三次。 信息来自:输配电设备网

·母线具有两组以上电容器组时,电容器组的投切顺序应按所串电抗器百分电抗大小匹配进行,即:电抗值大的先投,电抗值小的后投,停用时相反。 信息来源:http://tede.cn

·电容器组的工作电压不得超过电容器额定电压的1.05倍,其电流不得大于电容器额定电流的1.3倍。

·电容器分闸后再次合闸,其间隔时间不应小于五分钟。 信息来源:http://

·电容器箱体无鼓肚、喷油、渗漏油现象。

·电容器运行中无异常音响,试温蜡片无过热熔化现象。

·放电线圈应完好。

·如电容器安装于室内,还应检查室温,冬季室温不得低于零下25℃,夏季室温不得超过40℃。装有通风装置的,还应检查通风装置各部是否完好。

7.3 故障处理注意事项 信息来自:

发现电容器严重漏油、变形、发热、瓷质破损、内部放电等异常情况应及时将电容器组退出运行。 信息来自:

发现电容器爆炸、起火;接头严重过热或熔化;套管发生严重放电闪络而开关未掉时,应立即将电容器开关拉开。

电容器组开关掉闸后不准强行试送,运行人员必须根据保护动作情况进行分析判断,如系过电流保护动作,则重点检查电容器的外部回路:

电流互感器、电力电缆、引线上有无接地短路现象,有无异物落在上面。如系不平衡保护动作,则有可能是某个或某几个电容器出现内部损坏。这时检查的重点是电容器本身。

电容器事故后进行处理时,必须对每台电容器逐台放电,装在绝缘支架上的电容器外皮亦应对地放电。放电时先将接地端固定好,再用接地棒多次对电容器极间和极对地放电,直至无火花及放电声为止。由于故障电容器可能发生引线接触不良、内部断线或熔断器熔断等,因此有部分电荷可能未放出来,所以检修人员在接触故障电容器以前,还应戴上绝缘手套,用短路线将故障电容器两极短线,然后方可动手拆卸。

更换电容器要做到各相电容值平衡,双星接线的两组同相电容值应平衡,并尽量做到两组三相台数一致,不一致的不应相差太多。

第5篇:贴片功率电感在电路中作用的选型资料

电感的作用

新晨阳

贴片功率电感

电感的分类

贴片功率电感在电路中作用的选型资料

一般电子线路中的电感是空心线圈,或带有磁芯的线圈,只能通过较小的电流,承受较低的电压;而功率电感也有空心线圈的,也有带磁芯的,主要特点是用粗导线绕制,可承受数十安,数百,数千,甚至于数万安。

功率贴片电感是分带磁罩和不带磁罩两种,主要由磁芯和铜线组成。 在电路中主要起滤波和振荡作用。

片式电感器主要有4种类型,即绕线型、叠层型、编织型和薄膜片式电感器。常用的是绕线式和叠层式两种类型。前者是传统绕线电感器小型 化的产物;后者则采用多层印刷技术和叠层生产工艺制作,体积比绕线型片式电感器还要小,是电感元件领域重点开发的产品。

绕线型

它的特点是电感量范围广(mH~H),电感量精度高,损耗小(即Q大),容许电流大、制作工艺继承性强、简单、成本低等,但不足之处是在进一步小型化方 面受到限制。陶瓷为芯的绕线型片电感器在这样高的频率能够保持稳定的电感量和相当高的Q值,因而在高频回路中占据一席之地。

TDK的NL系列电感为绕线型,0.01~100uH,精度5%,高Q值,可以满足一般需求。 NLC型 适用于电源电路,额定电流可达300mA;NLV型为 高Q值,环保(再造塑料),可与NL互换;NLFC 有磁屏,适用于电源线。

叠层型

它具有良好的磁屏蔽性、烧结密度高、机械强度好。不足之处是合格率低、成本高、电感量较小、Q值低。

它与绕线片式电感器相比有诸多优点:尺寸小,有利于电路的小型化,磁路封闭,不会干扰周围的元器件,也不会受临近元器件的干扰,有利于元器件的高密度安装;一体化结构,可靠性高;耐热性、可焊性好;形状规整,适合于自动化表面安装生产。

TDK的MLK型电感,尺寸小,可焊性好,有磁屏,采用高密度设计,单片式结构,可靠性高;MLG型的感值小,采用高频陶瓷,适用于高频电路;MLK型工作频率12GHz,高Q,低感值(1n~22nH) 薄膜片式 电感的作用

新晨阳

贴片功率电感

电感的分类

具有在微波频段保持高Q、高精度、高稳定性和小体积的特性。其内电极集中于同一层面,磁场分布集中,能确保装贴后的器件参数变化不大,在100MHz以上呈现良好的频率特性。

编织型

特点是在1MHz下的单位体积电感量比其它片式电感器大、体积小、容易安装在基片上。用作功率处理的微型磁性元件。

电感元件产生的自感电动势总是阻止线圈中的电流变化的,故电感元件对交流电有阻力,阻力的大小用感抗XL 来衡量。感抗XL 与交流电的频率及电感量的大小有关。感抗的这种关系可用下式表示,即

从上式可以看出,电感元件在低频时XL 较小,通过直流电时,由于f=0 , 故XL=0,仅线圈直流电阻起作用,因此电阻很小,近似电感元件短路。所以,电感元件在直流电路中一般不用其感抗性能当电感元件在高频下工作时, XL 很大,近似开路。电感元件的这种特性与电容器正好相反.所以利用电感、电容就可组成各种高频、低频滤波器、调谐回路、选频电路、振荡回路、补偿电路、延迟回路及阻流器等,在电路中发挥着重要作用。

下面举出一些电感元件在电路中的应用实例。 1.分频网络

图5-9 是音响电路的分频电路图。电感线圈L1和L2为空心密绕线圈,它们与C 1 、C2 组成分频网络.对高、低音进行分频,以改善放音效果。

2. 滤波电路

图5-10 是电子管扩音机的电源滤波电路图。图中L 为插有硅钢片的铁心线圈,又称为低频扼流圈。它在电路中的作用是阻止残余交流电通过,而仅让直流电通过。

电感的作用

新晨阳

贴片功率电感

电感的分类

3. 选频与阻流

图5-11 所示电路是单管半导体收音机电路。其中VT,为高频半导体管,它是用来进行来复放大的。L 1 为天线线圈,它是在磁棒上用多股导线绕制而成的。L 1 与C1,C2 组成井联谐振电路,对磁棒天线接收到的无线电信号进行选频,选出的信号由L1感应到L2,由VT1,进行放大,放大了的信号送到L3,L3为一固定电感器,它的电感量为3mH ,其作用是利用感抗阻止高频信号进入耳机,而仅让音频信号通过。因此把L.J称为高频阻流圈。 L3对500kHz 高频信号的感抗很大,为

XL(500kHz)=2π x 500 x 10 3 x 3 x 10 -3≈9.42kΩ

而L.J对10kHz 低频信号的感抗很小,为

XL(10kHz)=2π x 10 4 x 3 x 10 -3≈188Ω

计算结果表明,只有音频信号可以通畅地经过L3到达耳机,从而使我们可以昕到电台的播音。

4. 与电容器组成振荡回路

图5-12 所示电路是超外差半导体收音机中的变频器电路。L4为振荡线圈,它与C1b 组成本机振荡回路;L3为反馈线圈。本机振荡的信号由C2 、凡送入VT,发射极,与由L

1、C1a选择出来的广播信号在VT1内进行棍频。混频后的信号从VT1集电极输出,并由中频变压器T2 检出465kHz 中频信号送往中频放大器。 电感的作用

新晨阳

贴片功率电感

电感的分类

5. 补偿电路

利用电感器的感抗随频率变化的特性,可进行频率补偿。图5-13 是某电视机的视放电路,其高频补偿电路由L15 、L16 组成。L16 与VT15 的集电极负载R80串联,使总的负载阻抗为z = R80 + XL16 ,频率越高,感抗X L16越大,使高频增益增大。同时L16 与显像管的输入电容和分布电容形成并联谐振。选取合适的L16值使其谐振在放大器增益衰减的频率上,可以提高谐振点上的增益。L15串联在VT15与显像管阴极之间,当频率增加时,感抗XL15 增大,使R80与X L15的井联阻抗增大,即高频负载电阻增加,也会起到提高高频增益的作用。

电感的作用

新晨阳

贴片功率电感

电感的分类

6. 延迟作用

电感线圈在电路中还可起到延迟作用,使输出的信号与输入的信号基本不变,而只使输出延迟一段时间,即信号的幅度不变,而仅相位发生变化。

图5-14 所示电路是彩色电视机亮度延迟线的典型应用电路,其中DL301为亮度延迟线。亮度延迟线为特殊的电感器件,它的电感量由延迟时间和信号频率确定.

为了保证彩色电视信号中的亮度信号与色度信号叠加同步,亮度延迟线会将亮度信号延迟0.6μs 。

特性

1、表面贴装高功率电感。

2、具有小型化,高品质,高能量储存和低电阻之特性。

3、主要应用在电脑显示板卡,笔记本电脑,脉冲记忆程序设计,以及DC-DC转换器上。

4、可提供卷轴包装适用于表面自动贴装。 电感的作用

新晨阳

贴片功率电感

电感的分类

特点

1、平底表面适合表面贴装。

2、优异的端面强度良好之焊锡性。

3、具有较高Q值,低阻抗之特点。

4、 低漏磁,低直电阻,耐大电流之特点。

5、可提供编带包装,便于自动化装配

第6篇:低频功率放大器的设计与分析

目录

述 ..................................................................................................... 1 1.功率放大电路的特点 ............................................................................... 2

1.1主要技术指标 .................................................................................. 2

1.1.1最大输出功率POM ................................................................................... 2 1.1.2转换效率η ............................................................................................... 2

1.2对功率放大电路的基本要求 .......................................................... 3

1.2.1能提供满足的输出功率 ........................................................................... 3 1.2.2具有较高的效率 ....................................................................................... 3 1.2.3非线性失真要小 ....................................................................................... 3 1.2.4良好的散热和保护 ................................................................................... 3

2典型的功率放大电路 ............................................................................... 4

2.1系统组成........................................................................................... 4 2.2由基本分立式元件构成的简单功率放大电路图 .......................... 4 3具体设计 .................................................................................................... 5

3.1系统组成........................................................................................... 5 3.2系统的硬件设计 .............................................................................. 5

3.2.1前置放大级设计 ....................................................................................... 6 3.2.2功率放大电路设计 ................................................................................... 7

4系统测试分析............................................................................................ 9 5结论 .......................................................................................................... 10 课程设计体会 ............................................................................................. 11 参考文献 ..................................................................................................... 12

功率放大电路通常作为多级放大电路的输出级,将前级送来的信号进行功率

[1]放大进而推动负载工作。

功率放大器可由分立元件构成,也可由功率集成电路构成。目前集成低频功率放大器品种很多,典型的有TDA1

521、TDA1

514、LM1875。 些优质功放模块体积小、性能优越、保护功能齐全、外围电路简单、易制作易调试。

功率放大器不仅仅是消费产品(音响)中不可缺少的设备,还广泛应用于控制系统和测量系统中。低频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至思想认识上都取得了长足的进步.尽管目前市场上的功放产品价格已经很低,但少则几百元、 多则几千元的价格还是让人有些不舍,本文给出一种简单实用、 制作成本低廉的低频功率放大器的设计方案,并给出实际测试结果,为音响发烧友提供一种实用方案。功率放大可由分立元件组成,也可由集成电路完成.由分立元件组成的功放,如果电路选择得好,参数恰当,元件性能优越,制作调试得好,则性能要高于较好的集成功放.本次设计功放采用分立元件组成。

1 1.功率放大电路的特点

1.1主要技术指标

功率放大电路的主要技术指标为最大输出功率和转换效率

1.1.1最大输出功率POM 功率放大电路提供给负载的信号功率称为输出功率。在输入为正弦波切输出基本不是真条件下,输出功率是交流功率,表达式为

POIOUO

(1-1)

式中I0和U0均为交流有效值。最大输出功率POM实在电路参数确定的情况下负载上可能获得的最大交流功率

1.1.2转换效率η

功率放大电路的最大输出功率与电源所提供的功率之比成为转换效率。电源提供个功率是直流功率,其值等于电源输出电流平均值及其电压之积。

通常功放输出功率大,电源消耗的直流功率也就多。因此,在一定的输出功率下,减小直流电源的功耗,就可以提高电路的效率。

2 1.2对功率放大电路的基本要求 1.2.1能提供满足的输出功率

为了获得尽可能大的输出功率,要求功放管的电压和电流都有足够大的输出幅度,因此,管子往往在接近极限参数状态下工作。

1.2.2具有较高的效率

放大器实质上是一个能量转换装置。由于输出功率大,因此,直流电源供给的功率和线路本身所消耗的功率也大,效率就成为一个重要的指标。所谓效率,就是负载得到的有用信号功率和电源供给的直流功率的比值。效率越高,线路消耗的功率和直流电源功率之比就越小。

1.2.3非线性失真要小

功率放大器在大信号下工作,难免产生非线性失真。而且输出功率越大,失真往往越严重,这就使得输出功率与非线性失真成为一对矛盾。在测量系统和电声设备中,非线性失真要尽量小一些。

1.2.4良好的散热和保护

由于流过功放管的电流较大,有相当大的功率消耗在管子上。因此,功放管在工作时一般要加散热片。另外,功放管往往在极

3 限状态下工作,因而损坏的可能性也大,在电路中要采取一些保护措施。

2典型的功率放大电路

2.1系统组成

2.2由基本分立式元件构成的简单功率放大电路图

4 3具体设计

3.1系统组成

系统主要由前置放大级、 功率放大级2部分组成.系统框图如图所示

其中前置放大级主要完成小信号的电压放大任务;功率放大级则实现对信号的电压和电流放大

3.2系统的硬件设计

由于系统要求输出额定功率不小于 10 W 考虑留出 50 %的裕量 ,故设计输出功率应在 15W以上,同时,输出负载 10Ω,则

VOM2P0R2151017.317V

系统的最大增益为:

17Amax20lg71dB 3510系统的最小增益为:

17Amin20lg27.7dB 370010 5 整个放大电路的增益应在 27. 7 dB~71 dB 范围内可调。为保证放大器性能,单级放大器的增益不宜过高,通常在 20~40 dB(放大倍数 10~100倍)之间。故整个放大器增益通过三级放大实现。为方便增益调整,可使功放级(包括功率管和直接推动功率管的运放) 增益固定,且必须小于A min,故其增益取 22 dB。则前置级需要两级,其总增益应在 5.7~49 dB 之间可调。

3.2.1前置放大级设计

前置放大级主要完成小信号电压放大的任务 ,其失真度和噪声对系统的影响是优先考虑的指标.对于前置放大级的设计 ,由于第一级前置级增益为:

AU1第二级前置级增益为:

R2150k1524dB R110kR5150kAU21524dB

R410k考虑到输入信号的变化范围很大,在两级间串一个滑动变阻器来改变整个系统的增益,同时也起到对信号的衰减作用。前置放大采用集成运放NE5532,同众多的运放相比,它具有高精度、 低噪声、高速、高阻抗、频带宽等优良性能[2],具体指标参数为:转换速率 9 V/μs,增益带宽积 10MHz,直流增益为 105倍,最高工作电压为 ±22V,这种运放的高速转换性能可大大改善电路 6 的瞬态性能,较宽的带宽能保证信号在低、中、高频段均能不失真地输出,使电路的整体指标大大提高。

3.2.2功率放大电路设计

在实用电路中,往往要求放大电路的末级输出一定的功率以驱动负载。从能量控制和转换的角度来看功率放大电路与其它放大电路在本质上没有根本的区别 ,只是功放既不是单纯追求输出高电压,也不是单纯追求输出大电流,而是追求在电源电压确定的情况下,输出尽可能大的功率.功率放大电路的主要任务是,在允许的失真限度内,尽可能高效率地向负载提供足够大的功率。因此,功率放大电路的电路形式、工作状态、分析方法等都与小信号放大电路有所不同.对功率放大电路的基本要求是:

(1) 输出功率要大。输出功率 PO = UO ×IO,要获得大的输出功率,不仅要求输出电压高,而且要求输出电流大。因此,晶体管工作在大信号极限运行状态,应用时要考虑管子的极限参数,注意管子的安全. (2) 效率要高。放大信号的过程就是晶体管按照输入信号的变化规律,将直流电源提供的能量转换为交流能量的过程,其转换效率为负载上获得的信号功率和电源供给的功率之比值。功放级电路(如图) 7 主要由 NE5534 和功率末级的两对复合对管(组成达林顿管) 构成,本次设计选用专为音响设备设计的对管,这种对管的特性比较一致,可以减小失真。NE5534 主要完成电压放大任务,接成大环电压负反馈形式,放大倍数为 R3/ R1。为弥补由运放产生的零漂和因布线等造成的失真,NE5534 的 1 脚与 8脚接调零电阻,5 脚与 8 脚之间接补偿电容[4]。

达林顿管主要完成电流放大任务。对管的选择主要考虑其参数的对称性。一般推动管的电流增益β1 在 100 左右,输出管的电流增益β2 在 40 左右.这 2 个管子的 2 个关键参数为特征频率 f T和集电级最大允许耗散功率 PCM。

8 特征频率 f T 与放大电路上限频率 f h 有下列关系: f T = f h × βh ; 系统阶跃响应上升时间 t r 与放大电路上限频率 f h 有如下关系:

t r· f h≈0. 35 ; 推动管的特征频率为:

f T ≥0. 35/ ( 12 ×105)×40≈1 MHz ; 对甲乙类 OCL 放大器,PTM > 0. 2 POM

PTM为单管最大管耗。POM为最大失真输出功率.因此输出管 PCM ≥0. 2 ×15 = 3 W,根据以上计算,并考虑到指标提高及工程实际,推动管选用对管 2SB6

49、2SD669[3 ],其参数为 f T = 140MHz ,PCM = 15 W,UCEO = 180 V。输出管选用对管 2SA1072 和 2SC2522 , 其参数为 f T = 60MHz , PCM = 120 W , UCEO = 120 V。

4系统测试分析

整个系统在调试时,分部分调试.首先是是前置放大级和转换电路的调试 ,然后是功率级本身的调试 ,最后将整个电路连接起来调试. 9 (1) 额定功率 POR :输入 1 kHz 正弦波 ,用示波器测到此时输出波形电压有效值为 U =12. 7 V ,则 POR = U2/ RL = 12. 72/ 10 = 16. 1 W。

(2) 带宽 BW :输入信号幅值不变 ,改变频率 ,用示波器测输出幅值 ,下限频率 f l 和上限频率 f h 对应的幅值为 0. 707 ×中频幅值。测得带宽为 10 Hz~90 kHz。

(3) 在 POR下的效率:断开正电源 ,串入万用表 ,在 POR下 ,测得电压为 20. 28 V ,电流为652 mA ,则电源输入功率为: PIN = 20. 28 ×0. 652 ×2 = 26. 45 W. 效率为:η= POR/ PIN =16. 1/ 26. 45 = 60. 9 %。

(4) 交流声功率:输入端短路时 ,用晶体管毫伏计测输出端交流电压有效值为 1. 38 mV ,则 P = (1. 38 ×106W =1. 904μW。

(5) 在 POR和 BW 内失真度:采用失真度测试仪 ,在输入信号为 1 kHz 时 ,测得波形的失真度为:0. 5 %。

5结论

以上详细介绍了一种简单实用、价格低的低频功率放大器的电路设计方法,整套设计只需几十元。从实验的各项数据分析,本电路具有很好的频率响应特性,从测得的带宽 10~90 ×103Hz可以看出,该功率放大器可以很好地实现对低频信号的放大作用,能较好地达到实际要求,也符合理论上的要求。 10 课程设计体会

通过这次对低频功率放大器的设计与制作,让我了解了设计电路的程序,也让我了解了关于OCL音频功率放大器的原理与设计理念,要设计一个电路总要先用仿真成功之后才实际接线的。但是最后的成品却不一定与仿真时完全一样,因为在实际接线中有着各种各样的条件制约。但也有些电路在仿真中无法成功,而在实际中因为芯片本身的特性而成功的。所以,在设计时应考虑两者的差异,从中找出最适合的设计方法。

在为期一周的课程设计中我深深的感觉到自己专业知识的匮乏,对一些工作感到无从下手,茫然不知所措,这时才真正领悟到学无止境的含义,千里之行,始于足下。这次学习,让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解。这次课程设计终于顺利完成了,虽然在设计中遇到了很多问题,但是都被我们一一克服。 最后,我要感谢我的老师以及同学,在做课程设计期间对我的帮助,尤其是这次的指导老师,他将自己宝贵的经验毫无保留的传授给我,让我体会到什么叫用心良苦。

参考文献

[1]徐安静主编.电工学II 模拟电子技术 清华大学出版社,2008. [2]NE5532 Datasheet [ J / OL ] . . 2003. 3. [5]华成英 童诗白主编.模拟电子技术基础(第四版) 高等教育出版社,2008. 12

第7篇:大功率商用电磁炉产品功率和时间的计算方法

• 大功率商用电磁炉产品功率和时间的计算方法 • 大功率商用电磁炉产品功率和时间的计算方法 1kg(升)水温度每升高1摄氏度耗电量是0.00116度(kw)

一、1公斤水升温1摄氏度需要热量1大卡 热量Q=比热容C×质量m×温度差t Q... 大功率商用电磁炉产品功率和时间的计算方法

1kg(升)水温度每升高1摄氏度耗电量是0.00116度(kw)

一、1公斤水升温1摄氏度需要热量1大卡

热量Q=比热容C×质量m×温度差t Q=CxMxT 水的比热c=4.2×10 3 J/KG 温度差是1(度)

水的质量m=密度p×体积v=1.0×103×10-3=1kg M=PxV (1升水即1公斤水)

结论: 热量Q=c×m×t=4200×1×1=4.2×103=1000卡=1大卡

二、1kw/h产生热量860大卡

所以1升水升温1摄氏度耗电量为1/860=0.00116度 (kw) 把1吨水烧开(由常温20度升到100度),需要热量8万大卡,耗电量92.8度。

举例说明:

把65公斤的水从20度水升到100度(升温80度)需要热量5200大卡。 1升柴油产生热量8330大卡(设定热效率为100%,柴油密度为0.85kg/升)。 柴油灶热效率35%,

使用柴油: 需要耗油1.8升,柴油5.8元/升,费用10.4元。

三、大功率电磁炉1kw/h产生热量860大卡,热效率84%用电:需要耗电6.4度,费用6.4元。

所以用电比燃油节省,而且电费越便宜的地方越省,尤其是鼓励用电的区域!

四、商用电磁炉产品功率和时间的计算方法

功率计算公式 (注:396为常数)

功率(KW)=396X水量(升或公斤)÷60÷要求的时间(分钟)例如:要求30分钟烧开65公斤水,则功率需要:

330X65公斤÷60÷30分钟=12KW

烧水速度计算

时间(分钟)=396X水量(升或公斤)÷60÷功率(KW)例如:要求计算12KW烧开65KG水需要多少时间

396X65KG÷60÷12KW=25.75分钟

第8篇:三相电机的功率计算

1、力辉三相电机的功率计算: I=P/(U×cosφ×η)。(P额定功率kw。U额定电压0.22v。cosφ为功率因素。η为效率。当铭牌上未提供cosφ和η时,均可按0.75估算)。效率是什么?效率:是指电动机输出功率与输入功率之比的百分数。电动机在运转中因本身导电回路电阻发热,铁芯磁路有涡流损耗、磁滞损耗,还有机械磨损等。均为电动机内部的功率损耗,所以输出的机械功率总是小于输入的电功率。效率η一般在电动机的铭牌上都有标注。

2、三相对称负载的有功功率,可以计算1相负载的有功功率,再乘以3:

3、P=3×U 相×I 相×cosφ相 可是我们往往知道的是电机的线电压U线,线电流I 线,而且也不知道三相电机绕组是什么接法,怎么办?

4、不要紧,我们先假设,电机是Y接的: U相=1/√3 U线 ,I 相=I 线 ,所以 P=3×U 相×I 相×cosφ相

=3×(1/√3 U线)×I 线×cosφ相

=√3 ×U线×I 线×cosφ相

5、不要紧,我们再假设,电机是△接的: U相=U线 ,I 相=1/√3 I 线 ,所以 P=3×U 相×I 相×cosφ相

=3× U线×(1/√3I 线)×cosφ相

=√3 ×U线×I 线×cosφ相

6、从

4、5知道,三相对称负载的有功功率,不管是什么接法,只要用线电压、线电流,就是一个公式:

P=√3 ×U线×I 线×cosφ相

7、这个证明的关键是:

1)Y接时,U相=1/√3 U线 ,I 相=I 线 ; 2)△接时,U相=U线 ,I 相=1/√3 I 线;

8、如果你不清楚,请看图:

第9篇:按功率计算电流的口诀

1.用途:

这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。

电流的大小直接与功率有关,也与电压,相别,力率(又称功率因数)等有关。一般有公式可供计算,由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流。

2.口诀:低压380/220伏系统每KW的电流,安。

千瓦,电流,如何计算?

电力加倍,电热加半。

单相千瓦,4.5安。

单相380,电流两安半。

3.说明:口诀是以380/220V三相四线系统中的三相设备为准,计算每千瓦的安数。对于某些单相或电压不同的单相设备,其每千瓦的安数.口诀中另外作了说明。①这两句口诀中,电力专指电动机.在380V三相时(力率0.8左右),电动机每千瓦的电流约为2安.即将“千瓦数加一倍”(乘2)就是电流,安。这电流也称电动机的额定电流.

【例1】5.5千瓦电动机按“电力加倍”算得电流为11安。

【例2】40千瓦水泵电动机按“电力加倍”算得电流为80安。

电热是指用电阻加热的电阻炉等。三相380伏的电热设备,每千瓦的电流为1.5安。即将“千瓦数加一半”(乘1.5),就是电流,安。

【例1】3千瓦电加热器按“电热加半”算得电流为4.5安。

【例2】15千瓦电阻炉按“电热加半”算得电流为23安。

这口诀并不专指电热,对于照明也适用.虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线干线仍属三相。

只要三相大体平衡也可以这样计算。此外,以千伏安为单位的电器(如变压器或整流器)和以千乏为单位的移相电容器(提高力率用)也都适用。即是说,这后半句虽然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位的电热和照明设备。

【例1】12千瓦的三相(平衡时)照明干线按“电热加半”算得电流为18安。

【例2】30千伏安的整流器按“电热加半”算得电流为45安。(指380伏三相交流侧)

【例3】320千伏安的配电变压器按“电热加半”算得电流为480安(指380/220伏低压侧)。

【例4】100千乏的移相电容器(380伏三相)按“电热加半”算得电流为150安。

②.在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的(如照明设备)为单相220伏用电设备。这种设备的力率大多为1,因此,口诀便直接说明“单相(每)千瓦4.5安”。计算时,只要“将千瓦数乘4.5”就是电流,安。同上面一样,它适用于所有以千伏安为单位的单相220伏用电设备,以及以千瓦为单位的电热及照明设备,而且也适用于220伏的直流。

【例1】500伏安(0.5千伏安)的行灯变压器(220伏电源侧)按“单相(每)千瓦4.5安”算得电流为2.3安。

【例2】1000瓦投光灯按“单相千瓦、4.5安”算得电流为4.5安。对于电压更低的单相,口诀中没有提到。可以取220伏为标准,看电压降低多少,电流就反过来增大多少。比如36伏电压,以220伏为标准来说,它降低到1/6,电流就应增大到6倍,即每千瓦的电流为6×4.5=27安。比如36伏,60瓦的行灯每只电流为0.06×27=1.6安,5只便共有8安。

③在380/220伏三相四线系统中,单相设备的两条线都接到相线上,习惯上称为单相380伏用电设备(实际是接在两条相线上)。这种设备当以千瓦为单位时,力率大多为1,口诀也直接说明:“单相380,电流两安半”。它也包括以千伏安为单位的380伏单相设备。计算时,只要“将千瓦或千伏安数乘2.5就是电流,安。

【例l】32千瓦钼丝电阻炉接单相380伏,按电流两安半算得电流为80安。

【例2】2千伏安的行灯变压器,初级接单相380伏,按电流两安半算得电流为5安。

【例3】21千伏安的交流电焊变压器,初级接单相380伏,按电流两安半算得电流为53安。

注1:按“电力加倍”计算电流,与电动机铭牌上的电流有的有些误差,一般千瓦数较大的,算得的电流比铭牌上的略大些,而千瓦数较小的,算得的电流则比铭牌上的略小些,此外,还有一些影响电流大小的因素,不过,作为估算,影响并不大。

注2:计算电流时,当电流达十多安或几十安心上,则不必算到小数点以后,可以四舍五入成整数。这样既简单又不影响实用,对于较小的电流也只要算到一位小数和即可

第二章导体载流量的计算口诀

1.用途:各种导线的载流量(安全电流)通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。导线的载流量与导线的载面有关,也与导线的材料(铝或铜),型号(绝缘线或裸线等),敷设方法(明敷或穿管等)以及环境温度(25度左右或更大)等有关,影响的因素较多,计算也较复杂。10下五,100上二。25,35,四三界。70,95,两倍半。穿管温度,八九折。裸线加一半。铜线升级算。3.说明:口诀是以铝芯绝缘线,明敷在环境温度25度的条件为准。若条件不同,口诀另有说明。绝缘线包括各种型号的橡皮绝缘线或塑料绝缘线。口诀对各种截面的载流量(电流,安)不是直接指出,而是“用截面乘上一定的倍数”,来表示。为此,应当先熟悉导线截面,(平方毫米)的排列11.52.54610162535507O95l20150185……生产厂制造铝芯绝缘线的截面积通常从而2.5开始,铜芯绝缘线则从1开始;裸铝线从16开始;裸铜线从10开始。

①这口诀指出:铝芯绝缘线载流量(安)可以按截面数的多少倍来计算。口诀中阿拉伯数码表示导线截面(平方毫米),汉字表示倍数。把口诀的截面与倍数关系排列起来便如下:..1016-2535-5070-95120....五倍四倍三倍两倍半二倍现在再和口诀对照就更清楚了.原来“10下五”是指截面从10以下,载流量都是截面数的五倍。“100上二”(读百上二),是指截面100以上,载流量都是截面数的二倍。截面25与35是四倍和三倍的分界处.这就是“口诀25、35四三界”。而截面70、95则为2.5倍。从上面的排列,可以看出:除10以下及100以上之外,中间的导线截面是每两种规格属同一倍数。

上一篇:板式家具生产设备好下一篇:商务经理述职报告