单晶硅实习报告

2023-06-16 版权声明 我要投稿

对于一个阶段的实习来说,实习总结的撰写是必不可少的。这不仅是学校的硬性要求,也是更大程度拓展实习收获的方式之一。然而,很多人并不明白如何撰写实习总结,今天小编给大家找来了《单晶硅实习报告》,供大家参考,更多范文可通过本站顶部搜索您需要的内容。

第1篇:单晶硅实习报告

单晶技术员实习汇报

实习报告

在本周的实习过程当中,我学到了很多,也发现了很多,我学的 越多,就发现不知道的更多。

收尾的过程中,我学到了在作业指导书中没有的,师傅们经验丰富。通常收尾都看的是剩料的重量,然而有些时候那个数字并不是很准确,师傅们凭借经验把一个一个的尾巴完美的收好。看锅位,看锅边,看液口距,以及剩料的重量,才能做到安全收尾。

有一天的夜班的我发现,我附近的四台炉子液面晃动的厉害,当我站在炉台旁边的铁板上时,铁板震动的厉害,当我仔细一听,发现只真空泵的振动很大,我下到一楼进行了观察,泵油少的振动明显的比油多的要大。观察发现下面尽然有两种真空泵,一种是上海产的,一种的浙江产的,发现在同等的状况下,振动明显的不一样。在下面感觉到振动非常大,虽然炉台的底座是用大石墩固定,但是就不会产生一点点的影响吗,也许是我多疑了。我们大家都在工艺方面努力的改进,然而我觉的在设备方面的改进比工艺方面的更好,他的本质的在设备,工艺能提高的,他是受设备的限制,只有更好的设备才能把拉晶做的更好。如果的把设备和工艺同时改进,那才能做到效益最大化。

在拆装热场方面,我看到我们的辅助工以及主操为高纯卫生而小心翼翼,但是当我看到他们本身时,我感到心凉,因为他们有的人的本身的工服以及手套之类的还有除尘管,这些都比热场更脏,这样就算如何的小心,最终热场也是被污染,而不是被清理。这些我不知道有没有规定,希望在这些方面可以有有点建议以及改善。

在成晶率方面大家都看的很重,然而我就有不同的感想,员工的心理都是在每根棒子的单个成晶率,就算拉很长的时间,也不去管,只管成晶率,我认为我们应该考虑的是单位时间内的成晶率,而不是单炉的成晶率,只有更高的单位时间的产出才能效益的做的更好,缩短单炉的运行时间,这个方面有好多可以改进,比如拆装炉的时间,调温的时间,等晶成长的拉速(并不是拉速慢的就好),对运行工时严格把关,这样会节省很多的时间,从而增加效率。效率提高的同时在改进单个成晶率,这样就会做的更好。

第2篇:多晶硅行业研究报告

2008年将注定是全球可再生能源行业发展的里程碑的年份,在中国,年初的多晶硅热潮为这个新的年份拉开热情澎湃的序幕,我们愿意为大家分享我们对行业的观点:

第一个观点是多晶硅供需到2010年仍不会出现大范围过剩,这是基于供给和需求做出的判断;对多晶硅供应的分析我们在之前的各次报告中多次提及,包括主要大厂的扩产计划和新技术的使用。需求是我们分析的重点,其要点有二:一是欧美市场的迅速启动,尤其是美国大选对于新能源行业的重大影响值得重点关注;二是的电池片环节的产能率不到60%,成为多晶硅扩产的缓冲池;多晶硅厂属于化工联合企业,技术难度是全方位的,包括技术路线、设备选型、调试、运行、检测等环节,门槛相当高,这是我们强调的第二点;

多晶硅企业的技术难度在于整体性的技术瓶颈,而非几个关键技术诀窍,而在国内能大规模生产之前,国际大厂不会进行技术转移,PPP之类企业以建造为主,并无完整技术转让;国内目前投产的企业技术来源均是739和740厂,这一点值得玩味。

第三点:新光硅业是目前国内唯一产量近千吨的大厂,我们预计2008年可以实现净利润11.6亿元,与新光硅业(一期及二期)相关的企业包括川投能源、天威保变、乐山电力和岷江水电。

观点一:多晶硅供需到2010年仍不会出现大范围过剩

原因一:太阳能电池环节(Cell)的产能率不到60%

2004年开始的全球太阳能热潮使得太阳能电池生产线的建设如火如荼,但硅料的供应使得当年诸多购买建设的电池生产线处于停工半停工状态;根据目前的估计,全球太阳能电池片产能利用率约55%,也就是说目前的太阳能电池生产线有接近一半处于闲置状态;考虑目前主流的30mw生产线数千万之巨的投资规模和太阳能电池行业硬件设备迅速的更新换代,只要电池生产的盈利高于变动成本,对厂商来说,生产就是比闲置更理性的选择;因此,我们认为电池片环节的低产能利用率是整个多晶硅供应的蓄水池,即使多晶硅产能扩张一倍,也会被下游的电池环节吸收;而

对电池产量翻番能否为下游接受的问题我们下面马上,这就是便于的新能源发展热潮有望超过我们的预期。

原因二:欧美太阳能市场将面临爆发式增长

我们对2008年以后的欧美太阳能市场寄予厚望,认为将面临爆发式增长,原因有二:政府支持图谋的加大和新技术的可能出现,后者的影响主要是在,这里我们主要分析前者:

美国是全球新能源市场发展的最大动力,尽管参院的PTC审议遇到障碍,但各州的支持图谋不断加大,而民主党总统候选人的政策主张更加令人振奋;

民主党的总统候选人Hilary Clinton和Barack Obama的新能源主张中最重要的就是到2025年将美国的可再生能源发电比例提高到25%,考虑到这一比例目前不超过1%,未来的美国市场规模望而生畏;

欧洲,除了新能源的龙头国家德国外,西班牙、意大利对新能源的支持力度也相当之大,就连主要以核电为主的法国也有了自己的新能源发展规划,在2020年以前太阳能装机3000mw;

我们认为,行业中短期的最大推动在于各国政府尤其是欧美发达国家政府的支持,而不断高涨的能源价格和传统能源产地的地缘政治境况不断恶劣是欧美国家发展新能源的强大动力;

观点二:新光硅业是国内多晶硅龙头企业、2008年盈利接近12亿

国内多晶硅价格2008年仍将维持高位

目前国内多晶硅散货价格已经超过2800元/kg,价格之高令人咂舌;但由于2008年产能虽有接近翻番的扩张,但产量扩张主要体现在2008年下半年和2009年,考虑下游的市场扩张,供需状况并未得到根本性改观,而上半年供需形势的紧张形势与去年相比更是不相上下;综合考虑新厂投产速度和下游需求增长,我们认为2008年多晶硅价格仍将维持高位;国际大厂的所谓长单价格与国内企业基本没有,以国际硅料大厂对其大客户的长单价格比照国内硅料走势没有意义。

新光硅业2008年盈利接近12亿元

观点三:多晶硅是高集成度的化工联合企业,技术门槛高

多晶硅企业的技术难度在于整体性的技术的瓶颈,而非几个关键技术诀窍

多晶硅企业本质上是化工联合企业,这从国际大厂的情总可以看出,德国的Wacker是全球知名的化工企业,其涉足的领域从盐矿开采、硅烷气到多晶硅、硅片,涉及与多晶硅相关的上游产品均可以自行生产;Hemlock的股东中,Dow Corning是化工建材巨头陶氏化学和康宁成立的合资;这些企业均有多年的化工企业经营经验,从事多晶硅生产也已多年,部分企业超过五十年生产经验,是国内企业无法比拟的;多晶硅的生产涉及多次复杂的化学反应,各项控制节点多以千计,而从一个陌生的行业进入多晶硅生产,即使不考虑建设的问题,单纯调试运行的难度也是相当之大的。

国内能大规模生产之前,国际大厂不会进行技术转移

目前国际大厂的产能当中主要是改良西门子法,而国内目前已经投产和即将投产的企业中,均采用改良西门子法;国际大厂对多晶硅的垄断已经维持了数十年,鉴于多晶硅对IT行业的重要意义和目前行业的高利润,国际大厂对此实行持续的技术封锁;从目前的情况看,在国内没有大规模实现生产之前,国际大厂不会对中国实行技术转让,所谓德国技术或者美国技术还是俄罗斯技术均不是完整的技术转让;

关于大厂专家的指导,根据我们现在了解到的情况,国际上普遍实行二十年的行业禁止期,从相关大厂辞职的技术人员在二十年内不得进入原企业的竞争对手,因此,目前国内企业能够请到的、有过大厂工作经验的专家,其工作经验也是二十年前的,否则就存在法律问题。

国际目前的技术转移以建造为主,并无完整技术转让

目前国际上比较著名的多晶硅厂建造是PPP(Polysilicon Plant Project),SCC等境外公司,均具有建造多晶硅企业的经验;PPP等公司与国内的成达公司属于同一类型企业,为化工企业,只不过从事的是特殊的化工企业----多晶硅厂的,他们不提供具体的多晶硅技术包;

我们认为,有经验的制造商加盟有助于多晶硅厂更快更好的达产,但并不是决定因素。

国内目前投产的所有企业技术来源均是739和740厂

目前国内已经投产的企业包括新光硅业、东汽硅材料厂、洛阳中硅、徐州中能,究根探底,这几家的技术来源均是之前739和740两个硅材料厂;

739厂即峨嵋半导体厂,本世纪初国内为建设第一个千吨级多晶硅厂从峨嵋厂抽调骨干,这也构成了目前新光硅业的主要技术队伍;

而从原来的峨嵋半导体材料厂被东方电气增资控股,也就是现在的东汽硅材料厂;徐州中能的技术来源是新光硅业,这在业内也是尽人皆知的,因此其技术源头也是739厂;

740厂即原来的洛阳硅材料厂,以此为基础组成了现在的洛阳中硅;

总而言之,目前已经投产的多晶硅厂均有明确的技术来源,并无完全成立的企业做成。

第3篇:单晶色差质量问题分析报告

订单号:SU4G1013-12 产品类型:M190B 质量问题描述:

SU4G1013-12订单第三方验货过程中发现M190黑色组件存在色差问题,共抽检组件1436片,不良组件25片,不良比例1.7%,不良图片如下图所示:

临时纠正措施:

1.分选暂时取消扇形分选,回归至原来的单片分选,避免色差问题的重复出现; 2.对车间生产的组件进行检查,看是否存在色差,同时后续加强对色差的检查; 3.对已经出现的不良组件进行隔离放置,与销售进行沟通,寻找合理解决方案。 产生原因:

为了节约成本,减少分选人力,同时针对电池片颜色相差不明显的情况,已要求分选时可以同时拿10片左右电池片扇形打开,将颜色相差较明显的电池片挑选出来,由于单晶电池片色差本身不明显,同时不同角度看会显示不同的颜色,因此扇形分选时电池片没有完全打开,存在色差的电池片没有完全分选出来,导致成品组件存在色差现象。

永久性纠正措施:

1.工艺根据电池片色差状况,评估取消分选,减少人力的可行性,可针对不同

厂家的电池片,采取不同的措施;

2.生产严格按照工艺要求进行操作,不允许私自改变分选方式或取消分选; 3.质量对生产过程加大监督力度,避免色差问题的重复发生。 效果验证:

7月30日生产的SU4G1306-12订单M245B按照要求单片进行分选,成品组件未出现色差现象,经质量和销售确认后合格。

第4篇:单晶硅太阳能电池详细工艺

单晶硅太阳能电池

1. 基本 结构

2.太阳能电池片的化学清洗工艺

切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。

具体来说太阳能硅片表面沾污大致可分为三类:

1、有机杂质沾污: 可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。

2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径 ≥ 0.4 μm颗粒,利用兆声波可去除 ≥ 0.2 μm颗粒。

3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类: (1)、沾污离子或原子通过吸附分散附着在硅片表面。 (2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。

1、用 H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面。

2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。

3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。

由于SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。

另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。

3.太阳能电池片制作工艺流程图

具体的制作工艺说明

(1) 切片:采用多线切割,将硅棒切割成正方形的硅片。

(2) 清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。

(3) 制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。

(4) 磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。 (5) 周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6) 去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7) 制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8) 制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。

(9) 烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、去磷硅玻璃、等离子刻蚀、镀减反射膜、丝网印刷、快速烧结和检测分装等主要步骤。本文介绍的是晶硅太阳能电池片生产的一般工艺与设备。

一、硅片检测

硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术参数进行在线测量,这些参数主要包括硅片表面不平整度、少子寿命、电阻率、P/N型和微裂纹等。该组设备分自动上下料、硅片传输、系统整合部分和四个检测模块。其中,光伏硅片检测仪对硅片表面不平整度进行检测,同时检测硅片的尺寸和对角线等外观参数;微裂纹检测模块用来检测硅片的内部微裂纹;另外还有两个检测模组,其中一个在线测试模组主要测试硅片体电阻率和硅片类型,另一个模块用于检测硅片的少子寿命。在进行少子寿命和电阻率检测之前,需要先对硅片的对角线、微裂纹进行检测,并自动剔除破损硅片。硅片检测设备能够自动装片和卸片,并且能够将不合格品放到固定位置,从而提高检测精度和效率。

二、表面制绒

单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。

三、扩散制结

太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。

四、去磷硅玻璃

该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。

五、等离子刻蚀

由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,除了转变成离子外,还能吸收能量并形成大量的活性基团。活性反应基团由于扩散或者在电场作用下到达SiO2表面,在那里与被刻蚀材料表面发生化学反应,并形成挥发性的反应生成物脱离被刻蚀物质表面,被真空系统抽出腔体。

六、镀减反射膜

抛光硅表面的反射率为35%,为了减少表面反射,提高电池的转换效率,需要沉积一层氮化硅减反射膜。现在工业生产中常采用PECVD设备制备减反射膜。PECVD即等离子增强型化学气相沉积。它的技术原理是利用低温等离子体作能量源,样品置于低气压下辉光放电的阴极上,利用辉光放电使样品升温到预定的温度,然后通入适量的反应气体SiH4和NH3,气体经一系列化学反应和等离子体反应,在样品表面形成固态薄膜即氮化硅薄膜。一般情况下,使用这种等离子增强型化学气相沉积的方法沉积的薄膜厚度在70nm左右。这样厚度的薄膜具有光学的功能性。利用薄膜干涉原理,可以使光的反射大为减少,电池的短路电流和输出就有很大增加,效率也有相当的提高。

七、丝网印刷

太阳电池经过制绒、扩散及PECVD等工序后,已经制成PN结,可以在光照下产生电流,为了将产生的电流导出,需要在电池表面上制作正、负两个电极。制造电极的方法很多,而丝网印刷是目前制作太阳电池电极最普遍的一种生产工艺。丝网印刷是采用压印的方式将预定的图形印刷在基板上,该设备由电池背面银铝浆印刷、电池背面铝浆印刷和电池正面银浆印刷三部分组成。其工作原理为:利用丝网图形部分网孔透过浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。油墨在移动中被刮刀从图形部分的网孔中挤压到基片上。由于浆料的粘性作用使印迹固着在一定范围内,印刷中刮板始终与丝网印版和基片呈线性接触,接触线随刮刀移动而移动,从而完成印刷行程。

八、快速烧结

经过丝网印刷后的硅片,不能直接使用,需经烧结炉快速烧结,将有机树脂粘合剂燃烧掉,剩下几乎纯粹的、由于玻璃质作用而密合在硅片上的银电极。当银电极和晶体硅在温度达到共晶温度时,晶体硅原子以一定的比例融入到熔融的银电极材料中去,从而形成上下电极的欧姆接触,提高电池片的开路电压和填充因子两个关键参数,使其具有电阻特性,以提高电池片的转换效率。烧结炉分为预烧结、烧结、降温冷却三个阶段。预烧结阶段目的是使浆料中的高分子粘合剂分解、燃烧掉,此阶段温度慢慢上升;烧结阶段中烧结体内完成各种物理化学反应,形成电阻膜结构,使其真正具有电阻特性,该阶段温度达到峰值;降温冷却阶段,玻璃冷却硬化并凝固,使电阻膜结构固定地粘附于基片上。

九、外围设备

在电池片生产过程中,还需要供电、动力、给水、排水、暖通、真空、特汽等外围设施。消防和环保设备对于保证安全和持续发展也显得尤为重要。一条年产50MW能力的太阳能电池片生产线,仅工艺和动力设备用电功率就在1800KW左右。工艺纯水的用量在每小时15吨左右,水质要求达到中国电子级水GB/T11446.1-1997中EW-1级技术标准。工艺冷却水用量也在每小时15吨左右,水质中微粒粒径不宜大于10微米,供水温度宜在15-20℃。真空排气量在300M/H左右。同时,还需要大约氮气储罐20立方米,氧气储罐10立方米。考虑到特殊气体如硅烷的安全因素,还需要单独设置一个特气间,以绝对保证生产安全。另外,硅烷燃烧塔、污水处理站等也是电池片生产的必备设施。

组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。

34.太阳能电池组件封装工艺流程

流程:

1、电池检测——

2、正面焊接—检验—

3、背面串接—检验—

4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——

5、层压——

6、去毛边(去边、清洗)——

7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——

8、焊接接线盒——

9、高压测试——

10、组件测试—外观检验—

11、包装入库 组件高效和高寿命如何保证:

1、高转换效率、高质量的电池片 ;

2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等;

3、合理的封装工艺

4、员工严谨的工作作风;

由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 太阳电池组装工艺简介: 工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个感性的认识.

1、 电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。

2、 正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连

3、 背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。

4、 层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。

5、 组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。

6、 修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。

7、 装框:类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。

8、 焊接接线盒:在组件背面引线处焊接一个盒子,以利于电池与其他设备或电池间的连接。

9、 高压测试:高压测试是指在组件边框和电极引线间施加一定的电压,测试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。

10、 组件测试:测试的目的是对电池的输出功率进行标定,测试其输出特性,确定组件的质量等级 2. 提高单晶硅太阳能电池效率的特殊技术:

晶体硅太阳能电池的理论效率为33%(AM1.5光谱条件下)。太阳能电池的理论效率与入射光能转变成电流之前的各种可能损耗的因素有关。其中,有些因素由太阳能电池的基本物理决定的,有些则与材料和工艺相关。从提高太阳能电池效率的原理上讲,应从以下几方面着手:

1、 减少太阳能电池薄膜光反射的损失

2、 降低PN结的正向电池(俗称太阳能电池暗电流)

3、 PN结的空间电荷区宽度减少,幷减少空间电荷区的复合中心。

4、 提高硅晶体中少数载流子寿命,即减少重金属杂质含量和其他可作为复合中心的杂质,晶体结构缺陷等。

5、 当采取太阳能电池硅晶体各区厚度和其他结构参数。

目前提高太阳能电池效率的主要措施如下,而各项措施的采用往往引导出相应的新的工艺技术。

(1) 选择长载流子寿命的高性能衬底硅晶体。

(2) 太阳能电池芯片表面制造绒面或倒金字塔多坑表面结构。电池芯片背面制作背面镜,以降低表面反射和构成良好的隔光机制。

(3) 合理设计发射结结构,以收集尽可能多的光生载流子。 (4) 采用高性能表面钝化膜,以降低表面复合速率。 (5) 采用深结结构,并在金属接触处加强钝化。 (6) 合理的电极接触设计以达到低串联电阻等。

第5篇:太阳能行业知识:单晶硅介绍

时间:来源:未知 作者:admin 点击:

231次

单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。

单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。

单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。

单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直径越大的圆片,芯片的成本也就越低。但大尺寸晶片对材料和技术的要求也越高。单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。目前晶体直径可控制在Φ3~8英寸。区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。目前晶体直径可控制在Φ3~6英寸。外延片主要用于集成电路领域。

单晶硅也称硅单晶,是电子信息材料和光伏行业中最基础性材料,属半导体材料类。单晶硅已渗透到国民经济和国防科技中各个领域。

硅片直径越大,技术要求越高,越有市场前景,价值也就越高。

日本、美国和德国是主要的硅材料生产国。中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为2.5、

3、

4、 5英寸硅锭和小直径硅片。中国消耗的大部分集成电路及其硅片仍然依赖进口。但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志着我国单晶硅生产进入了新的发展时期。目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。未来几年中,世界单晶硅材料发展将呈现以下发展趋势:

1,单晶硅产品向300mm过渡,大直径化趋势明显:

随着半导体材料技术的发展,对硅片的规格和质量也提出更高的要求,适合微细加工的大直径硅片在市场中的需求比例将日益加大。目前,硅片主流产品是200mm,逐渐向300mm过渡,研制水平达到400mm~450mm。据统计,200mm硅片的全球用量占60%左右,150mm占20%左右,其余占20%左右。 Gartner发布的对硅片需求的5年预测表明,全球300mm硅片将从2000年的1.3%增加到2006年的21.1%。日、美、韩等国家都已经在 1999年开始逐步扩大300mm硅片产量。据不完全统计,全球目前已建、在建和计划建的300mm硅器件生产线约有40余条,主要分布在美国和我国台湾等,仅我国台湾就有20多条生产线,其次是日、韩、新及欧洲。

世界半导体设备及材料协会(SEMI)的调查显示,2004年和2005年,在所有的硅片生产设备中,投资在300mm生产线上的比例将分别为 55%和62%,投资额也分别达到130.3亿美元和184.1亿美元,发展十分迅猛。而在1996年时,这一比重还仅仅是零。

2、硅材料工业发展日趋国际化,集团化,生产高度集中:

研发及建厂成本的日渐增高,加上现有行销与品牌的优势,使得硅材料产业形成“大者恒大”的局面,少数集约化的大型集团公司垄断材料市场。上世纪 90年代末,日本、德国和韩国(主要是日、德两国)资本控制的8大硅片公司的销量占世界硅片销量的90%以上。根据SEMI提供的2002年世界硅材料生产商的市场份额显示,Shinetsu、SUMCO、Wacker、MEMC、Komatsu等5家公司占市场总额的比重达到89%,垄断地位已经形成。

3、硅基材料成为硅材料工业发展的重要方向:

随着光电子和通信产业的发展,硅基材料成为硅材料工业发展的重要方向。硅基材料是在常规硅材料上制作的,是常规硅材料的发展和延续,其器件工艺与硅工艺相容。主要的硅基材料包括SOI(绝缘体上硅)、GeSi和应力硅。目前SOI技术已开始在世界上被广泛使用,SOI材料约占整个半导体材料市场的30%左右,预计到2010年将占到50%左右的市场。Soitec公司(世界最大的SOI生产商)的2000年~2010年SOI市场预测以及 2005年各尺寸SOI硅片比重预测了产业的发展前景。

4、硅片制造技术进一步升级:半导体,芯片,集成电路,设计,版图,芯片,制造,工艺目前世界普遍采用先进的切、磨、抛和洁净封装工艺,使制片技术取得明显进展。在日本,Φ200mm硅片已有50%采用线切割机进行切片,不但能提高硅片质量,而且可使切割损失减少10%。日本大型半导体厂家已经向300mm硅片转型,并向0.13μm以下的微细化发展。另外,最新尖端技术的导入,SOI等高功能晶片的试制开发也进入批量生产阶段。对此,硅片生产厂家也增加了对300mm硅片的设备投资,针对设计规则的进一步微细化,还开发了高平坦度硅片和无缺陷硅片等,并对设备进行了改进。

硅是地壳中赋存最高的固态元素,其含量为地壳的四分之一,但在自然界不存在单体硅,多呈氧化物或硅酸盐状态。硅的原子价主要为4价,其次为2 价;在常温下它的化学性质稳定,不溶于单一的强酸,易溶于碱;在高温下化学性质活泼,能与许多元素化合。 硅材料资源丰富,又是无毒的单质半导体材料,较易制作大直径无位错低微缺陷单晶。晶体力学性能优越,易于实现产业化,仍将成为半导体的主体材料。

多晶硅材料是以工业硅为原料经一系列的物理化学反应提纯后达到一定纯度的电子材料,是硅产品产业链中的一个极为重要的中间产品,是制造硅抛光片、太阳能电池及高纯硅制品的主要原料,是信息产业和新能源产业最基础的原材料。

第6篇:单晶培养的方法及技巧

单晶培养的方法

一、挥发法

原理:依靠溶液的不断挥发,使溶液由不饱和达到饱和过饱和 状态。 条件:固体能溶解于较易挥发的有机溶剂 理论上,所有溶剂都可以,但一般选择 60~120℃。

注意:不同溶剂可能培养出的单晶结构不同 方法:将固体溶解于所选有机溶剂,有时可采用加热的办法使固 体完全溶解,冷却至室温或者再加溶剂使之不饱和,过滤,封口,静 置培养。

经验: 1.掌握好溶解度,一般 100mL 可溶解 0.2g~2g, 50mL 的烧 杯,0.5g~0.8g. 2.纯度大的易长出晶体。

3. 可选用混合溶剂,但必须遵循高沸点的难溶低沸点易容的原

则。混合溶剂必须选用完全互溶的二种或多种溶剂。υ

※ 怎么看是否形成单晶: 如果析出的固体有发亮的颗粒或者在显微镜下可观察到凹凸的多 面体形状。

怎么挑选单晶:

不要等溶剂挥发完再挑,一定要在有母液存在下挑单晶,用毛细管 将晶体吸出,滴到滤纸上,用针将单晶挑到密封管中,3~5 颗即可。

二、扩散法

原理:利用二种完全互溶的沸点相差较大的有机溶剂。固体易 溶于高沸点的溶剂,难溶或不溶于低沸点溶剂。在密封容器中,使低 沸点溶剂挥发进入高沸点溶剂中, 降低固体的溶解度, 从而析出晶核, 生长成单晶。 液体等。 一般选难挥发的溶剂,如 DMF,DMSO,甘油甚至离子

条件:固体在难挥发的溶剂中溶解度较大或者很大,在易挥发溶剂中不溶或难溶。 经验: 固体在难挥发溶剂中溶解度越大越好。培养时,固体

在高沸点溶剂中必须达到饱和或接近过饱和。

方法: 将固体加热溶解于高沸点溶剂,接近饱和,放置于密封容器中,密封容器中放入易挥发溶剂,密封好,静置培养。

三、温差法 原理:利用固体在某一有机溶剂中的溶解度,随温度的变化,有 很大的变化,使其在高温下达到饱和或接近饱和,然后缓慢冷却,析 出晶核,生长成单晶。 一般,水,DMF, DMSO,尤其是离子液体适用此方法。 条件:溶解度随温度变化比较大。 经验:高温中溶解度越大越好,完全溶解。 推广:建议大家考虑使用离子液体做溶剂,尤其是对多核或者 难溶性的配合物。

四、接触法

原理:如果配合物极易由二种或二种以上的物种合成,选择性 高且所形成的配合物很难找到溶剂溶解,则可使原料缓慢接触,在接 触处形成晶核,再长大形成单晶。 一般无机合成,快反应使用此方法。 * ? ? ? ? ? 方法: 1.用 U 形管,可采用琼脂降低离子扩散速度。 2.用直管,可做成两头粗中间细。 3.用缓慢滴加法或稀释溶液法(对反应不很快 的体系可采用) 4.缓慢升温度(对温度有要求的体系适用) 经验: 原料的浓度尽可能的降低, 可以人为的设定浓度或比例。

0.1g~0.5g 的溶质量即可。

五、 高压釜法

原理:利用水热或溶剂热,在高温高压下,是体系经过一个析 出晶核,生长成单晶的过程,因高温高压条件下,可发生许多不可预 料的反应。 方法:将原料按组合比例放入高压釜中,选择好溶剂,利用溶 剂的沸点选择体系的温度,高压釜密封好后放入烘箱中,调好温度, 反应 1~4 小时均可。然后,关闭烘箱,冷至室温,打开反应釜,观 察情况按如下过程处理: 1. 没有反应——重新组合比例,调节条件,包括换溶剂,调 pH 值, 加入新组分等。 2. 反应但全是粉末,且粉末什么都不溶解,首先从粉末中挑选单

晶或晶体,若不成, A:改变条件,换配体或加入新的盐,如季铵盐,羧酸盐等; B:破坏性实验,设法使其反应变成新物质。 3.部分固体, 部分在溶液中:首先通过颜色或条件变化推断两部分的大 致组分,是否相同组成,固体挑单晶,溶液挥发培养单晶,若组成不 同固体按 1 或 2 的方法处理。 4.全部为溶液——旋蒸得到固体,将固体提纯,将主要组成纯化,再根 据特点接上述四种单晶培养方法培养单晶 1 实验前

知己知彼,百战不殆。通过查阅文献或咨询师兄师姐知道他们在做类似结构化合物所使用的方法,做到心中有数。首先要了解溶解性:在什么溶剂中溶解性很好,在什么溶剂中溶解性一般,在什么溶剂中溶解性较差等等。其次要了解稳定性:对空气和水是否敏感将决定你选择一个合适的环境。最后,最重要的一点,要坚信,任何可以溶解的纯粹的固体,都可以长成单晶。单晶是鉴定化合物结构最直接也是最有说服力的表征方法。 2 实验中

(1长单晶使用的瓶子要刷干净,不一定要使用新瓶子,但是一定要干净。

(2)长单晶的过程中千万不要受到干扰:任何的触碰、晃动都可能让单晶生长过程失败。可以设定一个观察期限,我的期限是两天。在两天之内要让它绝对的静止,两天之后再检查。

(3)在你检查期限之外,要及时去检查并做好记录,这一次的现象是什么,析出固体,析出多晶还是什么。然后再改变条件,避免下次重复使用相同的失败方法。这样就可以进行下一轮的周期。当然如果你的量够多的话,可以平行开几个不同条件的方法以提高效率。

(4)如果是使用溶剂,一定要保证你的化合物完全溶解,如果有丝毫的不溶物或者其它杂质,要把它们过滤除去,使用滤纸、砂芯甚至餐巾纸都可以很好地做到这一点。

(5)如果能提纯的话,尽量提得非常纯,我都是把化合物通过了核磁、元素表征之后再来长单晶的,这样做的好处可以是,长出来的单晶肯定是你的目标产物,避免测了一个你不想要的,要知道,单晶测试费可是很高的。

(6)选择合适的溶剂是关键,有时需要选择混合溶剂,这都需要你对你的物质充分地熟悉。

(7)不要轻易放弃!试遍所有的方法你最终将得到你智慧的结晶——单晶。 3 实验方法

(1)冷冻法。这是最简单的也是很成功的方法,将你的物质溶解在合适的溶剂中,可以加热让其完全溶解,然后放入冰箱冷冻,或者直接让其在室温中静置,单晶也许就会像花开无声一样长出来。

(2)挥发溶剂法。让溶液敞口自然挥发溶剂以让单晶析出(对水氧敏感的话可以用氮气吹),但是这样长出的单晶可能晶型不太好,因为溶剂的不断挥发可能会导致晶型变差,这就需要你及时去检查,一旦晶体析出要停止挥发溶剂。

(3)挥发扩散。需要一大一小两个瓶子,小瓶子中放你的样品,用少量挥发性不太好的溶剂将其溶解,如THF, benzene, chloroform, toluene, acetonitrile, methanol, 然后在较大的瓶子中放入挥发性较好的、同时也是对你的样品溶解性差的溶剂,如 diethyl ether, hexane.好了,现在把小瓶子放入大瓶子中,注意不要让小瓶子被大瓶子中的溶剂漫过。然后把大瓶子盖上。现在挥发性好的溶剂就会慢慢挥发至挥发性不好的溶剂中,这样单晶就会充满希望地长出。

(4)液液扩散与挥发扩散类似,不过这是将第二种不良溶剂直接滴在第一种溶剂上,不过要小心操作,要让两种液面之间有明显的分层,然后静置。最好能选择细长一点的瓶子来操作。当然你可以选择在低温下来降低扩散速率。

(5)其实还有别的方法,这里就不列举了,但是上面几种方法是最常见的也是最有效的。 4 长出单晶后

恭喜你!但是没有测出来之前还剩下最后一步——送样!这个过程之所以单独列出来是因为我觉得这一步也很重要,也容易被忽视,也会出现失误。因为有部分晶体会风化,如果是对水氧敏感的化合物就更需要小心了,可以用毛细管封管。提前与测试部门取得联系,多挑几颗出来及时送样很关键。留着你的母液,一旦出现失误可以立即重新挑单晶。即使成功了你也可以回收你的样品。 5 个人体会。不是每一个化合物都可以很容易地长成单晶,或者在短时间内很容易地拿到单晶,但是你只有多做,做很多种类似结构的物质才有可能得到一个单晶结构,而且这种长出来的过程不是你刻意的,往往在你重结晶的过程中单晶就悄无声息地出现了!

1、制备结晶的溶液,需要成为过饱和的溶液。一般是应用适量的溶剂在加温的情况下,将柱分离得到的化合物溶解再放置冷处。如果在室温中可以析出结晶,就不一定放置于冰箱中,以免伴随结晶析出更多的杂质。

2、“新生态”的物质即新游离的物质或无定形的粉未状物质,远较晶体物质的溶解度大,易于形成过饱和溶液。一般经过精制的化合物,在蒸去溶剂抽松为无定形粉未时就是如此,有时只要加入少量溶剂,往往立即可以溶解,稍稍放置即能析出结晶。

3、制备结晶溶液,除选用单一溶剂外,也常采用混合溶剂。一般是先将化合物溶于易溶的溶剂中,再在室温下滴加适量的难溶的溶剂,直至溶液微呈浑浊,并将此溶液微微加温,使溶液完全澄清后放置

4、结晶过程中,一般是溶液浓度高,降温诀,析出结晶的速度也快些。但是其结晶的颗粒较小,杂质也可能多些。有时自溶液中析出的速度太快,超过化合物晶核的形成劝分子定向排列的速度,往往只能得到无定形粉未。有时溶液太浓,粘度大反而不易结晶化。如果溶液浓度适当,温度慢慢降低,有可能析出结晶较大而纯度较高的结晶。有的化合物其结晶的形成需要较长的时间。

5、制备结晶除应注意以上各点外,在放置过程中,最好先塞紧瓶塞,避免液面先出现结晶,而致结晶纯度较低。如果放置一段时间后没有结晶析出,可

以加入极微量的种晶,即同种化合物结晶的微小颗粒。加种晶是诱导晶核形成常用而有效的手段。一般他说,结晶化过程是有高度选择性的,当加入同种分子或离子,结晶多会立即长大。而且溶液中如果是光学异构体的混合物,还可依种晶性质优先析出其同种光学异构体。没有种晶时,可用玻璃棒蘸过饱和溶液一滴,在空气中任溶剂挥散,再用以磨擦容器内壁溶液边缘处,以诱导结晶的形成。如仍无结晶析出,可打开瓶塞任溶液逐步挥散,慢慢析晶。或另选适当溶剂处理,或再精制一次,尽可能除尽杂质后进行结晶操作。

6、重结晶及分步结晶:在制备结晶时,最好在形成一批结晶后,立即倾出上层溶液,然后再放置以得到第二批结晶。晶态物质可以用溶剂溶解再次结晶精制。这种方法称为重结晶法。结晶经重结晶后所得各部分母液,再经处理又可分别得到第二批、第三批结晶。这种方法则称为分步结晶法或分级结晶法。晶态物质在一再结晶过程中,结晶的析出总是越来越快,纯度也越来越高。分步结晶法各部分所得结晶,其纯度往往有较大的差异,但常可获得一种以上的结晶成分,在未加检查前不要贸然混在一起

7、结晶纯度的判定:化合物的结晶都有一定的结晶形状、色泽、熔点和熔距,一可以作为鉴定的初步依据。这是非结晶物质所没有的物理性质。化合物结晶的形状和熔点往往因所用溶剂不同而有差异。原托品碱在氯仿中形成棱往状结晶,熔点207℃;在丙酮中则形成半球状结晶,熔点203℃;在氯仿和丙酮混合溶剂中则形成以上两种晶形的结晶。又如N一氧化苦参碱,在无水丙酮中得到的结晶熔点208℃,在稀丙酮(含水)析出的结晶为77~80℃。所以文献中常在化合物的晶形、熔点之后注明所用溶剂。一般单体纯化合物结晶的熔距较窄,有时要求在0.5℃左右,如果熔距较长则表示化合物不纯。

8、但有些例外情况,特别是有些化合物的分解点不易看得清楚。也有的化合物熔点一致,熔距较窄,但不是单体。一些立体异构体和结构非常类似的混合物,常有这样的现象。还有些化合物具有双熔点的特性,即在某一温度已经全部融熔,当温度继续上升时又固化,再升温至一定温度又熔化或分解。如防己诺林碱在1760C时熔化,至200℃时又固化,再在2420C时分解。中草药成分经过同一溶剂进行三次重结晶,其晶形及熔点一致,同时在薄层层析或纸层层析法经数种不同展开剂系统检定,也为一个斑点者,一般可以认为是一个单体化合物。但应注意,有的化合物在一般层析条件下,虽然只呈现一个斑点,但并不一定是单体成分。例如鹿含草中主成分为高熊果砍,异高熊果甙极难用一般方法分离,经反复结晶后,在纸层及聚酞胺薄层上都只有一个斑点,易误认为单一成分,但测其熔点在115~125℃,熔距很长。经制备其甲醚后,再经纸层层析检定,可以出现两个斑点,异高熊果甙的比移值大于高熊果甙。又如水菖蒲根茎挥发油中的α一细辛醚和β一细辛醚,在一般薄层上均为一个斑点,前者为结晶,熔点63℃,后者为液体沸点296℃,用硝酸银薄层或气相层忻很容易区分。有时个别化合物(如氨基酸)可能部分地与层析纸或薄层上的微量金属离子(如Cu)、酸或碱形成络合物、盐或分解而产生复斑。因此,判定结晶纯度时,要依据具体情况加以分析。此外,高压液谱、气相层析、紫外光谱等,均有助于检识结晶样品的纯度。

单晶培养1.单晶培养的方法多种多样,我们没必要掌握那些难以操作的,如升华法、共结晶法等。最简单的最实用。常用的有1.溶剂缓慢挥发法;2.液相扩散法;3.气相扩散法。99%的单晶是用以上三种方法培养出来的。

2.单晶培养所需样品用量

一般以10-25mg为佳,如果你只有2mg左右样品,也没关系,但这时就要选择液相扩散法和气相扩散法,不能使用溶剂缓慢挥发法。

3.单晶培养的样品的预处理 样品溶解后一定要过滤,不能用滤纸,而是用一小团棉花轻轻的塞在滴管的中下部或下部,不要塞太紧,否则流的太慢。样品当然是越纯越好,不过如果实在没办法弄纯也没关系,培养一次就相当于提纯了一次,我经常用一些TLC显示有杂点的东西长单晶,但得多养几次。 4.一定要做好记录

一次就得到单晶的可能性比较小。因此最好的方法就是在第一次培养单晶的时候,采取少量多溶剂体系的办法。如果你有50mg样品,建议你以5mg为一单位, 这样你可以同时实验10种溶剂体系,而不是选两种溶剂体系,每个体系25mg。这是做好记录就特别重要,以免下次又采用已经失败的溶剂体系,而且单晶解析 时必须知道所用的溶剂。

5.培养单晶时,最好放到没人碰的地方,这点大家都知道。我想说的是你不能一天去看几次也不能放在那里5,6天不管。也许有的溶剂体系一天就析出了晶体,结果5天后,溶剂全干了。一般一天看一次合适,看的时候不要动它。明显不行的体系

(如析出絮状固体)就要重新用别的溶剂体系再重新培养。 6.液相扩散法中良溶剂与不良溶剂的比例最好为1:2-1:4。 7.烷基链超过4个碳的很难培养单晶。

8.分子中最好不要有叔丁基,因为容易无序,影响单晶解析的质量。

9.含氯的取代基一般容易长单晶,如4-氯苯基取代化合物比苯基取代化合物容易长单

晶体培养步骤:

一支管法: 在单晶制备时,经常会发现配位一发生,产生大量的微晶,再去挥发母液,怎

么都长不大,以前听人说可用扩散法,但受到文献启示,可以找一根长玻璃管,底下注入盐

的溶液,上面加一个纯溶剂缓冲层(可长可短),最上面注入(先慢后快)配体溶液,两三

个小时或两三天就搞定了。原理是:玻璃管越细,两层间的接触面越小,扩散速度降低,有

效避免新手一扩散就出沉淀的尴尬!

试管法:

反应发生就产生大量的微晶,再去挥发母液,怎么都长不大。可以找一根长15 厘米直径为

1-1.5 厘米的试管,底下直接放入盐的固体,加大量溶剂(先慢后快)最上面注入(先慢后

快)配体溶液(上下溶剂可以相同,但为了保险,可在配体溶液中加入密度小的溶解性差的

溶剂,如石油醚或乙酸乙酯;如果不同,一定要注意上面的密度要小!!),两三个小时或两

三天就搞定了。新手两三次就搞定了!原理:文献上都说上下两层均溶液,但是操作起来很

困难,如果直接放入盐或者配体的固体,就增加了溶解的平衡,先慢是为了固体或溶液被猛 烈撞击,后快是为了让刚溶解的部分死心塌地的呆在他应处的地方(好像违反动力学,但是

是真的)如果有专用的石英管(一端粗、一端细),可将晶体吸入到管中,除去大部分溶剂,

但是一定要有溶剂,用打火机迅速封烧较细端,用较细滴管(或针管)吸少量母液,将该管

放入离心机的塑料管中,低速离心,使得晶体既保持在母液中,又能完全卡在合适的位置而

不乱动。如没有专用的石英管,可用废核磁管自己拉一根。

大多数的合成化学家认为培养出满足质量的单晶更是一门艺术而非科学。为支持这个说法,他们会提出很多事情,要得到这样的晶体似乎是机遇而且事实上有些人有很好的养单晶的能力。这个论点有一定道理但是实验已经表明完整的理解晶体生长和溶剂的性质、认真分析过去的成败可以得到一致的积极结果。事实上,蛋白质晶体化学家已经在这个领域取得了非常大的的成功,我们合成化学家应从中学到很多有用的东西。

1.晶体生长的速率

热力学的定律告诉我们,较慢的晶体生长速率及小的熵易引起完美晶体得晶体缺陷,这个证据可以在接近完善的晶体表面经常可以被观察到如经过了数个周期几年到一千年的结晶时间的矿物。在实验室条件下,实验已经表明生长单晶的最佳时间是数个若干天的周期(over periods of days)偶尔当溶液快速干燥时,所需的单晶会被发现,这种事实非常幸福的但很少见。典型地当一个人完成一个结晶过程,最好的结晶将在一天或一周后形成。从我的经验来看,结晶成功的可能性最初的几周之后开始急剧下降,尽管幸运的话也有例外。

2.晶体生长的一般条件

在实验室进行的结晶过程大多数温度保持相对恒定,震动级别最小,样品保存在黑暗处。这常常放在一个小碗橱,密闭、背阴的房间。记住对流一般来说是你的敌人应试图保持温度相对恒定。另外对于在狭窄的容器中高粘度溶剂其与温度梯度无关对流相对的低。.因为结晶总是需要时间,化学家常常不耐烦以至于经常去检查样品。应避免剧烈的动作,因为这种操作会对优化晶体生长有害。因此,我推荐不要还没超过一天就去检查他们的样品。

3.溶剂性质和饱和溶液

晶体生长必须在饱和溶液中。为优化结晶生长,化合物在结晶条件下应当适当溶解。假如饱和时溶解度太大,倾向于得到在一起的丛生晶体。假如溶解的太少,没有足够的溶质供应晶体表面的生长,会倾向于得到小晶体。为得到正确的溶解性,应正确的匹配溶质和溶剂。人们在开始的时候应从文献上查询溶剂的参数如溶剂的极性和介电常数或凭个人的经验。无论如何最好的程序是通过系统的试验不同的溶剂或溶剂组合直到找到6种左右的能适当溶解样品的溶剂。从我的经历来看,中心或离子的金属有机、无机、有机化合物随着化合物的种类不同,溶剂非常不一样。有时,典型的培养单晶最成功的例子是使用了三种的混合溶剂,分别是二氯甲烷、甲苯、正己烷。其他的一些不常用如三氯甲烷、乙腈、丙酮、乙醇、甲醇、四氢呋喃、和乙醚。通过经验和认真实验,你会找到适合你的体系的溶剂组合。

4.掌握几种通用方法

为了真正精通培养单晶必须有对掌握方法足够的实践。当这一切完成后,人们可以非常协调的找到线索极大的增加成功的几率。因为这些现象,熟练的晶体花园的园丁将倾向于掌握两到三种可以取得几乎所有成功的技术。

已被证实的培养单晶的方法

在下面的部分我将列出一些最通用或最有前途的培养单晶的方法,这些是我用过或在未来的研究中要用的办法。

(安全提示:大多数结晶过程包含一种或多个组分是适度或非常易燃的,尽管结晶过程往往是非常少的溶剂量,结晶过程必须采用安全的溶剂和设备,尤其是,易燃的组分必须小心处理。) 1.缓慢蒸发溶剂长单晶

这是一个广泛使用生长单晶的办法,就是将目标分子的不完全饱和溶液慢慢地蒸发除去其中的溶剂。一旦达到饱和,晶体开始形成不断的蒸发使溶质分子不断在晶体的生长面上添加。

典型的实验方法如下: ·在一个地方溶液放在一个小瓶或管里,塞子上留有一个小的针孔以便让溶剂分子慢慢的扩散出去。

·在一个地方溶液放在一个小瓶或管里,塞子由可以透过溶剂蒸气的材料制成

·对空气敏感的化合物,人们可以把这些程序应用在惰气条件下(例如,手套箱,手套袋或大的容器像广口瓶及干燥器。

2.冷却结晶

几乎所有的情况溶解度随温度而减少,利用这个特点可以使溶质在一定温度下溶解在溶剂中接近饱和,然后让系统降温。理想的是让水浴或晶体生长的柜子的温度梯度下降,冷却时间典型的可以选择从一天到一周或更多。令人惊奇的是,冷却时间几个小时或超过一夜常常可以得到所需要的热力学梯度因而经常取得成功。

典型的实验方法如下: ·把样品在较高的温度下溶解放入一个隔热的容器中(例如用棉毛金属箔,一个大的热缓冲器)让样品的温度缓缓降至常温。

·把样品在室温溶解置于一个隔热容器中再放入冰箱或冰柜中。 3.用混合溶剂或气相溶剂培养单晶

用这种方法,有两种溶剂人们应该逐渐调整混合溶剂的比例.溶质在一种溶剂应能适当溶解,大部分不溶于难溶溶剂。

典型实验方法包括: ·一种情况,你首先溶解溶质在溶解性较好的溶剂中,然后添加难溶的溶剂。 ·有时可以滴加难溶的溶剂

·有时你可以用注射泵以非常低的流速的流速添加难溶溶剂 ·另一种情形,你除去易溶的溶剂

·可以这样做使易溶的溶剂从体系中挥发出来因其蒸汽压较大 ·容器与样品瓶相连,添加选择性的吸附剂到容器这个做将有帮助 ·第三种情形,易溶的溶剂除去同时添加难溶的溶剂。人们完成了一种设备以便让难溶溶剂转移到混合溶剂系统(易溶溶剂同时扩散出来)通过气相扩散. ·在第一种该设备中人们把一些含有溶质和良溶剂的小瓶放入一个稍大点的容器,在该容器底部或第二个样品瓶中有难溶溶剂。

·第二种设备两个管桥联在一起,溶剂可以扩散(这种设备的形状有点像H管) 4.溶剂分层培养单晶

与前边所用技术的一个重要差别该技术依据的的是在不搅拌的情况下密度差比较大的溶剂其混合相当慢。人们可以利用这个优势溶解溶质在易溶溶剂中然后添加一层难溶溶剂(底层宁愿是上层)。假如这个体系不搅拌、摇动、振动太多

两层需要数天才能混合。结果溶剂缓慢的通过分界层进行扩散,经常在那里可以长出非常好的单晶。

典型试验方法: ·我一般的是溶解化合物在密度大的氯化的溶剂如二氯甲烷对应的上层添加极性小的、密度小的溶剂(如正己烷、乙醚、甲苯) ·如果你的化合物是水溶的,你可以改变两个水层的密度和溶剂性质通过使用两种非常不同的浓度盐。蛋白质晶体化学家经常使用此技术。

5. 通过毛细管和凝胶扩散培养单晶

因为他们内在的粘度和缺乏对流,溶剂一般的通过狭窄毛细管扩散非常慢。 典型试验方法: ·一般的程序可以用H管来完成,毛细管垂直或横着将两个管自从中间连接起来。第二种仪器比较容易制造和填充。

·我一般溶解溶质在良溶剂中添加至管子底部的一半,这样溶液就可以到达收敛管道中间。然后,在上面添加难溶溶剂。

·这项技术主要的不同就是桥联两种溶液用的小管充满了凝胶。这样扩散非常慢,可以长出大单晶,但是长得特别慢。

6. 熔化培养单晶

假如化合物足够对热稳定,你可以从均相甚至非均相的熔化来培养单晶,小心控制冷却速率是非常必要的。该方法广泛用于高温固体的单晶例如金属和金属氧化物最近通过低温熔盐培养一般离子化合物已变成一个很流行的方法。

7 .升华培养单晶

足够挥发的化合物在接近真空时可以结晶,经常从粗混合产物通过升华给出单晶。从我的经验,我仅仅看到此工作在相对易挥发的固体如萘、二茂铁(M(CO)6, 5and (n-C5H5)M(CO)2(NO) (where M = Cr, Mo, and W),当然我明白这对一些非极性化合物也非常实用。

8.综合法培养单晶

当这些单独的办法无效,试着组合他们。我尤其喜欢使用混合溶剂的方法和冷却合用,多种方法合用一般能取得比较好的效果。

9.原位合成

在两个溶液的界面的反应(例如不同层或毛细管的连接处)可被用来产生新的产物,该产物不溶于任何一种开始原料因此沉淀出来成为单晶。假如反应足够慢,这有时甚至发生在单相系统。我已经知道该方法成功的用于成键反应和还原反应。人们经常用该法的还原反应制备在室温下的溶液中几乎立刻分解的化合物的单晶。

10.有魔力的核磁管

假如你有时搜索晶体结构数据库,你会惊奇的发现有大量的晶体结构用氘代试剂报导,这并不是人们有意让他们在里面结晶而是晶体易在核磁管里出现。[注意:很多人一直到没有干净的核磁管才去清洗之,他们大量的放在实验室,这个锥形的小或非废弃管,如果老板看不到,没人感到内疚。这给了溶液大量时间去长晶体而不受外界干扰]大多数情况下,这个发生因为溶剂缓慢从塑料帽里蒸发出来。(如氘代氯仿)

11. 其他方法

假如所有的都失败,不要气馁。因为单晶有时经常被发现在晶体纯化,要洗的杯子还有其他想不到的地方。

假如以上方法都失败,你应该考虑如下问题: 1.提纯你的原料

很多次原料是分析纯的,但对于成功长出单晶来说仍然纯度不够,试着再次纯化可能会提高成功的几率。

2.晶种

因为长单晶的模式是从基础层开始的,同样或相似材料的晶种经常可以诱导长出希望尺寸的单晶。这晶种常常有洒在器壁上的要结晶溶液形成。然而,他们可以有目的的被添加。人们经常用的是用前述方法培养出来很好的的但本身长得太小晶体。有时候,也可以用异构体的晶种。

3.不太重要的材料

晶体生长需要成核剂。有时是晶种,经常是无关的材料,如灰尘、器壁等。要得到好的单晶必须有合适数量的成核剂。

a)除非按清洁房间程序,每一个结晶过程都受灰尘、头皮屑、油脂等其他自由粒子的影响。一个小的正常的尘埃有时可能是晶种。我曾经看到在长颈瓶的璧上的晶体其晶种显然是痕量的油脂。

b)器壁的刮痕和缺陷

器壁的少许刮痕和缺陷往往是晶体生长的成核位置。有时,你在一个新容器无法得到单晶,可以交替地在上面刮几下;假如有很多的小单晶长成,你应当用一个刮痕少的容器。

c)器壁的表面处理

我看到报道的一个改进晶体生长的窍门就是处理容器表面改变.

上一篇:ktv个部门岗位职责下一篇:2014年六一活动议程