模式识别期末复习总结

2023-06-12 版权声明 我要投稿

无论是开展项目,还是记录工作过程,都需要通过总结的方式,回顾项目或工作的情况,从中寻找出利于成长的经验,为以后的项目与工作实施,提供相关方面的参考。因此,我们需要在某个时期结束后,写一份总结,下面是小编为大家整理的《模式识别期末复习总结》仅供参考,大家一起来看看吧。

第1篇:模式识别期末复习总结

模式识别总结

监督学习与非监督学习的区别:

监督学习方法用来对数据实现分类,分类规则通过训练获得。该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

1、写出K-均值聚类算法的基本步骤, 算法:

第一步:选K个初始聚类中心,z1(1),z2(1),…,zK(1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。聚类中心的向量值可任意设定,例如可选开始的K个模式样本的向量值作为初始聚类中心。 第二步:逐个将需分类的模式样本{x}按最小距离准则分配给K个聚类中心中的某一个zj(1)。 假设i=j时,Dj(k)min{xzi(k),i1,2,K},则xSj(k),其中k为迭代运算的次序号,第一次迭代k=1,Sj表示第j个聚类,其聚类中心为zj。 第三步:计算各个聚类中心的新的向量值,zj(k+1),j=1,2,…,K zj(k1)1NjxSj(k)x,j1,2,,K 求各聚类域中所包含样本的均值向量:

其中Nj为第j个聚类域Sj中所包含的样本个数。以均值向量作为新的聚类中心,

JjxSj(k)xzj(k1),2j1,2,,K可使如下聚类准则函数最小:

在这一步中要分别计算K个聚类中的样本均值向量,所以称之为K-均值算法。 第四步:若zj(k若zj(k 1)zj(k),j=1,2,…,K,则返回第二步,将模式样本逐个重新分类,重复迭代运算;

1)zj(k),j=1,2,…,K,则算法收敛,计算结束。

T线性分类器三种最优准则:

wSFisher准则:maxJ(w)wSwFTbwww根据两类样本一般类内密集, 类间分离的特点,寻找线性分类器最佳的法线向量方向,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。该种度量通过类内离散矩阵Sw和类间离散矩阵Sb实现。感知准则函数:准则函数以使错分类样本到分界面距离之和最小为原则。其优点是通过错分类样本提供的信息对分类器函数进行修正,这种准则是人工神经元网络多层感知器的基础。支持向量机:基本思想是在两类线性可分条件下,所设计的分类器界面使两类之间的间隔为最大, 它的基本出发点是使期望泛化风险尽可能小。

写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。

什么是特征选择?. 什么是Fisher线性判别?

答:1. 特征选择就是从一组特征中挑选出一些最有效的特征以达到降低特征空间维数的目的。

2. Fisher线性判别:可以考虑把d维空间的样本投影到一条直线上,形成一维空间,即把维数压缩到一维,这在数学上容易办到,然而,即使样本在d维空间里形成若干紧凑的互相分得开的集群,如果把它们投影到一条任意的直线上,也可能使得几类样本混在一起而变得无法识别。但是在一般情况下,总可以找到某个方向,使得在这个方向的直线上,样本的投影能分开得最好。问题是如何根据实际情况找到这条最好的、最易于分类的投影线,这就是Fisher算法所要解决的基本问题。

请论述模式识别系统的主要组成部分及其设计流程,并简述各组成部分中常用方法的主要思想。 信息获取:通过测量、采样和量化,可以用矩阵或向量表示二维图像或以为波形。预处理:去除噪声,加强有用的信息,并对输入测量仪器或其他因素造成的退化现象进行复原。特征选择和提取:为了有效地实现分类识别,就要对原始数据进行变换,得到最能反映分类本质的特征。分类决策:在特征空间中用统计方法把识别对象归为某一类。

定性说明基于参数方法和非参数方法的概率密度估计有什么区别?

答:基于参数方法:是由已知类别的样本集对总体分布的某些参数进行统计推断 非参数方法:已知样本所属类别,但未知总体概率密度函数形式 简述支持向量机的基本思想。

答:SVM从线性可分情况下的最优分类面发展而来。最优分类面就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最大。SVM考虑寻找一个满足分类要求的超平面,并且使训练集中的点距离分类面尽可能的远,也就是寻找一个分类面使它两侧的空白区域(margin)最大。过两类样本中离分类面最近的点,且平行于最优分类面的超平面上H1,H2的训练样本就叫支持向量。

(1)贝叶斯估计算法思想:准则,求解过程

(A)准则:通过对第i类学习样本X的观察,使概率密度分布P(X/θ)转化为 后验概率P(θ/X) ,再求贝叶斯估计;

(B)求解过程: ① 确定θ的先验分布P(θ),待估参数为随机变量。

② 用第i类样本x=(x1, x2,…. xN)求出样本的联合概率密度分布P(x|θ),它是θ的函数。

i

T

ii

i

i

P(|X) ③ 利用贝叶斯公式,求θ的后验概率

iP(Xi|).P()

P(Xi|)P()d ④ 求贝叶斯估计P(|Xi)d

2、模式识别系统的基本构成单元包括: 模式采集 、 特征提取与选择 和 模式分类 。

3、统计模式识别中描述模式的方法一般使用 特真矢量 ;句法模式识别中模式描述方法一般有 串 、

树 、 网 。

4、聚类分析算法属于 无监督分类

;判别域代数界面方程法属于统计模式识别方法 。

5、若描述模式的特征量为0-1二值特征量,则一般采用 匹配测度 进行相似性度量。



6、下列函数可以作为聚类分析中的准则函数的有

、、、、、、

7、Fisher线性判别函数的求解过程是将N维特征矢量投影在 一维空间 中进行 。

8、下列判别域界面方程法中只适用于线性可分情况的算法有 感知器算法 ;线性可分、不可分都适用的有

积累位势函数法 。

9、影响层次聚类算法结果的主要因素有( 计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有(平移不变性、旋转不变性);马式距离具有(平移不变性、旋转不变性尺度缩放不变性、不受量纲影响的特性)。

11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。)

12、积累势函数法较之于H-K算法的优点是(该方法可用于非线性可分情况(也可用于线性可分情况)

K(x)位势函数K(x,xk)与积累位势函数K(x)的

~xkXkK(x,xk)



13、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于( 某一种判决错误较另一种判决错误更为重要)情况;最小最大判决准则主要用于( 先验概率未知的)情况。

14、特征选择的主要目的是(从n个特征中选出最有利于分类的的m个特征(m>n )的条件下,可以使用分支定界法以减少计

m算量。

15、散度Jij越大,说明i类模式与j类模式的分布(差别越大);当i类模式与j类模式的分布相同时,Jij=(0)。

16、影响聚类算法结果的主要因素有(②分类准则 ③特征选取 ④模式相似性测度。)。

19、模式识别中,马式距离较之于欧式距离的优点是(③尺度不变性 ④考虑了模式的分布)。 20、基于二次准则函数的H-K算法较之于感知器算法的优点是(①可以判别问题是否线性可分 ③其解的适应性更好)。

21、影响基本C均值算法的主要因素有(④初始类心的选取 ①样本输入顺序 ②模式相似性测度)。

22、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的(②后验概率 ④类概率密度与先验概率的乘积)。

23、统计模式分类问题中,当先验概率未知时,可使用(②最小最大损失准则 ④N-P判决)

24、在(①Cn>>n,(n为原特征个数,d为要选出的特征个数)③选用的可分性判据J对特征数目单调不减)情况下,用分支定界法做特征选择计算量相对较少。

25、 散度JD是根据(③类概率密度)构造的可分性判据。

26、似然函数的概型已知且为单峰,则可用(①矩估计②最大似然估计③Bayes估计 ④Bayes学习⑤Parzen窗法)估计该似然函数。

27、Kn近邻元法较之Parzen窗法的优点是(②稳定性较好)。

28、从分类的角度讲,用DKLT做特征提取主要利用了DKLT的性质:(①变换产生的新分量正交或不相关③使变换后的矢量能量更趋集中)。

29、一般,剪辑k-NN最近邻方法在(①样本数较大)的情况下效果较好。 d

29、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有(②分类准则 ③特征选取)。 30、假设在某个地区细胞识别中正常(w1)和异常(w2)两类先验概率分别为 P(w1)=0.9,P(w2)=0.1,现有一待识别的细胞,其观察值为x,从类条件概率密度分布曲线上查得P(xw1)0.2,P(xw2)0.4,并且已知110,126,211,220

试对该细胞x用一下两种方法进行分类: 1. 基于最小错误率的贝叶斯决策; 2. 基于最小风险的贝叶斯决策; 请分析两种结果的异同及原因。

第2篇:模式识别简介

模式识别简介 Pattern recognition

诞生

狗的嗅觉的灵敏度非常高,大约是人的50至100倍。狗通过这项特异的功能来识别各种各样的东西,帮助人类完成一些鉴别工作。不仅如此,识别也是人类的一项基本技能,人们无时无处的在进行“模式识别”,古人有一成语“察言观色”表达的正是这个意思。

模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。计算机模式识别在20世纪60年代初迅速发展并成为一门新学科。

概念

简单来说,模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别(Optical Character Recognition, OCR)、语音识别系统。其计算机识别的显著特点是速度快,准确性高,效率高。在将来完全可以取代人工录入。

模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。

研究

模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。

应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。

模式识别所分类的类别数目由特定的识别问题决定。有时,开始时无法得知实际的类别数,需要识别系统反复观测被识别对象以后确定。

模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。

应用领域包括:计算机视觉、医学图像分析、光学文字识别、自然语言处理、语音识别、手写识别、生物特征识别、人脸识别、指纹识别、虹膜识别、文件分类、互联网搜索引擎、信用评分、测绘学、摄影测量与遥感学。 以“汉字识别”为例:

识别过程与人类的学习过程相似。首先将汉字图象进行处理,抽取主要表达特征并将特征与汉字的代码存在计算机中。就像老师教我们“这个字叫什么、如何写”记在大脑中。这一过程叫做“训练”。识别过程就是将输入的汉字图象经处理后与计算机中的所有字进行比较,找出最相近的字就是识别结果。这一过程叫做“匹配”。

还有一些比较典型的应用例子如: 去雾算法:

由有雾的图片处理成无雾的过程用的是一种基于暗影通道的去雾算法。 相机照出的相片=真实相片*透谢分布率+天空亮度。这里要做的就是根据公式求出真实相片,另外三个未知量是可以求出来的。

交叉验证方法:

用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据进行分组,一部分做为训练集,另一部分做为验证集,首先用训练集对分类器进行训练,在利用验证集来测试训练得到的模型,以此来做为评价分类器的性能指标。

纹理:

在自然图象中,纹理作为物体的一种重要外观特征,为视觉感知提供了无处不在的信息,它在计算机视觉、图形学、图像编码等领域都有着重要作用,例如,格式塔(Gestalt)心理学,早期视觉理论和Marr的原始简约图(Primal Sketch)都将纹理模式作为中心话题。

因此,对纹理的理解是视觉理解不可或缺的组成部分。过去的几年里,纹理分析和合成的相关研究工作在基础理论上与实际应用两个方面都取得了振奋人心的发展,研究者结合计算机视觉,图形学,现代统计物理,心理学和神经系统科学等领域的知识,提出了很多关于纹理理解的新方法。纹理的研究工作主要集中在两个领域:滤波理论(filtering theory)和统计建模(statistical modeling)理论。滤波理论来源于在神经生理学中被发现并被广泛接受的多通道滤波机制,该机制认为,人类视觉系统将视网膜图像分解为一组子带(sub-band)图像信号,而这些子带信号可以通过一组线性滤波器和图像卷积然后经过某些非线性操作计算得到。滤波理论在纹理方面的应用主要有 Gabor 滤波器和小波(wavelet)塔等,它们在纹理分割和分类中有良好的性能。统计建模理论认为,纹理图像是随机场上概率分布的采样,该理论涉及到时间序列模型(time series model),马尔可夫链(Markov chain)模型和马尔可夫随机场(Markov random Field,MRF)模型等建模方法。基于统计的建模方法一般只需要用很少几个参数来描述纹理特征,因此能为纹理提供简练的表示,而且它能把纹理分析问题转化为一个明确的统计推理问题来处理。

计算机视觉研究中低层视觉的一个主要研究方向是图像分割。由于一个场景中,不同的物体之间有不同层度的交叠,使得最理想的分割结果也会出现物体的不同部分(可视部分)之间分割开来,而不可视部分则为其它物体所覆盖的情况,这就不利于完整地展现物体。因此,有必要利用由图像得到的相关信息,如原始简约图(Primal Sketch)、颜色一致性、方位一致性等,研究一套算法,把同一物体分在同一个层里面,然后再把它们相应的部分之间连接起来,组成完整的物体。这就是2.1D Sketch的主要研究任务。

2.1D Sketch主要研究面物体,且不关心物体之间的深度信息,而只考虑它们之间的偏序关系(Partial Order)。

2.1D Sketch的研究成果将会用于图像分割、图像编辑、艺术图像生成以及图像序列分析中。

机器学习:

机器学习是人工智能的一个分支,它是关于让机器具有学习能力的一些算法。许多情况这种算法给一些数据和从这些数据属性的推出的信息对将来出现的新的数据做出预测。之所以可以这么做是因为大多数的非随机的数据包含一些模式,这些模式可以让机器去做泛化。

机器学习的相关概念扫盲:

监督式学习:训练数据中包含输入的向量集合并且有相应的目标值(labeled样例)

例如分类(Classification)、关联规则、回归(Regression) 非监督式学习:训练数据中不包含labeled样例

例如聚类(Cluster)、Density estimation、Visualization. 半监督式学习:组合了labled和unlabeled的Example去生成一个函数或分类

泛化(Generalization):通过训练数据训练之后能够识别新的数据。 特征提取(Feature Extraction): 为了降维去除不想关的特征,在数据预处理阶段把数据转化成容易处理的。

机器学习的局限性:

机器学习在大量的模式面前的泛化能力是不同的,如果一个模式不同于以前所看到的,那么这个算法很容易被误解。由于当前的数据量不够,不能涵盖各种将来的情况,所以机器学习的方法很容易出现过度泛化,从而出现不准确性。

AdaBoost人脸检测原理:

一种基于积分图、 级联检测器和AdaBoost 算法的方法,方法框架可以分为以下三大部分: 第一部分,使用Harr-like特征表示人脸,使用“ 积分图”实现特征数值的快速计算; 第二部分, 使用Adaboost算法挑选出一些最能代表人脸的矩形特征( 弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器; 第三部分, 将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,级联结构能有效地提高分类器的检测速度。

总结

自20世纪50年代以来,模式识别在人工智能兴起后不久就迅速发展成一门学科。它所研究的理论和方法在很多科学和技术领域得到广泛重视,推动了人工智能系统的发展,扩大了计算机应用的可能性。

经过多年的研究和发展,模式识别技术已广泛被应用于人工智能、计算机工程、机器学、神经生物学、医学、侦探学以及高能物理、考古学、地质勘探、宇航科学和武器技术等许多重要领域,如语音识别、语音翻译、人脸识别、指纹识别、手写体字符的识别、工业故障检测、精确制导等。模式识别技术的快速发展和应用大大促进了国民经济建设和国防科技现代化建设。

第3篇:模式识别课程报告

模式识别文献综述报告

一,文献综述报告

阅读至少5篇论文(最好包含1篇英文论文;自己去学校电子图书馆下载,考虑中国知网;IEEE,Elsevier等数据库),写一篇文献综述报告。

1. 选题不限,可以是任何一种模式识别算法(例如k-means,kNN,bayes,SVM,PCA,LDA等),阅读所选题方面的相关文献(论文都是关于一个主题的,例如都是svm算法方面的)。

2. 写一份文献综述报告,包括:每篇论文主要使用什么算法实现什么,论文有没有对算法做出改进(为什么改进,原算法存在什么问题,改进方法是什么),论文中做了什么对比试验,实验结论是什么?注意,尽量用自己的话总结,不要照抄原文。可以加入自己的分析和想法,例如这篇论文还存在什么问题或者缺点,这篇论文所作出的改进策略是否好,你自己对算法有没有什么改进的想法?

3. 把阅读的参考文献写在报告后面。(包括:作者;论文名称;期刊名称;出版年,卷号(期号),页码。例如:[1] 赵银娣,张良培,李平湘,一种纹理特征融合分类算法,武汉大学学报,信息科学版,2006,31(3):278-281. )

二、写一下学习这门课的心得体会(占分数)。

学习这门课有什么收获?老师在教学中还应该加入些什么教学内容?或者有哪些教学内容需要删减?需要调整?对于作业(上机实验)内容有什么意见和建议?目前内容过多过难还是适中?你希望出什么样的上机题目(可以得到好的锻炼和能力的提高)?完成作业过程中有什么收获和体会?有没有对模式识别或者某种模式识别的算法比较感兴趣?有什么想法?

第4篇:模式识别与智能系统

模式识别与智能系统属控制科学和工程一级学科,以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,研究对各种媒体信息进行处理、分类和理解的方法,并在此基础上构造具有某些智能特性的系统。

学科概况

模式识别与智能系统是20世纪60年代以来在信号处理、人工智能、控制论、计算机技术等学科基础上发展起来的新型学科。该学科以各种传感器为信息源,以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,探索对各种媒体信息进行处理、分类、理解并在此基础上构造具有某些智能特性的系统或装置的方法、途径与实现,以提高系统性能。模式识别与智能系统是一门理论与实际紧密结合,具有广泛应用价值的控制科学与工程的重要学科分支。

培养目标

本学科培养从事模式识别与智能系统的研究、开发、设计等方面工作的高级专门人才。

1.博士学位

应具有模式识别、信息处理、人工智能与认知科学及有关数学领域坚实宽广的基础理论和系统深入的专门知识;对于模式识别与智能系统主要前沿领域有深入了解;能独立开展模式识别与智能系统中有关研究方向的专题研究工作,并取得具有创造性的研究成果;学风严谨;至少掌握一门外国语,能熟练地阅读本专业的外文资料,具有一定的写作能力和进行国际学术交流的能力。

2.硕士学位

应具有坚实的模式识别与智能系统学科的基础理论和系统的专门知识;对于模式识别与智能系统某一研究领域的进展和学术动态有较深的了解;能够熟练利用计算机解决本学科的有关问题;具有从事模式识别与智能系统中的某一研究方向的科学研究或独立担负专门技术工作的能力,并取得有意义的成果;较为熟练地掌握一门外国语。

业务范围

1.学科研究范围 模式识别,图象处理与分析,计算机视觉,智能机器人,人工智能,计算智能,信号处理。

2.课程设置 随机过程与数理统计,矩阵论,优化理论,近世代数,数理逻辑,数字信号处理,图象处理与分析,模式识别,计算机视觉,人工智能,机器人学,计算智能,非线性理论(如分形、混沌等),控制理论,系统分析与决策,计算机网络理论等。

第5篇:2014模式识别课程设计

【设计题目】

自选

【设计目标】

通过本课程设计,学习利用非监督学习方法对生活中的实际问题进行识别分类,掌握模式识别系统的基本设计思路与步骤。

【设计内容】

观察生活与环境,自选一个问题,采用一种非监督学习方法对其进行分类与识别。

【设计要求】

提交设计报告,报告内容包括:问题描述,选用某种方法的理由,模式采集,特征提取与选择,分类器设计,学习过程,测试结果,结果分析(含不足与展望),设计总结。程序代码作为附录与报告一起提交。报告正文部分不超过10页,文字部分不超过1万字。

1模式识别在发动机故障诊断中的应用 模式识别受体在慢性阻塞性肺疾病中的作用

基于模式识别的短时交通流预测Fault Mode Diagnosis System Based on for Automobile ABS Nerve Network

平行路段模式识别与简化初探 - Primary study on recognition and simplification of parallel sections in road networks

第6篇:模式识别与智能信息处理

“模式识别与智能信息处理”学科方向研究内容

“模式识别与智能信息处理”是当今发展最快的热点领域,本领域以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,探索对各种媒体信息进行处理、分类、理解并在此基础上构造具有某些智能特性的系统或装置的方法、途径与实现,以提高系统的性能。模式识别与智能处理是现代服务业信息支撑技术之一,是一个理论与实际紧密结合、具有广泛应用价值的重要领域。

一、计算机视觉与图像识别

以信息处理与模式识别的理论、方法和技术为核心,以数学方法和计算机为主要工具,探索对图像、图形(人脸、指纹、虹膜、静脉、步态、车牌等)的信息进行处理、分类、理解,并在此基础上构造具有智能特性的系统。

二、语音合成、识别和理解

研究非特定人大词汇量连续语音识别,语言模型与口语理解,说话人识别,口音识别,语音合成系统,对话系统,人机语音交互技术,音频信号处理、识别,以及语音应用系统开发。

三、计算机控制系统

以计算机为主要工具,以人脑仿真研究为基础,将人工智能技术、数据挖掘技术、嵌入式技术、人工神经网络理论等智能化方法用于信息系统、自动化系统和,以实现智能化信息处理和智能化控制。

热忱欢迎各位老师加入此方向!

上一篇:变电站电气所需资料下一篇:做人做事的4个法则