电力传动内燃机车

2022-08-03 版权声明 我要投稿

第1篇:电力传动内燃机车

内燃叉车不同传动方式的探讨

【摘要】本文介绍了目前内燃叉车传动系统中常用的三种传动方式,着重从系统特性、优缺点等方面做了探讨。

【关键词】牵引特性;传动方式;液压传动

1.概述

内燃叉车是车站、仓库、港口和工厂应用十分广泛的流动式装卸搬运机械,它可以实现搬运作业的机械化、减轻劳动强度、缩短堆码作业时间和提高生产率,而内燃叉车较好的完成搬运操作,一个好的传动系统就显得十分重要。传动系的基本作用是将发动机产生的运动与转矩加以一定的变化后,传给驱动车轮产生必要的牵引力,克服外界阻力。理想的传动系统应能够自动改变速比适应外界阻力的变化,充分发挥发动机的功率,即“恒功率、恒转矩”。

2.系统的特性的对比

叉车的牵引特性表示叉车在一定传动速比及一定驱动车轮半径时,车速与牵引力之间的对应关系。图1为叉车理想的传动系统特性曲線,纵坐标为牵引力P,横坐标为叉车车速v,牵引特性曲线能充分反映被测叉车的动力特征。机械传动叉车当档位数足够多并且速比分配合理时,通过及时的人工换挡,能使机械传动牵引特性分段逼近理想牵引特性)。液力传动的特性曲线与理想的特性曲线比较接近,系统能自动适应行驶阻力的变化。

现对叉车传动系统中常用的机械传动、液力机械传动和液压传动三种传动方式的优缺点和系统的特性比较评述如下:图1为理想的传动系统特性曲线。

3.不同传动方式优缺点的对比

现对叉车传动系统中常用的机械传动、液力机械传动和液压传动三种传动方式的优缺点的对比如下:

液力机械传动与机械传动比较有如下优点

1、由于液力机械传动系采用液力变矩器代替了机械传动系中的干式离合器,液力变矩器利用液体作为传递动力的介质,输出轴和输入轴之间没有刚性的机械联系,大大降低了发动机及传动系统零件的冲击载荷,大大提高了机件的使用寿命。根据相关的统计数据表明,液力机械传动与机械传动相比,发动机寿命增长47%,变速箱寿命增长400%,后桥差速器寿命增长93%。对于载荷波动剧烈的场(厂)内机动车辆而言,其效果更为显著。

2、液力变矩器具有一定的变速能力,故对于同样的变速范围,可以减少变速箱的档位数,简化了变速箱结构。

3、液力变矩器具有自动无级变速的能力,因而起步平稳,并可得到任意小的行驶速度。

4、液力机械传动系用动力换挡变速器取代了机械传动系中的人力换挡变速器,实现了自动变速功能,操作方便,而且起步平稳,发动机不易熄火。大大减轻了操作者的劳动强度。

5、液力机械传动系的特性曲线与理想传动系特性曲线比较接近,能够自动适应行驶阻力的变化,因此能使发动机经常在选定的工况附近工作,大大提高了发动机的功率利用率。

但和机械传动系想比,液力机械传动系也有以下缺点:

1、零部件制造要求比较高而且成本也高。

2、由于油液在液力变矩器中的泵轮、导轮和涡轮的叶栅中高速流动,发热量大,因此传动效率略低。

3、采用液力变矩器后,使车辆起步时不能利用发动机飞轮的动能,也不能利用发动机制动。

4、采用动力转向的车辆,在发动机熄火后,车辆不能转向也不能拖起动。

与机械传动和液力机械传动相比液压传动有如下优点:

1、液压传动使传动系大大简化,利用一个变量泵和两个定量马达代替了机械传动和液力机械传动系中离合器(变矩器)、变速器、传动轴等,同时也简化了换挡操纵机构。

2、液压传动能实现无级传动,变速范围大,并能实现微动,且在相当大的转速范围内保持较高的效率。

3、液压传动利用液压系统本身可以实现无磨损制动功能。

4、液压传动采用先进的发动机转速匹配功能,使发动机的最佳性能得以体现,使得液压传动特性曲线接近于理想的传动系统特性曲线,而且还降低发动机油耗和尾气排放。

4.结论

虽然液压传动有非常好的性能,但是由于制造这样一套系统需要非常高的制造精度和高质量的材料,液压元件的价格、噪声等问题尚未完全解决,液压传动在内燃叉车中的使用尚不广泛,目前内燃叉车上大多还是采用机械传动和液力机械传动方式,只有少数几个品牌的内燃叉车采用液压传动。但从系统经济性、传动效率来看,将液压传动技术大规模的应用在内燃叉车上将是—个趋势。

参考文献

[1]吴庆呜、何小新.工程机械设计武汉:武汉大学出版社2006.4

[2]陶元芳、卫良保.叉车构造与设计北京:机械工业出版社2010.2

作者:陈峰

第2篇:内燃机车电力传动控制

内燃机车交流传动及其控制系统

1、概述

电力传动系统的各项功能是通过一定形式的电路驱动各种电气设备得以实现的,电传动内燃机车上的电路,按其作用可以分为主电路、调节电路、辅助电路和控制电路四大系统。

主电路

将产生机车牵引力和制动力的各种电气设备连成一个系统,实现机车的功率传输,是电传动机车最重要的组成部分之一,不但决定电传动机车的类型,而且在很大程度上决定该型机车的基本特性。因此主电路性能的优劣,在很大程度上决定了机车性能的好坏、投资的多少及运行费用的高低等主要技术经济指标。

调节电路

在交-直流传动中通常是内燃机车上保证柴油机发电机组恒功率运行的励磁调节系统,它包括牵引发电机的励磁回路及恒功率励磁调节回路等;在交-直-交流传动中则是指保证柴油机发电机组恒功率运行的牵引发电机励磁调节和逆变器变压变频调节系统。调节电路应尽可能扩大牵引电机的恒功率范围,使机车在宽广的速度范围内都能充分发挥柴油机的功率,获得良好的经济运行特性,满足内燃机车牵引性能的要求。

辅助电路

将机车上的各种辅助电气设备和辅助电源连成一个系统,成为保证机车正常运转不可缺少的电气装置。机车上的辅助电气设备包括:通风机、空气压缩机、油泵等的拖动电机、起动辅助发电机、蓄电池、照明设备等。辅助传动系统通常为直流传动,由辅助发电机在电压调整器(或微机)的控制下向辅助电路提供110V的直流电,再由各种直流电动机驱动辅助装置运转。由于是恒定的110V直流电压供电,各辅助直流电动机基本不能调速,只能按工况以一定的转速运转或停止,使辅助系统并非保持在最佳工况下运转,工作效率不高。另有一部分辅助装置则是由机械或液压驱动,工作效率同样不高。因此,为提高机车整个辅助系统的性能及效率,近年来开始发展辅助交流传动系统,辅助装置的拖动电机为交流电动机,能够根据工况的变化进行变频或变极调速,使辅助系统处于最佳工作状态及工作效率。

控制电路

将控制主电路和辅助电路各电气设备的控制电器、信号装置和控制电源连成一个电气系统,实现对机车的操纵和控制。控制电路包括各种控制开关、继电器和电空阀等。司机通过控制电路的作用,可以控制主电路和辅助电路的各种电器按照一定的顺序动作(接通或断开),从而使机车按照司机的操作意图运行。现代机车的控制电路已从复杂的继电器逻辑电路开始过渡到可编程逻辑控制器(PLC)或微机逻辑控制系统,使控制电路趋于简单可靠。

随着电子技术、计算机技术的发展,电子控制系统及计算机控制系统已经应用于机车,实现了机车的自动控制。这些现代控制技术的应用提高了机车的牵引性能和运行的安全可靠性,也是提高机车各项技术经济指标的有效措施之一。

2、电力传动控制

通过对机车电传动系统的控制实现机车起动、调速运行、动力制动的全过程。

内燃机车起动控制

由于列车起动时存在较大的摩擦阻力,并且需要较大的起动加速度以保证列车起动加速快、运行平稳,因此,机车应以较大的恒定牵引力起动,对牵引电动机及机车动轮来说称为恒转矩起动。机车的起动牵引力是由司机控制器主手柄位所决定的,每个手柄位的起动牵引力恒定。机车起动时,从低手柄位开始提升手柄,随着手柄位的提高,牵引力也随增大,使列车能够快速平稳地达到正常的运行速度。机车的起动牵引力与其牵引吨位及坡道有关,当牵引重载列车在上坡道上起动时,需要较大的起动牵引力方能起车,但要防止超过轮轨之间的最大黏着牵引力而出现轮对空转现象。

在内燃机车交-直流传动系统中,司机控制器各手柄位的起动恒转矩是通过控制各手柄位的最大起动电流来实现直流牵引电动机的输出转矩恒定。同步牵引发电机经整流装置向牵引电动机供电,控制各手柄位下牵引发电机的励磁电流即可控制输出电流恒定。根据同步发电机的外特性,也可直接控制各手柄位的最大励磁电流恒定来限制最大起动电流,从而近似达到恒转矩控制。按照机车起动加速快及平稳的原则,要求从最低手柄位开始起动,各手柄位的最大起动电流逐位增加,在较低手柄位电流增加幅度较大,而在较高手柄位电流增加较缓。

在内燃机车交-直-交流传动系统中,司机控制器各手柄位的起动恒转矩是通过控制中间直流电压和逆变器输出电压、频率的变化规律来实现的。当手柄位一定时,通过调节牵引发电机励磁电流使中间直流电压恒定(电压源逆变器所要求),通过脉宽调制控制使逆变器输出的电压与频率近似呈正比变化,并保持转差频率恒定,即可使异步牵引电动机的输出转矩恒定。为了较精确地控制转矩恒定,可加入恒电流控制,根据电流偏差信号对输出电压进行补偿调节。随着手柄位的提高,中间直流电压增加,逆变器输出电压正比于频率的变化率也增加,异步牵引电动机的输出转矩随之增大。

内燃机车恒功率调速控制

为了充分发挥柴油机的功率,并使柴油机按其经济特性运行,司机控制器每给定手柄位都对应柴油机的规定转速及其输出功率,当手柄位一定时,柴油机的转速及输出功率应恒定。机车在起动时,柴油机欠功率工作;机车起动完成后,柴油机应按恒功率工作。机车柴油机一般都装有全制式调速器进行恒转速控制,而其输出功率则取决于负载,因此,只要负载恒功率运行就能保证柴油机恒功率运行,能同时完成柴油机恒转速和恒功率调节任务的控制器通常称为联合调节器。柴油机的直接负载是牵引发电机、变流装置及辅助装置,通过控制牵引发电机或变流装置可实现柴油机恒功率。在恒功率工作状态,机车的速度与牵引力呈反比关系,机车牵引力要随列车运行阻力变化而变化,以达到力的平衡,机车速度也随之变化。当列车阻力小于机车牵引力时,剩余牵引力将对列车加速,使机车速度随之提高,牵引力也随之减少,直到与列车阻力平衡时为止;当列车阻力大于机车牵引力时,将引起机车减速,牵引力也随之增大,直到与列车阻力平衡时为止。

在内燃机车交-直流传动系统中,其变流装置一般为不可控的硅整流装置,只能通过调节牵引发电机的励磁电流使其输出外特性U= f(I)按恒功率的要求变化,向牵引电动机提供按此规律变化的电压和电流。当柴油机负载功率增加时,控制系统根据功率偏差信号使励磁电流减小,牵引发电机输出功率随之减小;当柴油机负载功率减小时,则励磁电流增大,牵引发电机输出功率随之增大,从而维持柴油机输出功率恒定。因此,该系统又被称为恒功率励磁控制系统。由于牵引发电机的功率较大,其励磁电流也较大,因此一般由专门的励磁发电机(简称励磁机)提供励磁电流,通过控制励磁机来实现牵引发电机恒功率。励磁机一般为交流发电机,其输出的交流电需整流为直流电。有的励磁调节装置采用可控整流装置,通过调节晶闸管的导通角进行整流和调节,也可先经二极管整流器整流,再采用斩波器来进行励磁调节。这种直接调节牵引发电机励磁电流的方式称为直接控制的励磁方式,其调节过程的时间常数较小,动态调节性能较好,但对调节元件的容量要求较大。为了减小调节元件的容量,有的励磁调节装置采用间接控制的励远方式,对励磁机的励磁电流进行调节,甚至还加入中间放大环节,但调节过程的时间常数相对较大,不利于提高系统动态调节性能。

在内燃机车交-直-交流传动系统中,当司机手柄位一定时,中间直流回路电压恒定,即牵引发电机经不可控整流装置输出的直流恒定,不可能通过道节牵引发电机励磁电流来达到恒功率运行,而是通过牵引逆变器对异步牵引电动机进行变频调速来实现恒功率运行。当柴油机负载功率增加时,控制系统根据功率偏差信号使牵引逆变器输出电压频率降低,异步牵引电动机的转速及功率随之降低;当柴油机负载功率减小时,则牵引逆变器输出电压频率提高,异步牵引电动机的转速及功率随之增大从而维持柴油机输出功率恒定。因此,该系统又被称为恒功率变频调速控制系统。

扩大恒功率调速范围的方法

作为机车恒功率调速系统,它有两个主要问题需要解决:①在机车运行时(即速度、牵引力变化时)充分利用柴油机功率的问题。②如何扩大这种恒功率运行速度范围的问题。我们知道,机车在一定功率(即一定的司机手柄位)下运行时,机车运行速度主要取决于外界阻力,它不能人为控制。因此当外界阻力变化,使机车速度超出恒功率范围时,柴油机功率将得不到充分利用,此时机车牵引功率下降,牵引效能减低。为此,我们必须设法扩大机车恒功率的运行速度范围,以满足运行要求。除机车起动的低速范围内所必需的恒转起动外,核心的问题就是如何扩大高速运行的恒功率范围。

在内燃机车交-直流传动系统中,扩大牵引发电机恒功率区段电压范围,可以扩大机车恒功率速度范围,但是采用这种方法会提高牵引力发电机容积功率,从而增加牵引电机制造成本和体积,因而牵引发电机恒功率电压调节范围受到限制。目前采用扩大机车恒功率速度范围的方法有两种:牵引电动机磁场削弱的方法和牵引电动机串-并联换接或牵引发电机电枢绕组并-串联换接的方法。

在机车上对牵引电动机一般采用磁场分路的有级磁场削弱方法来提高恒功率速度范围,即在牵引电动机励磁绕组的两端并联一级或数级分路电阻,当分别接通各级分路电阻时,部分电流从分路电阻流过,使励磁电流减少,从而达到磁场弱的目的,该方法虽然单,但在磁削瞬间会引起电流冲击,因此,级数越多,越有利于减小这种冲击,但电路则相对复杂,目前一般不超过三级。有的机车是先降低牵引发电机功率输出,再进行磁场削弱,以免电流冲击引起柴油机短时过载。防止电流冲击的最佳方式是无级磁削弱。另外值得注意的是,磁场削弱不利于电机换向,因此,为了保证电机换向的磁场稳定性,磁场削弱的深度受到限制。

在牵引发电机容积功率的范围内,通过牵引电动机串-并联换接或牵引发电机电枢绕组并-串联换接,可以增加牵引电动机的恒功率调压范围,从而达到增大机车恒功率调速范围的目的。在牵引电动机串-并联换接方式中,主电路中每条支路的电机串联台数和并联支路数可以通过换接来加以改变。当机车在较低速度下运行时,需发挥的牵引力较大,此时牵引电动机应处于低压大电流工作状态,因此电动机串联台数较多,并联支路数较少(如3串2并);当机车运行到较高速度时,牵引力相对较小,此时牵引电动机应处于高压小电流工作状态,通过牵引电动机串-并联换接,使电动机串联台数减少,并联支路数增多(如2串3并)。这样,在保证牵引发电机的输出电压和电流不超出容积功率所允许的范围内,对每台牵引电动机来说,增大了其电压和电流的恒功率调节范围。在牵引发电机电枢绕组并-串联换接方式中,牵引发电机有两组电枢绕组。当机车在较低速度下运行时,两组电枢绕组并联,其输出电压等于一组电枢绕组的电压,而输出电流等于两组电枢绕组输出电流之和,牵引发电机向牵引电动机提供低电压大电流;当机车运行至较高速度时,进行电枢绕组并—串联换接,使牵引发电机两组电枢绕组串联,其输出电压将增加一倍,输出电流相应减少一倍,牵引发电机向牵引电动机提高电压小电流。这样将使牵引发电机输出电压的调压比增加一倍。ND5型机车即采用这种方式。但对于换接的主电路,其电气线路较复杂,换接过程中存在牵引力的中断和冲击现象,而且在主电路中有串联工作的牵引电动机,当机车动轮发生空转后,空转电机端电压未受到限而随之升高,使空转现象不易消失,因此这种连接方式在中国内燃机上基本未采用。

在内燃机车交-直-交流传动系统中,由于异步牵引电动机的结构和性能的优越性,其功率容量比直流牵引电动机高得多,直流牵引电动机一般不超过1000kW,而异步牵引电动机功率可达1600 kW~1800kW,其输入压等级可以在1500V以上,电机转速也可达4 000r/min以上。应该说交-直-交流传动系统可比交-直流传动系统的恒功调速范围做得大,特别在高速区,不会出现像直流牵引电动机的诸如高电压限制、磁场削弱深度限制等问题,因此现代高速机车一般均采用交流传动。但是,扩大内燃机交-直-交流传动系统的恒功率调速范围并不是仅靠增加异步牵引电动机的电源频率就可达到的,而是要综合考虑柴油机、同步牵引发电机、牵引逆变器及异步牵引电动机的最佳匹配问题,如中间直流电压值的选择、恒功率运行调节方式的选择、各装置容量和结构尺寸的确定等,以期使各部分的功率能得到充分、合理的利用。但随着恒功率区的扩大,各装置的充分利用程度都会随之下降,所以应根据实际运用需要来合理地选择恒功率区的宽度。由于变流器的价格相对较为昂贵,目前大都考虑按小逆变器的方式进行系统优化。

内燃机车变功率迅速控制

恒功率调速是机车的基本操作,此时机车速度随着列车运行阻力而变化。然而在列车运行过程中,从列车起动加速、平稳运行、线路坡道的变化、线路的限速区段到列车减速、进站停车,均需要司机合理地操纵主手柄来改变车引功率(牵引力)调节速度,从而达到“超车加速快,途中速度高,利用惰力好,进站减速稳,停车位置准”的目的,使列车能安全、正点、优质高效地运行。

司机控制器主手柄位的改变即改变了柴油机的转速和输出功率。一般当需要增加机车速度时,要提升手柄位,便柴油机的转速和输出功率增加;当需要机车减速时,应降低手柄位,使柴油机的转速和输出功率减小。传动系统的输出功率应随着柴油机功率的改变而改变。在内燃机车交一直流传动系统中,随着柴油机功率的改变来调节牵引发电机的励磁电流增加,输出功率增加,从而使直流牵引电动机的输出转矩增加,机车牵引力增加,引起机车加速,以达到较高的速度平衡点。在内燃机车交-直-交流传动系统中,随着柴油机功率的改变来调节牵引逆变器的输出电压及频率,使其输出功率改变。例如柴油机功率增加,控制系统调节牵引发电机的励磁电流使中间直流电压增加,同时使牵引逆变器的输出电压及频率增加,从而使异步牵引电动机的输出转矩及转速增加,即机车牵引力和机车速度增加。

内燃机车电阻制动控制

电阻制动是电传动内燃机车的重要工况。在电阻制动工况时,列车的惯性力驱动牵引电动机旋转,根据电机可逆原理,此时的电动机进入发电机工况,产生制动转矩,从而产生与机车运行方向相反的制动力,制动列车。其发电所产生的电能消耗在制动电阻上,转换成热能,散失于大气中。运用情况表明:实施电阻制动可以提高列车的制动能力(特别在长大下坡道上尤为明显);可最小限度地使用空气制动,从而大大降低机车车辆轮箍的磨耗,减小轮箍和闸瓦或摩擦片的发热,因而也提高了空气制动的效果;同时,由于列车上配备了两套制动系统,因而更能保证列车安全运行。

在电阻制动工况下,机车电路要进行必要的转换,要按照机车电阻制动特性进行控制,既要充分发挥电阻制动的能力,尽可能扩大电阻制动调速范围,又要避免超过制动系统的容量,造成设备过载而引发故障,同时要避免因制动力过大,超过轮轨黏着力而引起车轮打滑。

3、微机控制

微机控制包括以CPU为核心的微型计算机、存储器以及将微机与机车设备相连接的数字量和模拟量接口装置等硬件和采样、数据处理、控制程序等软件所组成的车载微机系统。它与模拟电子控制的本质区别在于,许多复杂的控制功能都可以通过计算机的数字运算来实现,从而大大简化了电路结构,即所谓用编程软件代替硬件。微机控制能更方便地综合多种信号,实现各种复杂的逻辑控制及各种特殊规律的控制,微机能完成各种控制算法从而实现系统的最优控制。采用微机控制,不仅可使控制系统结构简化、调试容易、成本降低、抗干扰能力增强,而且能获得更多更复杂的控制功能,更好的调节品质及控制精度。此外,采用微机控制还能方便地实现机车运行参数的自动显示、存储及故障报警等功能。特别是微机系统的功能改变及功能扩展十分容易,通常仅需改变软件设计即可达到。由于微机控制的优越性能,它的功能范围已远远超出了人们最初的想像力。在机车上采用的微机系统往往已不仅限于恒功率控制,它还包括柴油机控制、辅助功率控制、站着(防空转和防打滑)控制、优化操纵以及故障诊断等功能。可以说,内燃机车装备微机系统是现代化机车的重要标志。

1977年,前联邦德国开始把微机系统应用到电传动内燃机车的控制上。随后,美国、英国、澳大利亚、加拿大、芬兰、丹麦、荷兰、匈牙利、前苏联、奥地利、西班牙等国家也陆续将微机系统用到内燃机车上来。中国从20世纪80年代开始了这方面的研究,并于1985年前后把微机应用到车载上,从比较简单的或功能单一的微机装置发展到较复杂的或多功能的微机系统。1989年制造出第一台装备较完备的微机多功能控制系统的东风6型内燃机车;此后又有微机系统装于东风5 型、东风4 型内燃机车;1992年开始生产的东风1 1型准高速客运内燃机车,1994年生产的东风10 D型重载货运内燃机车及1997年生产的东风8B型重载货运内燃机车均装备了功能较完备的微机控制系统。中国内燃机车采用微机技术已经有了一个良好的开端。

东风11型内燃机车的微机控制系统具有代表性,见下图。整个微机控制系统按功能模块设计,通过FE总线(包括电源线、数据线、地址线和控制线)与各功能模块之间相连接。各功能模块主要包括:以16位机80C186CPU为核心的主控制板,存储器/串行口输入输出板,(开关信号)数字量输入板,(继电器/接触器)数字量输出板,(传感信号)模拟量输入板,(转速脉冲)频率输入板,脉宽调制(PWM)励磁控制板。完成的主要功能有:①牵引特性控制,包括各手柄位下恒功率励磁控制、功率加载/减载的速率控制、主发电机电流上升/下降的速率控制;②电阻制动特性控制,包括各手柄位下恒流制动特性和恒励磁制动特性控制、牵引电动机换向条件的限流控制以及励磁电流的加载率控制;③空转/滑行保护控制,包括牵引工况的空转保护和电阻制动工况的滑行保护控制;④故障诊断与保护,包括柴油机系统与电气系统的监测参数和故障信息的显示与记录及相应的保护控制。

国际上典型的内燃机车微机系统有:德国BBC公司开发的MICAS车载微机系统;德国西门子公司开发的SIBAS车载微机系统;德国 KRAUSS-MAFFEI公司开发的KM车载微机系统;美国GM公司开发的EM 2000车载微机系统;美国GE公司开发的车载微机系统;法国阿尔斯通公司开发的AGATE车载微机系统。这些系统的中央处理单元(CPU)都由16位发展到32位,存储容量由千字节扩展到兆字节,微机处理的功能、速度、实时多任务的能力均大大增强。有的是单机系统,有的是分式多机系统。按功能模块化、标准化设十,设计成对各种传动系统都适用的模块式结构的控制系统,只要添加不同功能的组件及相应的软件(程序模块),就能满足各种不同的功能需要。值得一提的是,这些系统中有的不仅可用于内燃机车,还可用于电力机车;不仅可用于交一直流传机,还可用于交流传动,具有很强的通用性及兼容性。

东风11型内燃机车微机控制系统原理框图

现代机车控制已发展到了以整列车为目标的三级控制,即列车控制级、机车控制利传动控制级。列车控制级:对列车总线进行控制,处理来自机台或列车控制装置的信息并进行显示,实施列车优化操纵,产生与整个列车(包括多台机车或动车)有关的控制变量,最重要的输出量是牵引力或制动力给定值。机车控制级:根据列车控制级传来的控制指令和给定值,实现对本机车的优化控制功能,主要包括限制牵引力和制动上的变化速率以提高运行的平稳性与舒适性,向传动控制级提供所需的输入信号,进行防空转防滑行控制以提高黏着利用率,进行电空联合制动以达到将制动力接经济和安全的原则分配给各制动系统,对辅助装置进行优化控制以达到降低铺助功率消耗的效果,对主要设备进行状态监测、故障诊断与自我保护。传动控制级:根据机车控制级传来的控制指令和给定值,实现对动力装置和传动系统的优化控制功能,主要包括对油机进行控制并采用电子调速器和电控燃油喷射系统以提高柴油机的调速性能和经济性,对主发电机进行恒功率励磁控制以保证柴油机按经济特性运行,对牵引变流器(包括各种整流器、四象限变流器、逆变器)进行控制,以达到控制牵引电动机的转矩和转速的目的。

4、交流传动的恒功调速控制

内燃机车交流恒功率调速系统(AC-DC-AC constant power speed regulating system for diesel locomotive)满足交—直—交流电传动内燃机车牵引性能要求,实现恒功率调速的变压变频(VVVF)控制系统。交—直—交流传动机车通常由异步牵引电动机驱动。根据异步电动机的转速公式

可知,改变电机磁极对数p只能有级地改变电机的转速n,因此为满足机车平滑调速的要求就必须连续地调节电源频率f1 ,并控制转差频率f2。

在机车上,交流牵引机发电机的频率正比于柴油机的转速,而柴油机在功率恒定时其转速是不变的,所以在恒功率条件下发电机的频率也是不变的。因此,由柴油机驱动交流牵引发电机所发出的三相交流电经硅整流装置整流为直流电,再经过逆变器(可设一台或数台逆变器),将直流电转变为电压和频率可变(VVVF)的交流电,供给数台异步牵引电动机。通过这样的间接变频,使逆变器输出的三相交流电的频率与牵引发电机发出的三相交流电的频率没有任何关系。在机车起动和调速的整个工作范围内,逆变器输出的三相交流电压和频率的平滑调节应使异步牵动机的机械特性和电气特性满足机车恒转矩起动、恒功率运行的牵引性能要求。

由异步牵引电动机稳定工作的机械特性可知,转差率S(S=f2/f1)极小,电机电流可近似表示为 (1)

式(1)中R′2 为转子等效电阻,对于给定的电机R′2 一般为常数。电机转矩可近似表示为

(2)

或写成

(3)

式(2)和式(3)中C为常数。在机车恒转矩起动的低速区,要保证M为常数,由式(2)可知,应当控制U1/f1恒定(即磁通恒定)并保指挥持转差率f2为常数,即端电压 U1随着电源频率f1 线性增长。实际上在低频时,电机定子电阻不容忽略,此时电压U1相对有所提高。由式(1)可知,电机电流I1保持恒定,在机车恒定功率运行区,要求Mf1为常数,由式(3)可知,可有不同的控制方式。为了扩大机车恒功率的调速范围,可在开始阶段采用U21 /f1=常数、f2不变的恒功率控制方式,即端电压超压U1 仍随频率f1 增加而增加,保持磁通近似恒定,电流I1则随着U1的增加呈反比减小,从而使机车牵引力(电机转矩)随机车速度(供电频率)的增加成反比下降,机车保持恒功率运行;当电压U1升高到受逆变器输出电压的限制时,采用U1不变、f1/f2=常数的恒功率控制方式,即转差频率f2随电源频率f1的增加而线性增长,电流I1也保持恒定。在恒电压下,随着供电频率f1的增加使牵引电动机产生磁场削弱的效果,同样使机车牵引力随机车速度的增加呈反比下降而保持恒功率运行。当f2增大到受电机倾覆转矩所限制的最大转差频率时,f2保持不变,此时M f1随着f1的增加呈反比下降,机车入降功率运行。机车牵引运行的电气与机械特性曲线见图1。

图1 机车牵引运行的电气与机械特性

基于机车牵引运行电气与机械特性的要求,可采用如图2的转差频控制系统方案,由司机手柄位控制,通过f2 函数发生器、I1 函数发生器和功率函数发生器分别发出各手柄位的二转差频率给定值f20 、电流给定值I1g和功率给定值Pg 。在机车恒转矩起动阶段,转差频率实行开环控制,△f2不起作用,f20=f2 =常数,牵引电动机转子频率fn与f2相加得到电源频率控制信号f1,即f1 =fn+f2;按照起动阶段电压U1变化的规律,f1/U1变换器发出U10信号;由于f1/U1=常教,只能近似保持磁通恒定,因此加入恒电流闭环调节,将电流检测到信号I1 与给定值I1g比较,其偏差值比功率偏差值为小,由它发出电压调节的补偿信号△U1;将△U1与U10相加得到电源电压控制信号U1;将f1信号和U1信号送入脉宽调制(PWM)控制器,控制逆变器输出频率f1和电压U1,使机车恒转矩运行。机车进入恒功率运行阶段后,开始仍保持f2恒定,按照恒功率阶段电压U1变化的规律,f1/U1变换器发出U10信号,同时加入恒功率闭环调节,将功率检测信号P与给定值Pg比较,其偏差值比电流偏差值为小,由它发出电压调节的补偿信号△U1 ,当U1增大到一定值时保持恒定,转差频率闭环控制起作用,一方面按照恒功率运行的要求f2函数发生器发出与f1成正比的f20信号,另一方面加入功率闭环调节,根据功率偏差值发出转差频率补偿信号△f2 ,f20与△f2相加得到f2,从而得到电源频率信号f1 ,即f1 =f20+△f2+fn。可见在恒功率阶段是先调节电压U1后调节转差频率f2,尽可能地扩大恒功率调速范围,直到f2增大到最小转矩裕量所允许的转差频率时为止,f2保持不变,机车进入降功率运行区段。

图2 交—直—交电传动内燃机车的转差频率控制系统方案

交流异步电动机是一个复杂、非线性、多变量的控制对象,而且在鼠笼结构中无法直接检测转子电流。因此,交流传动不像直流电动传动系统那样只是直接对磁通、电枢电流和电压进行控制,有一种标准的控制结构,而是先后开发出各种各样的控制方法。除了上述较早开发的转差频率控制方法外,后来开发的磁场定问矢量控制方法和直接转矩控制方法在交流传动址车和动车组上得到普遍应用。应当注意的是,无论控制结构如何复杂,或采用什么样的反馈环和反馈量,逆变器只有两个控制变量,即电压和频率,故一般通称为VVVF(变压变频)逆变器。

第3篇:内燃机车的液力传动

能用作驱动机车车轮的机械,电动机不是唯一无二的。水力机械中的涡轮机也有和电动机相类似的驱动特性。只要用柴油机带动一个泵,向涡轮提供具有某些压力的液流,而且能够把在涡轮中工作完毕后的液流引回到泵的进口处,使液流循环工作,这套系统就可用作内燃机车的动力驱动系统。根据这一原理,德国工程师费廷格创造了液力变扭器和液力偶合器,把涡轮和泵轮组合在一起,二者之间没有机械连结而只是通过液流循环来相互作用。内燃机车采用这种“软”连结方式而设计的传动系统称作液力传动。

与电力传动相比,液力传动不过是后

起之秀。但它在

与电传动的竞

争中,异军突

起,很快赢得了

重要位置。液力传动装置的优点是不用电机,可以节省大量昂贵的铜,同时它的重量也轻些。这使得机车降低了造价也减轻了重量,即在同样的机车重量下,它的机车功率一般都比电传动机车大。另外,液力传动装置的可靠性高,维护工作简单,修理费也少。还有一个优点是,它的部件是密闭式的,无论风砂雨雪对它的工作都不产生什么坏的影响。

液力传动装置的主要组成部分是液力传动箱、车轴齿轮箱、换向机构和相互联结的万向轴等。它的核心元件是液力传动箱中的液力变扭器,主要由泵轮、涡轮和导向轮组成。泵轮通过轴和齿轮与柴油机的曲轴相连,涡轮通过轴和齿轮与机车的动轮相连,导向轮固定在变扭器的外壳上,并不转动。当柴油机启动时,泵轮被带动高速旋转,泵轮叶片则带动工作油以很高的压力和流速冲击涡轮叶片,使涡轮与泵轮以相同的方向转动,再通过齿轮把柴油机的输出功率传递到机车的动轮上,从而使机车运行。

变扭器关键在“变”。当机车起动和低速运行时,变扭器中的涡轮转速很低,工作油对涡轮叶片的压力就很大,从而满足机车起动时牵引力大的需求;当涡轮的转速随着机车运行速度的提高而加快时,工作油对涡轮叶片的压力也逐渐减小,正好满足机车高速运行时对牵引力要小的需求。由此可见,柴油机发出的大小不变的扭矩,经过变扭器就能变成满足列车牵引要求的机车牵引力。当机车需要惰力运行或进行制动时,只要将变扭器中的工作油排出到油箱,使泵轮和涡轮之间失去联系,柴油机的功率就不会传给机车的动轮了。

第4篇:电力电子与电力传动专业考研院校排名

来源: 2011-01-20 10:07:58 编辑:sunrain 浏览次数:8329 网友评论 0 条转播至:我很喜欢这篇文章!收藏到网摘:

对电力电子与电力传动专业的介绍电力电子与电力传动学科主要研究新型电力电子器件、电能的变换与控制、功率源、电力传动及其自动化等理论技术和应用。它是综合了电能变换、电磁学、自动控制、微电子及电子信息、计算机等技术的新成就而迅速发展起来的交叉学科,对电气工程学科的发展和社会进步具有广泛的影响和巨大的作用。学科研究范围:电力电子器件的原理、制造及其应用技术;电力电子电路、装置、系统及其仿真与计算机辅助设计;电力电子系统故障诊断及可靠性;电力传动及其自动控制系统;电力牵引;电磁测量技术与装置;先进控制技术在电力电子装置中的应用;电力电子技术在电力系统中的应用;电能变换与控制;谐波抑制与无功补偿。研究方向:1 )谐波抑制与无功补偿2 )电力电子电路仿真与设计3 )计算机控制系统4 )电气系统智能控制技术5 )现代控制理论及其电气传动中的应用6 )系统故障诊断技术及应用7 )现代交、直流电机调速技术8 )功率变换技术的研究该学科对实践动手能力要求很高,难度较大。本科是电气工程、自动化、电子信息工程的适合报考这个专业。该专业需要的基础是电路基础,模拟电路与数字电路,电机学,单片机技术,计算机控制技术,电力电子技术,电力拖动自动控制系统,数字信号处理。电力电子与电力传动

排名学校名称等级排名学校名称等级排名学校名称等级

1清华大学A+7哈尔滨工业大学A13中国矿业大学A

2西安交通大学A+8华北电力大学A14山东大学A

3华中科技大学A+9西北工业大学A15合肥工业大学A

4浙江大学A+10上海交通大学A16天津大学A

5南京航空航天大学A11西安理工大学A17北京交通大学A

6华南理工大学A12西南交通大学A

B+等(26个): 武汉大学、上海海事大学、河北工业大学、大连交通大学、武汉理工大学、江苏大学、燕山大学、东南大学、湖南大学、南京理工大学、沈阳工业大学、上海大学、东北大学、辽宁工程技术大学、河海大学、江南大学、西华大学、大连海事大学、北京航空航天大学、兰州交通大学、西安电子科技大学、湖北工业大学、同济大学、中南大学、电子科技大学、东华大学

B等(25个):哈尔滨理工大学、大庆石油学院、中国农业大学、北方工业大学、江苏科技大学、长春工业大学、东北电力大学、辽宁工学院、郑州大学、安徽理工大学、兰州理工大学、安徽工业大学、黑龙江科技学院、西安科技大学、南昌大学、湘潭大学、石家庄铁道学院、上海理工大学、贵州大学、哈尔滨工程大学、北华大学、广东工业大学、西安工程大

学、广西大学、太原理工大学

C等(18个):名单略

第5篇:列车电力传动与控制-第5次作业

列车电力传动与控制(Ⅴ)

李俊

201203909 ❶.比较两电平电压型逆变器和三电平电压型逆变器的区别。 解答:⑴.结构上:两电平式逆变器可以把直流中间环节的正极或负极电位接到电动机上,结构简单,需要开关元件少;三电平式逆变器除了把直流中间环节的正极或负极接到电动机上外,还可以把直流中间环节的中点电位送到电动机上去。三电平式逆变器结构复杂,需要开关元件多。

⑵.功能上:三电平式逆变器相对于两电平式逆变器,电网电流波形更接近与正弦波,谐波分量减小,具有更好的输出性能和可靠性。

⑶.应用上:两电平式逆变器在电力机车应用广泛;而三电平式逆变器应用很少,如CRH2。

❷. 简述变流器中间储能环节的作用及组成。

解答:①.电压型脉冲四象限变流器中间直流环节由两个部分组成:ⅰ.相应于2倍电网频率的串联谐振电路(也可以取消);ⅱ.是滤波电容器

支撑电容器和过电压限制电路。 ②.在交—直—交流变流器中,中间直流储能环节的作用:ⅰ.是连接四象限脉冲整流器和负载端逆变器之间的纽带;ⅱ.起到稳定中间环节直流电压的作用;ⅲ.承担着与前后两级变流器进行无功功率交换和谐波功率交换的作用。 ❸. 分析两电平式电压型逆变器的工作过程及输出特征。

解答:⑴.电压型两电平式六阶波型三相逆变器: ⅰ.工作过程:六阶波型三相逆变器中各相采用纵向换流,每次换流都是在同一相上下2个桥臂之间进行,每个开关元件在一个周期中导通180°电角度,其他两相也是如此,只不过三相对应元件相差120°电角度轮流导通,使VT1~VT6各元件每隔60°电角度轮换导通。在每一时刻都有3个开关元件同时导通,可能是上面一个桥臂,下面2个桥臂;也可能是上面2个桥臂下面一个桥臂。如下图所示:

ⅱ.输出特征:对于A相, 当桥臂1导通时UAN=Ud/2;当桥臂4导通时,UAN=-Ud/2,即UAN的波形是幅值为Ud/2的方波。B、C相的情况与A相类似,其波形UAN,UBN,UCN相同,只是在相位上依次相差

120°。其线电压和相电压特性见上图所示。 当逆变器按照六阶波方式输出时,其相电压波形为六阶波、线电压为矩形波。六阶波的变化趋势基本上接近于正弦波。 当逆变器以六阶波电压对牵引电动机供电时其电流波形在负载电感的作用下将趋于平滑,其平滑程度将于六阶波的频率有关。 当电压频率较高时,将获得接近于正弦波的电流波形,当电压频率较低时电流波形将与电压波形接近;频率越低电流波形也越接近六阶波,但其中的高次谐波成分也越多。如下图所示:

⑵.电压型两电平式三相PWM逆变器:

ⅰ.工作过程:逆变器电路采用双极性调制方式,a、b、c、三相的PWM控制共用一个三角形载波UC调制信号,Ura、Urb、Urc依次相差三分之一周期。三相控制规律相同。以a相为例进行分析,当UraUrc时,给上桥臂开关元件VT1以导通信号、下桥臂开关元件VT4以关断信号,则a相相对于直流电源假想中点N的输出电压UaN=Ud/2。当UraUrc时,给VT4以导通信号,给VT1以关断信号,则有UaN=-Ud/2。VT1和VT4的驱动信号始终是互补的。当给VT1(VT4)施加导通信号时,可能是VT1(VT4)导通,也可能是二极管VD1(VD4)续流导通,这要由感性负载中电流的方向来决定。

ⅱ.输出特征:相对直流电源假想中点N的各相电压波形,都只有2种电平,即Ud/2,-Ud/2。线电压

有±2Ud/

3、±Ud/3和0共5种电平组成。

❹. 分析三电平式脉冲整流器的工作过程。 当开关元件VT1和VT6导通时UabUd,当VT3和UabUaNUbN,线电压可有三种电平,即Ud,-Ud,0。和VT6导通时Uab0。逆变器输出相电压PWM波形VT4导通时UabUd,当开关元件VT1和VT3或VT

4解答:在整流(牵引)或逆变(再生)工况下UsUd、UsUd各对应1种导通回路。UsUd/

2、UsUd/2各对应2种导通回路。而Us0则对应着3种导通回路。根据脉冲整流器等效电路,若忽略Us与iN高次谐波,只考虑其基波Us1与iN1,则UN=iN1Z+ Us1,调整Us1的幅值和相位,可使iN1在4个象限内随意变化。在牵引工况下,iN

1、UN同相位。在逆变工况下iN

1、UN反相位。功率因数接近1。四象限脉冲变流器的就是按照这一基本原理工作、调节控制的。

⑴.牵引工况调节过程: 设系统原稳定运行于A点,此时iN1与UN同相位,二者夹角θ=0,功率因数为1。当负载增加时,中间直流环节电压Ud瞬时下降,同时Us1的幅值也下降,系统工作点由A点移至A’点运行,电流iN1与电压UN之间出现相位角,导致θ=θ1>0(假定顺时针方向为正,下同);通过控制电路调整Us1的幅值及相位角φs使它们逐步增大,电流iN1与电压UN之间的相位角θ相应在减小,其工作点将由A’点调整到A’’点θ=0恢复到iN1与UN同相位。此时O A’’>O A输入电流iN1也相应地增加。系统将在A’’点建立起新的平衡状态适应负载增加。若负载减小时,Ud瞬时上升,Us1的幅值也瞬时上升,电流iN1与电压UN之间出现相位角,系统工作点由A点移至B’点运行,导致θ=θ2<0。

通过控制电路调整Us1的幅值及相位角φs使其减小,电流iN1与电压UN之间的相位角θ相应地在逐步增大,可将Us1由B’点逐步调整到B”点。θ=0,iN1恢复到与UN同相位。此时O B”

⑵.再生制动工况调节过程: 设系统原稳定运行于A点,此时iN1与UN相位相反,即φ=θ=180°、cosφ=-1。当再生制动回馈电能增加时Ud瞬时上升使得Us1幅值也瞬时上升,系统工作点由A点移至B’点运行电流iN1与电压UN之间的相位角θ顺时针转过一角度,将导致θ=θ2<180°。通过控制回路调整Us1的幅值| Us1|及φs,增大| Us1|减小φs(逆时针方向)可使B’

iN1与UN反相位。调整到B”,θ=180°,同时O B’’>O A,表明逆变过程输出电流增加,即回馈到电网的电流增加,以适应再生回馈能量的增加。

若再生回馈能量减小时,Ud瞬时下降,将导致Us1的幅值| Us1|也瞬时下降,系统工作点由A点移至A’点运行;将出现θ=θ”>0.通过调整Us1的幅值| Us1|及φs,可使A’调整到A’’点。此时电流iN1与电压UN之间的相位又恢复到θ=180°,同时OA”

第6篇:电力电子与电气传动综合课程设计任务书

一、目的及要求:

通过电力电子与电气传动的综合课程设计教学环节,使学生掌握以直流电动机为对象组成的运动控制,包括转速单闭环调速系统,转速、电流双闭环控制调速系统,静态、动态性能分析及工程设计方法,掌握以交流电动机为对象组成的运动控制,包括基于稳态模型和动态模型的异步电动机调速系统以及同步电动机调压调速系统的工作原理和性能特点。

通过该课程的学习,培养学生理论联系实际的能力,掌握电气传动控制系统的工作原理和设计方法,从实际出发,深入地进行理论分析,应用理论解决电气传动系统中的实际问题,提高学生分析问题和解决问题的能力。检验同学们对所学知识的掌握程度和运用能力。

二、内容及步骤: 内容:

1. 设计一个三相桥式全控整流电路,电源相电压为220V,利用可调的直流电压驱动直流电机进行调速,仿真观察整流电路输出电压和电流波形,电机电流、转速、转矩变化曲线。

2. 设计一个双闭环直流电动机调速系统,整流装置采用三相桥式电路,电动机参数:UN=220V,IdN=136A,nN=1460r/min,Ce=0.132V.min/r, 过载倍数λ=1.5,整流装置放大系数Ks=40,电枢回路总电阻R=0.5欧,时间常数Tl=0.03s,Tm=0.18s,电流反馈系数β=0.05V/A,转速反馈系数α=0.007V.min/r,要求实现稳态无静差,电流超调量σi%≤5%,空载起动到额定转速时的转速超调量σn%≤10%,取电流反馈滤波时间常数Toi=0.0017s,转速反馈滤波时间常数Ton=0.01s,取转速调节器和电流调节器的饱和值为12V,输出限幅值为10V,额定转速时转速给定Un*=10V。仿真观察系统的转速、电流响应和设定参数变化对系统响应的影响。

3. 完成基于IGBT逆变电路的异步电机恒压频比变频调速系统仿真,电机参数如下:额定功率为2.2kW,额定线电压为380V,额定频率为50Hz,额定转速为1423pm,定子电阻为3.478Ω,定子漏感为0.01254H,转子电阻为2.546Ω,转子漏感为0.01226H,励磁电感为0.3329H,转动惯量为0.0131,极对数为2。

4. 采用三相SPWM技术设计一个转速开环变频调速系统,观察电动机的电流、转速和转矩曲线。

步骤如下:

1、查阅调速系统资料。

2、设计调速系统原理图和动态结构框图。

3、计算各控制参数。

4、熟悉MATLAB仿真工具。

5、对原理图和结构框图进行仿真。

6、总结课程设计报告。

三、课程设计时间和进度安排:

1、时间安排第16-18周

2、据学生人数分组:班级-电气:1097

41、109742共82人,每2-3人一组。 课程设计进度:

1:听课学习MATLAB仿真软件(1天)(占10%) 2:学习和熟悉软件的应用和基本操作(4天)(占20%) 3:查阅调速系统资料。(2天)(占10%)

4:设计调速系统原理图和动态结构框图(3天)(占20%) 5:对原理图和结构框图进行仿真(4天)(占30%)

6:总结报告:书写设计说明书、设计步骤、报告。(1天)(占10%)

四、答辩及成绩评定:

每个课程设计的最后一周的周五进行答辩,其中每一部分所占总成绩的比例请参考第三项。 教师组织考核,对每个学生做出评语,成绩可按:优、良、中、及格、不及格分为五等。 教师通过设计答辩或经验交流形式,了解学生设计水平。根据学生运动控制基本知识掌握的程度,调速系统电路设计和利用仿真软件综合设计与调试能力,独立分析解决问题的能力和创新精神,课程设计总结报告的书写评定成绩。 五:教学参考书目:

《运动控制系统》 清华大学出版社 阮毅,陈维钧

《电力电子和电力拖动控制系统的MATLAB仿真》

机械工业出版社 洪乃刚 《电力电子应用技术的MATLAB仿真》

中国电力出版社

林飞 杜欣

撰槁人 教研室主任 系主任

签名

日期

2011.5. 27

电子与电气工程系(电气教研室) 2011/5/27

第7篇:电力机车论文

浅论电力机车的通风系统

院系:电气与电子工程学院

班级:电1304-2班 学号:20132607 姓名:周邦彦

1

引言:我国电力机车遵循大力发展电力牵引和内燃牵引,以电力牵引为主的方针,自第一条电气化铁路问世至今,实现了速度高、效率高、过载能力强、运输能力强、经济效果显著等优越性,按用途可分为客运电力机车、货运电力机车、客货两用电力机车、调车电力机车,按传动形式不同可分为具有个别传动的电力机车和具有组合传动的电力机车,按电流制不同可分为直流电力机车和交流电力机车。

机车先通过电弓从接触网(就是天上的电线)上受电,在经过机车上的牵引变压器,整流柜,逆变,然后传入牵引电机带动机车,最后通过车轮传入钢轨。形成一个巧妙的电路。电力机车的通风系统有:主变压器的油循环风冷系统、牵引电机和整流柜(有些车没有了)的离心通风机冷却系统和制动电阻带有制动风机冷却。

一﹑通风机的类型和特点:

按照工作原理,通风机可分为两大类型。

1.离心式:离心式的通风机又被称之为鼓风机,它是工业上采用最为广泛的一种类型的通风机,此类型通风机的结构包括蜗壳、叶轮、电动机。作用原理:当叶轮在蜗壳内作高速旋转时,叶片间的空气也被迫作高速旋转,在离心力的作用下,沿叶轮甩出来,以一定的速度速度沿蜗壳经出风口进入风道,由于叶轮间形成真空,外界空气不断从叶轮轴向进风口被吸入,把空气的流速转变为压强,使风道的风压得到升高。

2..轴流式:轴流式的通风机也经常被称之为风扇。这种类型通风机的结构:电动机、风道、叶片。作用原理:叶轮在电动机驱动下

2

高速旋转,由于叶片有一定的斜度,形成空气的轴向流动,叶轮背面形成真空,外界空气不断补入。

二、通风机在电力机车上的应用:

离心式和轴流式的通风机在电力机车通风系统中均有被采用。由各自类型的通风机的特点可以看出,在有一些距车体比较远的设备,例如常见的牵引电机,一般都是用离心式的通风机来进行冷却;而一些设备由于其位置的局限性,比如制动的电阻柜,经常都是用轴流式的通风机来冷却。

我国直流传动电力机车及动力车通风系统基本上是采用车体通风方式,如除SS7D和SS9改机车之外,所有SS型电力机车和DDJ1型(大白鲨)动力车都是采用这种通风方式。其具体过程是空气从侧墙大面积百叶窗进入,经过滤网进入车体机械室,然后由各通风支路风机送入各相应需要冷却的部件进行强迫通风冷却。K型电力机车采用惯性滤清进风方式,进风口百叶窗和惯性滤清器安装在车体侧墙后部的左右两侧。车体两侧走廊构成了车体冷却通风的支路,机车上所有的通风机都是从车体内吸风的,因此8K机车通风系统也属于车体通风方式。到2000年,大同机车厂研制了采用独立通风系统的SS 7 D型电力机车。其牵引通风系统是小顶盖独立通风方式。由于设备布置是双边走廊形式,采用两侧侧墙上部和斜面部分吸风,与独立通风方式相比有明显不同。这种设计方案要求风道横跨走廊,存在夹层通风方式的缺点,占了走廊高度部分空间;但是由于保留了进风面积大的特点,加上进风口防雨设计合理,风道路径长,一定程度上降低了系统进风

3

风速,有利于防水效果的提高。2002年8月,株洲电力机车厂也研制出厂了采用独立通风系统的直流机车——SS 9改。SS 9改机车采用了独立通风系统常用的中间走廊的设备布置方式。由于进风口风道短,防雨的难度大,因此,在设计上尽量保证进风面积足够大,进风风速足够小,加上进风口采用了比较先进的百叶窗和过滤网,故能有效地防止雨水的进入。

三﹑我国交流传动电力机车及动力车通风系统

我国交流传动技术的发展,促进了机车通风方式的变革,丰富了机车通风方式的内容和型式,为独立通风方式和车顶夹层通风方式在电力机车及动力车上的应用创造了有利的条件。与直流传动机车相比,交流传动机车的通风系统具有以下两个特点:(1)要进行通风冷却的部件相对较少,通风系统比较简单。交流传动机车需要通风冷却的部件主要是牵引电动机和主冷却器(即主变流器水散热器和主变压器油散热器的合成);而直流传动机车需要进行通风冷却的部件通常还有硅整流机组、电抗器、制动电阻柜等。很明显,直流传动机车的通风系统更复杂,而且要求更苛刻。(2)风冷却的部件对冷却空气的清洁度、含水量的要求相对宽松。交流传动牵引电机允许含水滴状的空气进入其内部,对空气的清洁度要求也相对宽松;而直流牵引电机严格禁止水滴进入牵引电机内部,因为换向器对空气中的灰尘比较敏感,冷却空气的含尘量过多或灰尘颗粒过大将直接影响到牵引电机的正常工作。另外,由于交流传动机车变流器的冷却采用水冷系统,水的散热是通过散热器进行的,冷却空气中的尘、雨水不与变流器元

4

件直接接触,所以不会直接影响变流器元件运用;而直流传动的硅整流器是直接风冷方式,冷却空气中的尘、雨水将会直接损害整流器件的可靠性。基于以上特点,交流传动机车的通风系统一般采用独立通风方式(如AC4000和DJ1机车)或者车顶夹层通风方式(如DJJ1型和DJJ2型动力车﹑DJ型和DJ2型电力机车)。

A、SS4改型电力机车采用车体通风方式: 分为三大通风系统:

1.牵引通风系统(两台离心式通风机):车外冷空气→侧墙百叶窗→滤尘网

①1号硅机组→1号PFC电容柜→1号牵引通风机→

1、2位牵引电动机→车底大气。

②2号硅机组→2号PFC电容柜→2号牵引通风机→

3、4位牵引电动机→车底大气。

2.主变压器通风系统(1台轴流式风机):主变压器通风系统通常只有一个通风的支路,冷却的对象是主变压器和平波电抗器(二者共同使用同一个油箱),采用的是轴流式通风机,切每节的机车配有1台,其冷却的通路可表示为:

车外冷空气→侧墙百叶窗→滤尘网→主变压器油散热器→变压器通风机→车顶百叶窗→车顶大气。

3.制动通风系统2台(2台轴流式风机):制动通风系统每一节机车都拥有两个完全相同但两者相互独立的通风支路,冷却的对象主要为制动电阻柜,所用的是轴流式通风机,每一节机车总共有2台。

5

其冷却的通路为:车底冷空气→进风口(不过滤)→I(Ⅱ)端制动通风机→风道→I(Ⅱ)端制动电阻柜→车顶百叶窗→大气。

共设置2台离心式风机、3台轴流式风机。

B、SS9型电力机车通风系统

SS9改型电力机车常用独立通风系统,即车外空气不直接进入车体,而是通过各自独立的风道对各部件进行冷却。按照被冷却对象分为3大通风系统:牵引通风系统、制动通风系统和主变压器通风系统。全车采用4台离心式通风机、5台轴流式的通风机。

C、SS7E型电力机车通风系统:

SS7E型电力机车也采用独立通风方式。机车通风系统由牵引电机通风系统、主变压器通风系统、变流装置通风系统、制动电阻通风系统等四大通风系统组成。全车共采用2台离心式、9台轴流式通风 机。

D、CRH1动车组的通风系统:

CRH1动车组采用分体式空调装置(原型车为整体式空调,设置于车辆的端部),空气处理单元设在车顶中部,供风由两边的矩形主风道,经消音器和散流器流入客室。

排风单元设置于每节客车车厢端部的车顶和天花板之间。

四、电力机车通风系统发展趋势:

①可进一步提高通风机的气动、装置及其使用的效率,用来减少电能消耗;

②未来可能将用动叶可调的轴流式通风机代替大型的离心式通

6

风机;

③可减轻通风机的噪音;

④能够提高用于排烟、排尘通风机叶轮及其机壳的耐磨性; ⑤充分实现可变转速的调节和自动化的调节。

五、而电力机车通风系统常见的问题:

最重要的是通风机耐磨的性能以及耐磨的处理:因为大量的通风机被工厂、矿井、隧道等的通风和排尘等所应用,所以通风机的叶轮和机壳两者都有着不同程度的损坏,且有些地方会直接影响到生产是否能够顺利的进行,因此对通风机的耐磨性能的要求非常之高。

如今最经常使用的耐磨处理方式包括堆焊、喷涂、喷焊、涂覆高分子耐磨材料等,这些措施可相对的延长通风机使用的寿命。最近这几年,我们国家从国外引入了一种较为有效的耐磨处理方式,就是在叶轮或者是蜗壳便面粘贴亦或是镶嵌能够耐磨的陶瓷,因为这种耐磨陶瓷有着非常良好的耐磨性能,所以可以大大增强分机的耐磨性能。且如若粘贴了耐磨陶瓷片,此通风机在维护方面也比较便利,于是这种方法在我们国家的相关行业中得到了较为广泛的推广应用。

结语:为了能够满足铁路提速发展的迫切需求,电力机车从发明到如今都在不断的发展。我们国家的电力机车特别是电力机车通风系统的研制历程是模仿制造-独立自主的研制-批判性的消化吸收引进国外技术,以致可以自主的设计制造出更高水平的电力机车。目前我国已经研制出了 SS

8、SS6B、SS4B 等多种类型的产品。相信随着科技的发展与社会的进步,电力机车通风系统会有更大的改善,且电力

7

机车会有更加广阔的发展前景。

上一篇:庆祝六一儿童节演讲稿下一篇:听听那冷雨阅读