复合材料的成型工艺

2022-11-11 版权声明 我要投稿

第1篇:复合材料的成型工艺

浅谈蜂窝夹层复合材料应用及成型工艺

1 蜂窝夹层复合材料及其优势

复合材料由于其优异的性能近年已备受关注。蜂窝夹层结构是一种复合材料结构形式,通常由2层或多层蒙皮(也称为“面板”)之间夹以一层轻质蜂窝夹芯并采用胶黏剂在一定温度和压力下复合成一个整体刚性结构(见图1)。其主要包括复合材料蒙皮材料、蜂窝材料和胶粘剂材料。目前的蒙皮材料根据固化温度可分为高温、中温、常温材料,按照材料体系可分为环氧树脂体系、氰酸酯树脂体系及双马树脂体系等。蜂窝材料包括纸蜂窝、铝蜂窝、Nomex蜂窝等。胶粘剂按照固化温度不同包括常温胶黏剂、中温胶粘剂、高温胶粘剂等。蜂窝夹层复合材料由所选用的蒙皮材料及蜂窝材料匹配胶粘剂材料进行设计,可以满足航空航天、汽车等领域的具体需求。

蜂窝夹层复合材料具备着复合材料的特点,并且由于其选用了蜂窝材料及其特殊的结构形式,也更扩宽了其应用的范围提升了其优势,蜂窝夹层复合材料具有以下特点:

①质量轻,比强度高,尤其是抗弯刚度高,同等质量的蜂窝夹层结构复合材料其抗弯刚度约为铝合金的5倍。

②具有较高的表面平面度,且可以制备出形状复杂的曲面结构;可以制造成双曲、单曲面板,制成车辆零部件后拆装方便。

③可吸收震动能量,能够具备隔音降噪、减震等效果;蜂窝夹层结构复合材料,内部含有大量的密闭蜂窝孔格,其内部充满大量空气,而气体相比固体的传播介质,具有更为出色的隔音、隔热效果。

④具有复合材料的耐腐蚀、绝缘性和环境适应性。

⑤具有可设计性,可根据实际需要选取具有相应功能的材料,如防火、自熄、耐温等材料。并可根据实际使用工况对材料的结构进行设计。

⑥优异的成型制造工艺性,可以满足各类形状复杂、稳定性要求高的零部件成型制造方法。

2 蜂窝夹层复合材料的应用

2.1 蜂窝夹层复合材料在航天领域的应用

蜂窝夹层复合材料由于其具有弯曲强度大、抗剪切失稳能力强、质量轻的优势,被广泛应用于对性能和重量有特殊要求的航天、航空结构中。特别是蜂窝夹芯结构具有较高的减重效率,在各种军、民机雷达罩、舱门、副翼和舵面结构中应用广泛。

蜂窝夹层结构复合材料在最早的美国F—15战斗机的机翼前缘、襟副翼、垂尾、平尾上都得到了应用。后在美国的F/A—18飞机上也应用于飞行控制面,在后期研制的F—35飞机应用更加广泛,在飞机的襟副翼、平尾和垂尾前缘、方向舵等均采用了蜂窝夹层结构。在民用飞机方面,蜂窝夹层复合材料同样展示着其独特优势,A320、A340、A380、以及B787都采用此结构形式的结构件,如方向舵(见图2)、升降舵、翼尖、发动机机舱等部位。

由于蜂窝夹层结构具有优良的力学性能和减震耐腐蚀等特点也广泛应用于航空航天功能件中。蜂窝夹层复合材料结构广泛应用于整流罩、天线罩等功能件中。通过其外形的设计,可满足飞行器的气动外形要求,并通过其模拟计算和结构设计,通过特定的结构形式满足其透波等特点。另外,在飞机内饰件中蜂窝夹层结构复合材料也应用广泛,其可作为飞机的地板、内饰壁板等结构。随着蜂窝夹层结构成型工艺的不断优化和成熟,已有学者从环保等领域开展蜂窝夹层结构在飞机内饰件上的应用,如有研究者就着眼于研究“生物质预浸料+绿色蜂窝”与“改性酚醛预浸料+绿色蜂窝”2种绿色蜂窝夹层结构飞机侧壁板的生产制备。

2.2 蜂窝夹层复合材料在轨道交通领域的应用

早期蜂窝夹层结构复合材料构件主要应用在车内墙板、顶板等简单构型的制件中。随着其制造工艺的不断优化,许多企业采用此结构设计制造车辆的一些复杂结构的零部件,如内外车门的门板、行李架等。在蜂窝夹层结构复合材料的应用方面,欧洲是最早开展研究和应用的,在法国的TGV系列和意大利的ETR系列的高速列车,较早采用了蜂窝夹层复合材料结构。由于受到成型工艺的限制,国内的应用早期并不广泛。后期随着对车辆轻量化的要求的不断提高,蜂窝夹层材料也被应用到国产动车组样车上的平顶板和车门门板,后随着技术的成熟和应用效果较好,在国产动车组的间壁、平顶板、车下设备舱底版、空调风罩和空调机组整流罩和各种车门门板上取得应用。真正使蜂窝夹层结构复合材料的应用取得突破性进展的还是CRH系列动车组(见图3),因为在其中蜂窝夹层结构复合材料不仅仅是在以上型面简单的构件中得到应用,而且也在形状相对复杂、制造要求高的内侧壁板中得到应用。并且也应用在了有着较高承载和耐磨要求的行李架上。这也标志着蜂窝夹层复合材料在我国轨道交通领域应用的一个新的阶段。

2.3 蜂窝夹层复合材料在舰船领域的应用

蜂窝夹层结构最早在舰船的应用是在美国海军的DD(X)和DDG—51型驱逐舰上的甲板上,由于其质量优势可以有效提升军舰的机动性以及抗冲击性。后期英国、澳大利大等国家也开展了此方面的研究。由于蜂窝夹层结构的可设计性,采用特殊设计可以提高其军舰的隐身性能,可以提供相应的功能特性。在瑞典皇家海军的研究中,曾使用石墨/环氧材料制成的蜂窝夹层结构运用在舰艇船体外板上,从而提升其隐身效果。随着蜂窝夹层结構在军用产品上的应用成熟、效果良好,后期也将其推广至民用领域,可运用到甲板室及内部的家具、楼梯等大部分结构中。现在舰艇上的部分整流罩和天线罩也采用蜂窝夹层复合材料进行制造(见图4),具有很好的耐腐蚀性及减重透波效果。

3 蜂窝夹层复合材料的成型方法

蜂窝夹层复合材料的应用领域的不断扩展、应用范围的不断增加与其不断成熟和优化的制造工艺有着紧密的关系。按照蜂窝夹层复合材料蜂窝与面板的胶接顺序,可将蜂窝夹层复合材料成型工艺分为共固化成型、胶接共固化成型、二次胶接成型。

3.1 整体共固化

共固化成型是将上下蒙皮以及蜂窝芯和胶膜组合在一起,将蒙皮的固化与面板和蜂窝芯的胶接固化一次成型。但是由于蜂窝芯本身的抗压强度有限,在成型过程中工艺参数的设定需要考虑蜂窝芯的抗压强度并受到一定限制,所以蒙皮材料的性能也受到一定影响。此种方式成型后的检测需要借助特定的超声和X光等手段观察内部的质量,特别对于内部蜂窝和胶接面无法进行直观检查。但在蜂窝夹层复合材料成型工艺中,较为关键的部位也就是芯材和蒙皮之间的胶接界面,该方法能够很好的进行保证胶接强度。另外由于共固化成型的工序较少,可以缩短生产周期。而且共固化成型的制件,其整体性较好,更能够发挥复合材料的可设计性和一体化的特点。

3.2 分步胶接共固化

胶接共固化过程是先将一侧蒙皮与蜂窝进行粘接完成蒙皮固化与胶接固化过程后,将另一侧蒙皮与蜂窝进行粘接,完成胶接和固化的过程。与整体共固化同理,此类固化过程中由于蜂窝承压能力限制,蒙皮的成型质量将受到影响,但胶接质量可以得到较好的保证。相比于整体固化成型,分布的胶接固化成型在固化后可以进行检测,可及时发现问题。但是由于第一次固化可能会产生变形,所以在第二次固化时有可能会影响胶接质量和制件的整体尺寸。

3.3 二次胶接

二次胶接成型为先将蒙皮进行固化后与蜂窝进行胶接。此种固化成型过程中,蒙皮材料可以在较大的压力下进行成型,具有较高的成型质量,并且在成型后容易对蒙皮进行检验,可及时发现问题,减小损失。但是由于蒙皮已经固化成型,为刚性材料,若其与蜂窝芯的胶接过程中如出现型面不匹配容易造成脱粘的情况。而且胶接过程对于胶接界面的表面状态、操作环境的要求都相对严格。与共固化相比,其固化次数较多,需要的生产周期相对较长。

整体共固化、分步胶接共固化、二次胶接等3种固化工艺的对比见表1所示。

4 蜂窝夹层复合材料成型工艺的主要工艺要点

随着近年来复合材料成型技术的不断进步,蜂窝夹层复合材料的成型工艺也不断成熟。伴随着成型工艺的不断成熟,更多学者也在提升蜂窝夹层复合材料一体化设计与制造方面以及提高整体外形尺寸精度降低成本方面进行研究和探索。蜂窝夹层复合材料成型工艺实现以上优化的过程中,需要考虑以下问题。

4.1 模具设计

随着近年蜂窝夹层结构在各领域应用的不断扩展,特别是对于形状复杂的制件,模具设计方面需要进行特别的考虑。若要实现复杂结构的蜂窝夹层复合材料构件的整体共固化成型,不仅需要考虑模具设计方法以实现顺利脱模过程,另外还要考虑模具组合后各个部位的加压过程和整个模具的温度均匀性。

4.2 蜂窝成型

蜂窝夹层结构复合材料的成型过程中,由于蒙皮材料較薄,所以制件整体的尺寸和外形与蜂窝材料有着直接关系。对于曲面蜂窝结构,如何实现蜂窝材料的曲面结构的加工成型,对于带有变截面结构形式的蜂窝夹层结构复合材料,如何将蜂窝进行预先固定,实现变形控制也是工艺上的主要研究方向。

4.3 工艺参数控制

任何复合材料成型过程中工艺参数的设定都直接影响着产品的成型质量,对于蜂窝夹层结构复合材料的成型过程,温度、压力、时间的控制尤为关键,因为它不仅仅会影响到蒙皮材料及胶接区域的质量,还可能会导致蜂窝滑移等问题,另外对于大尺寸制件,如何实现模具温度的均匀性减小变形量也与工艺参数的控制有着很大关系。

5 结语

蜂窝夹层复合材料凭借其优势已经应用于航空航天,轨道交通,舰船等各个方面。蜂窝夹层复合材料应用领域的不断扩展,也同样给预浸料蜂窝和胶膜等原材料提出更高的要求,推动其不断优化和发展。另外随着制件形状的复杂程度不断增加,性能要求及减重要求不断提高,也对于复合材料的成型工艺提出新的挑战。在成型过程中,根据制件的特点以及项目周期和成本等要求,规划选择合理的工艺方案。在现有工艺的基础上,如何实现复合材料的一体化成型,通过模具设计和工艺控制等因素提高制件的成型质量是主要的研究和努力方向。

10.19599/j.issn.1008-892x.2020.06.013

参考文献

[1] 陈静,邱启艳.蜂窝夹层结构在飞机上的应用及发展[J].新材料产业,2018(7):63—67.

[2] 刘雪梅,方少安.高速动车组内装结构介绍及材料应用[J].设计制造,2014,52(4):17—19.

[3] 李瑞淳.蜂窝夹层结构复合材料设计及应用研究[J].铁道机车车辆,2009,29(6):3—6.

[4] 郭哲璐,陈倩清,刘在良.浅析蜂窝夹层结构复合材料在舰船中的应用[J].信息记录材料,2018,19(11):14—16.

[5] 丁方波,生物质复合材料在飞机内饰结构上的应用研究[J].冶金与材料,2019,3(96):10—12.

[6] 《航空制造工程手册》总编委会.航空制造工程手册[M].北京:航空工业出版社,1996.

[7] 汪亮,孙玲.变截面蜂窝夹层结构复合材料胶接工艺研究[J].玻璃钢/复合材料,2009(3):65—67.

作者:范雨娇 王维维

第2篇:浅析材料成型与控制工程模具制造的工艺

摘 要 我国对于材料成型和控制工程模具制造的工艺研究和探索已经经过了很长的时间,并得到了制造工艺技术的革新和改变,在促进我国机械制造行业发展方面有突出的贡献。现阶段,我国机械市场对材料成型和控制工程模具制造的工艺要求越来越高,无论是制造质量还是制造的效率都需要进一步的提升。因此材料成型和控制工程模具制造的工艺还需要进行创新与升级,以提高机械制造业的竞争力,本文重点讨论材料成型与控制工程模具制造的工艺。

关键词 材料成型 控制工程 模具制造工艺 智能化 工艺技术

随着改革开放的深入,无论是基础设施的建设还是各种产品的生产都离不开制造业,制造业水平与我国工业化水平共同提高,制造业也在一定程度上推动了工业化水平的提高,还提高了社会生产力。其中材料成型和控制工程模具制造是极为重要的工艺,我国为其投入了巨大的人力、物力和财力,研究出了许多高效率、高质量的制造工艺。通俗来讲材料成型与控制工程模具制造是日常用品的主要生产来源,比如吃饭用的不锈钢饭盆或者喝水用的塑料杯子,生活中离不开材料成型与控制工程模具制造的应用。大方面来讲,出行的交通工具零部件以及车身都是由材料成型与控制工程模具制造工艺生产的。总的来讲,材料成型和控制工程模具制造工藝具有非常关键的制造技术,是影响制造业技术水平的直接因素,值得我们对其进行研究和探讨。

1 材料成型与控制工程模具制造的有关介绍

1.1 材料成型与控制工程模具制造的概念

材料成型及控制工程是两项关系紧密的制造技术,这两项制造技术能够将不同材质的材料制作成为不同形状和用途的产品,是机械制造产业的基础项目。材料成型以及控制工程模具制造工艺能够和其他的制造工艺进行有机结合,在不同的生产领域发挥作用。另外,材料成型和控制工程模具制造能够将原材料加工制作成为不同用途的零部件或者成品,也可以根据原材料的性质优化其本身的性能,让原材料经过加工后应用的范围更加广泛,材料成型和控制工程模具制造技术是我国非常核心的机械制造技术,材料成型和控制工程模具制造技术正在朝着智能化和自动化发展,以提高其加工的质量和效率。

1.2 材料成型与控制工程模具制造工艺的重要性

材料成型与控制工程模具制造工艺能够推动国家经济水平的提高,也能够代表一个国家的综合国力。我国现代化的机械制造产业需要更先进的材料成型技术和控制工程模具制造技术,因为其不仅关乎着我国社会基础产品的生产制造,比如锅碗瓢盆,也对我国工业制造业具有重大影响,比如汽车船舶制造业、机械制造业以及金属橡胶加工制造业等。值得一提的是我国将材料成型与控制工程模具制造工艺设置为高等学府的工科专业,为国家培养了更多的技术人才,推动了工业化水平的提高。总而言之,材料成型与控制工程模具制造工艺在我国国民经济的发展过程中具有支柱性的作用,能够带动工业以及机械制造业的发展。在信息技术普及的现代社会,材料成型和控制工程模具制造工艺更是朝着自动化技术和智能化制造技术的方向发展,为国家提供更先进的研究技术,为人民提供更多样化的产品。

2 材料成型与控制工程模具制造的工艺类型

上文我们叙述了材料成型与控制工程模具制造工艺的概念以及重要性,下面将详细介绍材料成型与控制工程模具制造的工艺类型。材料成型及控制工程模具制造技术综合了多种先进制造技术为一体,其分为两个重要的制造项目,第一个方面是模具制作,另一个方面是焊接工艺。模具制作又能够细数出许多制造工艺,比如塑料模具的加工和冲压模具的制造。焊接技术是比较常见的材料连接技术,其具有低成本、高质量的特点,在材料成型与控制工程模具制造中广泛应用。而材料成型和控制工程模具制造技术也分为一次成型技术和二次成型技术,这两项技术是比较常见的工艺类型,本篇将着重进行介绍。

2.1 一次成型技术的介绍

一次成型技术能够根据不同属性的原材料选择不同的加工工艺,举个例子:硬度较强的金属材料常用的加工技术就是一次成型的加工技术,金属材料的成型过程也分为多种不同的加工技术,有挤压成型或者拉拔成型。这两种加工技术都需要利用模具进行塑性,再通过按压或者拉拔等外力优化金属材料的性能,最终制作出符合要求的金属产品。为了使得金属材料的应用价值提高,一次成型技术能够将金属材料的表面按压得更加平整光滑。挤压成型技术和拉拔成型技术也要按照一定的要求进行金属材料的加工,比如给予金属材料和模具的挤压外力过大,不仅会导致金属材料的严重变形还会破坏模具,导致加工的过程出现问题,影响产品生产的效率和质量,还会增加制造企业的加工成本。一次成型的加工技术需要使用到各种制造加工的设备,比如冷轧机和拉拔机,这些设备都需要专业的技术人员进行操控才能够保障加工过程的流畅和最终成品的质量。

随着时代的发展,一次成型技术也有了新的突破,不仅开发了新的加工工艺还利用了新的连接材料。新的加工工艺不仅能够降低产品本身的重量还能有效地减少加工制造企业的成本。比如说,金属和塑料的混合加工工艺能够在更短的加工时间内完成材料的成型。相信在不久的将来,一次成型技术能够取得更大的成就。

2.2 二次成型的加工技术

二次成型技术是指在一定的条件下将原材料加工成为一次加工成型的材料,再通过第二次其他加工技术制造成为最终的产品。二次成型的加工技术主要是加工塑料型材,通过加热或者是外力作用制作成为所需的形状。二次成型加工技术需要具备三种条件:第一是成型温度。二次成型的温度要到达原材料能够变形和伸长率最大温度,不能够给予过高或者过低的成型温度;第二是定型的温度条件。定型的温度如果下降会影响材料的形变程度,因此定型的温度最好是低于Tg。如果成型的温度过高,那么加工的材料会因为受热而变软、分解,导致最终的产品出现裂纹等问题,影响产品的质量;第三是成型的速度。原材料变形需要一定的时间,要考虑材料加工时的成型温度,在不同的Tg条件下所得都得变形速度是不同的。[1]

二次成型加工技术中也包括三种成型的方法:热成型、双轴拉伸以及固相成型。热成型顾名思义就是将原材料进行加热,再利用物理作用或者模具将其加工制造成为特定产品。热成型适合壁薄以及表面积大的产品制造,利用的设备有加热系统、压缩空气系统以及成型的模具。双周拉伸方法会将板材或者其他的原材料分子进行重新定向,然后再定向拉伸,提高其拉伸方向的机械性。最后是固相成型的加工方法,该方法具有设备简单、可生产大型制品、成本低、加工周期短以及提高产品的韧性和强度等优点,但是其也很容易造成产品的变形和龟裂,生产工艺的质量难以把控。以上就是关于二次成型加工技术的内容,无论是一次成型技术还是二次成型技术都是我国材料成型与控制工程模具制造技术的核心技术,它们的成长也推动着我国加工制造技术的进步,我国材料成型及控制工程模具制造工艺还有很大的进步空间,要采取更先进的创新手段提高工艺的精进度,为我国加工制造产业的优化升级作出突出贡献。

3 材料成型与控制工程模具制造工艺的未来发展规划

3.1 培养专业的技术人才

我国将材料成型及控制工程设为大学教育的专业科目,目的就是培养更优秀、更专业的技术人才,成为推动材料成型与控制工程模具制造工艺进步的动力。专业技术人才能够通过日复一日的科学研究发现材料成型与控制工程模具制造工艺存在的问题和弊端,及时地解决问题进而提高材料成型与控制工程模具制造工艺的加工水平。因此国家和學校要加大对技术人才的培养和支持,希望涌现更多优秀的技术人才充盈我国的加工制造业。

3.2 创新加工技术

创新是第一驱动力,材料成型与控制工程模具制造工艺也要进行技术和发展机制的创新。技术的创新是为了能够补足加工技术的缺点,使得加工的产品质量得到最大程度的优化。而发展机制的优化是为了促进材料成型与控制工程模具制造技术的稳定性和可持续发展。不仅是加工制造企业需要进行技术和发展机制的创新,我国整个加工制造的产业都需要革新和突破,成为材料成型与控制工程模具制造工艺发展的动力。另外,智能化的加工技术也是需要深入研究的问题,利用现代信息技术提高加工技术的智能化水平,这也会是加工工艺未来的发展趋势之一。

3.3 增加技术研究投入

加工制造企业要发展、要创新、要进步都离不开国家政策和财政的支持,国家不仅要鼓励优秀的技术人才进入相关企业实习和发展,还要支持加工制造企业对新工艺的研究和开发。国家要为技术的发展提供项目资源和设备资源,切实地保障材料成型与控制工程模具制造工艺的研究力度和效率。

3.4 选用合适的材料

材料是材料成型与控制工程模具制造工艺的根本,工艺水平对所加工的材料有了更多的要求,为了充分发挥出工艺的作用就必须要保证所加工材料的质量、性能以及耐久度等。这就要求技术人员对加工的原材料进行严格地把控,杜绝劣质材料进入加工生产过程,从根源上解决产品质量问题。[2]因此材料成型与控制工程模具制造工艺进步的关键之一就是选择合适的加工材料。

4 结语

综上所述,材料成型与控制工程模具制造工艺在我国具有非常重要的地位,并且加工的工艺也在不断地精进演变。但是要保证未来加工工艺发展的稳定性还需要对其进行创新引导、增加人才的辅助作用以及严格把控产品质量等多方面的规划,相信在未来我国的加工制造业一定会更加辉煌。

参考文献:

[1] 吴治明.材料成型与控制工程模具制造技术解析[J].信息记录材料,2021,22(03):23-25.

[2] 李湾湾,肖生霖,舒子康.材料成型与控制工程模具制造技术研究[J].南方农机,2020,51(24):90-91.

作者:王星 袁娜

第3篇:试述材料成型与控制工程模具制造的工艺

【摘 要】现代社会科技水平在不断提高,制造业在我国得到了快速发展,而材料成型与控制工程模具制造则是加工制造行业中应用最为广泛的。材料成型与控制工程模具制造涉及到很多行业,比如汽车配件加工、家电配件制造、高精端产品制造等等,无不有着其身影,业已成为影响产品质量的关键因素。本文首先对金属材料与非金属材料成型技术分别进行分析,然后对材料成型与控制工程模具制造工艺及其发展提出个人建议,以供参考。

【关键词】金属材料;非金属材料;材料成型;控制工程;发展

前言

在我国社会与经济高速发展的过程中,制造行业出现了前所未有的繁荣景象,其快速的发展在很大程度上促进了工业的整体进步。制造行业中的材料成型和控制工程模具制造受到越来越多的关注,并出现了多种新技术与工艺。

一、金属材料成型与控制工程模具制造技术

(一)金属材料一次成型加工方法

1.挤压成型技术。此技术首先将所需加工的坯料放置相应的模具中,然后在其上部进行加压处理,让预先添加至模具中的坯料在压力的作用下发生变形,既能得到和相应模具中模孔大小与形状一致的产品。采用挤压技术,所得到的产品具有塑性较好,且不容易发生形状变化的特点。

2.拉拔成形技术。此技术首先将所需加工的坯料放置相应的模具中,然后在其上部进行拉拔处理,让预先添加至模具中的坯料在拉力的作用下发生塑性变形,既能得到和相应模具中模孔大小与形状一致的产品。采用拉拔技术所得到的产品具有变形阻力相对较小的特点,不过在生产过程中要使用属性相对好的坯料才可以达到拉拔的要求。

3.扎制成型技术。此技术是让坯料在扎轮旋转力的作用下而发生塑性形变,从而生产出具有特定大小与轮廓的产品。

(二)金属材料的二次成型加工方法

1.锻造成型技术。锻造成型技术又可以分为两种不同的手段:自由锻造技术与模型锻造技术。所谓的自由锻造技术指的是将坯料放置到相应的压力机表面,采用锤头以及其他的制作器械,施加一定的外界压力,让坯发生一定的塑性变形,从而生产出符合要求的产,可以不需要相应的模具就能完成,不过仅适合用于加工一些较容易发生形变的坯料,而且所生产的产品形状相对来说较为简单一些。所谓的模型锻造,指的是将坯料放置到相应的压力机表面,采用相应的模具对坯料施加一定的外界压力,让其发生一定的塑性变形,从而生产出符合要求的产品。采用这种技术,所需要采用相应的加工模具,在生产的过程中会遇到相对大的变形阻力。不过,此技术工艺能够用来加工一些形状相对复杂的产品,可以工业化的生产。

2.冲压成型技术。此技术是将相应的金属板材料放置于压力机表面,然后采用相应的模具施加相应的压力,让金属板发生一定的塑性变形,或者将模具的作用范围区域从金属板分离开来,从而得到相应大小与外形的产品。

3.旋压成形技术。此技术是将相应的板料放置于芯模之上,同时将板料压紧,并且板料会随着芯模进行转动,在此过程中,板料受到旋轮的外界压力而出现一定的塑性变形,从而生产出具有特定大小与形状的产品。采用此技术所受到的成型阻力要小,并且可以生产尺寸相对较大的产品,而且所需的模具不太复杂。但是,其产品生产效率相对不高。

4.焊接成型技术。此技术采用对相应材料加热亦或加压处理,最终让所焊接材料能够实现原子级的结合,从而获取到相应的产品。

二、非金属材料成型与控制工程模具制造技术

1.挤出成型技术。此技术是通过螺杆亦或者是柱塞進行挤压以及剪切处理,让相应的塑料原材料融化之后,在特定的压力作用之下经过口模,然后对其进行冷却处理,让塑料完全的固化,从而制作形成和口模形状一致的产品。这种成型技术可以实现产品生产的连续化,具有相对高的生产效率,并且所得到的产品具有高的品质,可以应用到多个领域生产中。挤出成型所涉及的相应装置较为简单,设备成本投入较少,并且可以在较短周期内将成本收回,其整个生产过程不会造成较大的环境污染,人工作业强度相对较小,可以用于工业化生产中。

2.注射成型技术。此技术所采用的原理是把相应的原材料放置于注射设备里,将材料在其中进行熔化处理,并通过注射设备的高压,将熔化后的材料注射到相应模具中,然后进行冷却处理,待材料固化之后,将模具拆除得到相应的产品。采用这种生产工艺,能够实现自动化的生产,使生产效率明显改善,并且可以用于结构相对复杂的产品生产,尤其能作为大批量生产用手段。

3.压制成型技术。此技术是将塑料放置到特定的模具空腔中,然后对其进行加压处理,得到相应形状与大小的产品。不过此方法所需的周期相对较长,而且整体生产效率不高。

三、目前材料成型与控制工程模具制造工艺的发展方向

(一)精确成型与加工工艺

目前随着各种机械设备逐渐的向精密化方向发展,精确成型加工工艺也逐渐开始使用,并越来越成为未来机械加工的方展方向。尤其是在对工件要求相对高的汽车生产中,精确成形工艺已被广泛的推广与应用。比如在汽车生产中的,消失模铸造技术以及压力铸造技术等均已广泛应用。

(二)快速和自由成型工艺

在社会与经济走向全球化的同时,市场的竞争压力越来越大,各个企业为了提升自身的竞争力,均开始重视自身的生产效率以及产品开发效率。而在这种市场环境下,制造业要想更好的迎合市场发展,就必须不断提升自身生产力与生产效率。因此,快速和自由成型工艺也被逐渐的开发与应用。

(三)模拟与仿真成型工艺

在科学技术高速发展的今天,我们不但要依靠实验以及理论来处理材料加工中所遇到的困难。同样,计算材料方法也发展为了处理材料加工中所遇到问题的重要手段。采用这种方法可以更加深刻与全面地对问题进行分析与处理,能够实现现阶段实验以及理论无法实现的研究。因此,模拟与仿真成型工艺逐渐开始推广应用,并已然成为未来机械制造的重要发展方向。

四、结语

通过对材料成型与控制工程模具制造技术的研究与探索,对其进行革新与改进,可以更好的促进机械行业的进步。目前,市场对于企业生产效率的要求越来越高,对于机械产品的品质要求也越来越高,机械工业要想在严峻的市场竞争环境中保持自身竞争力,就必须对材料成型与控制工程模具制造技术持续的创新与改革,使企业的生产效率与综合竞争实力全面提升,才可以获得长期、稳定的发展。

参考文献:

[1]王劲锋,王祥.基于逆向工程与快速成型的轮胎花纹块模具制造技术[J].装备制造技术,2014,(11).

[2]张文华.材料成型与控制工程模具制造技术分析初探[J].黑龙江科技信息,2015,(15).

[3]史晓帆,吴梦陵,王鑫,等.材料成型及控制工程专业模具应用型人才培养模式研究[J].中国冶金教育,2014,05.

[4]焦向东,邓双成,张沛,等.基于快速成型原理的模具制造技术[J].石油化工高等学校学报,2002,(1).

[5]晏冬秀,刘卫平,黄钢华,等.复合材料热压罐成型模具设计研究[J].航空制造技术,2012,(7).

[6]李茂慧.材料成型与控制工程模具制造技术分析初探[J].科技致富向导,2014,(33).

作者:刘洋

第4篇:酚醛树脂及复合材料成型工艺的研究进展

酚醛树脂是最早工业化的合成树脂,已经有100年的历史。由于它原料易得,合成方便以及树脂固化后性能能满足很多使用要求,因此在模塑料、绝缘材料、涂料、木材粘接等方面得到广泛应用。近年来,随着人们对安全等要求的提高,具有阻燃、低烟、低毒等特性的酚醛树脂重新引起人们重视,尤其在飞机场、火车站、学校、医院等公共建筑设施及飞机的内部装饰材料等方面的应用越来越多[1]。

与不饱和聚酯树脂相比,酚醛树脂的反应活性低,固化反应放出缩合水,使得固化必须在高温高压条件下进行,长期以来一般只能先浸渍增强材料制作预浸料(布),然后用于模压工艺或缠绕工艺,严重限制了其在复合材料领域的应用。为了克服酚醛树脂固有的缺陷,进一步提高酚醛树脂的性能,满足高新技术发展的需要,人们对酚醛树脂进行了大量的研究,改进酚醛树腊的韧性、提高力学性能和耐热性能、改善工艺性能成为研究的重点。近年来国内相继开发出一系列新型酚醛树脂,如硼改性酚醛树脂、烯炔基改性酚醛树脂、氰酸酯化酚醛树脂和开环聚合型酚醛树脂等。可以用于smc/bmc、rtm、拉挤、喷射、手糊等复合材料成型工艺。本文结合作者的研究工作,介绍了酚醛树脂的改性研究进展及rtm、拉挤等酚醛复合材料成型工艺的研究应用情况。

1酚醛树脂的改性研究

1.1聚乙烯醇缩醛改性酚醛树脂

工业上应用得最多的是用聚乙烯醇缩醛改性酚醛树脂,它可提高树脂对玻璃纤维的粘结力,改善酚醛树脂的脆性,增加复合材料的力学强度,降低固化速率从而有利于降低成型压力。用作改性的酚醛树脂通常是用氨水或氧化镁作催化剂合成的苯酚甲醛树脂。用作改性的聚乙烯醇缩醛一般为缩丁醛和缩甲乙醛。使用时一般将其溶于酒精,作为树脂的溶剂。利用缩醛和酚醛羟甲基反应合成的树脂是1种优良的特种油墨载体树脂。

1.2聚酰胺改性酚醛树脂

经聚酰胺改性的酚醛树脂提高了酚醛树脂的冲击韧性和粘结性。用作改性的聚酰胺是一类羟甲基化聚酰胺,利用羟甲基或活泼氢在合成树脂过程中或在树脂固化过程中发生反应形成化学键而达到改性的目的。用该树脂制成的渔竿等薄壁管具有优良的力学性能。

1.3环氧改性酚醛树脂

用热固性酚醛树脂和双酚a型环氧树脂混合物制成的复合材料可以兼具2种树脂的优点,改善它们各自的缺点,从而达到改性的目的。这种混合物具有环氧树脂优良的粘结性,改进了酚醛树脂的脆性,同时具有酚醛树脂优良的耐热性,改进了环氧树脂耐热性较差的缺点。这种改性是通过酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基进行化学反应,以及酚醛树脂中的酚羟基与环氧树脂中的环氧基进行化学反应,最后交联成复杂的体型结构来达到目的,是1种应用最广的酚醛增韧方法。

1.4有机硅改性酚醛树脂

有机硅树脂具有优良的耐热性和耐潮性。可以通过使用有机硅单体与线性酚醛树脂中的酚羟基或羟甲基发生反应来改进酚醛树脂的耐热性和耐水性。

采用不同的有机硅单体或其混合单体与酚醛树脂改性,可得不同性能的改性酚醛树脂,具有广泛的选择性。

用有机硅改性酚醛树脂制备的复合材料可在200-260℃下工作应用相当长时间,并可作为瞬时耐高温材料,用作火箭、导弹等烧蚀材料。

1.5硼改性酚醛树脂

由于在酚醛树脂的分子结构中引入了无机的硼元素,使得硼改性酚醛树脂的耐热性、瞬时耐高温性、耐烧蚀性和力学性能比普通酚醛树脂好得多。它们多用于火箭、导弹和空间飞行器等空间技术领域作为优良的耐烧蚀材料。

最常见的是利用硼酸与苯酚反应,生成硼酸苯酯,再与多聚甲醛或甲醛水溶液反应,生成1个含硼的酚醛树脂。硼酚醛树脂固化物在900℃的残碳率达到70%,分解峰温度高达625℃。此外,硼酚醛分子结构中引进了柔性较大的-b-o-键,韧性和力学性能有所提高;固化产物中含硼的三向交联结构,使其耐烧蚀性能和耐中子辐射性能优于一般酚醛树脂。制得的碳布硼酚醛层压板的弯曲强度达到420

mpa,剪切强度高达39.7mpa;氧—乙炔质量烧蚀率仅0.0364

g/s,比碳/钡酚醛材料低20%[2]。利用甲醛水溶液法合成的双酚a型硼

酚醛树脂的耐水性有了进一步提高。上世纪70年代,北京玻钢院复合材料有限公司(北京251厂)同河北大学一道成功开发了硼酚醛树脂,但近几年才真正批量化生产,目前每年产量大约20t。

1.6橡胶改性酚醛树脂

采用共混方式将丁腈橡胶加到酚醛树脂中,是有效的增韧方法。橡胶加入量通常为树脂质量的2%~10%,冲击韧性可以提高100%以上。由于二者相溶性差,所以可以利用端羧基或端胺基丁腈橡胶与酚醛羟甲基反应,合成反应型橡胶改性酚醛树脂。该树脂可广泛用于航空航天等领域。

1.7炔基或烯丙基改性酚醛树脂

一般以线型酚醛为母体,在酚氧位或苯环上引入苯乙炔基、乙炔基、炔丙基等。其固化主要是通过不同官能团的聚合来实现,改变了传统酚醛缩合固化方式。乙炔基和炔丙基的聚合相对较容易,而苯乙炔基需要较高的固化温度。除了炔丙基酚醛树脂部分的扩链而有较高的分子质量外,这些聚合物的分子质量都较低。这些通过加成聚合固化的酚醛树脂与传统的热固性树脂相比有更好的热稳定性和更高的残碳率[3]。

中国科学院化学所进行了炔丙基化酚醛树脂的合成研究,所制备的该类树脂具有良好的工艺性,100℃的黏度不超过400

mpa?s;树脂可以在200-250℃进行热固化;热固化物耐热性比传统酚醛树脂有明显改进,dma表明树脂固化物具有高达370℃的玻璃化温度,tga则表明其初始热分解温度在400℃以上[4,5]。

利用双马来酰亚胺与烯丙基化线型酚醛树脂(bman)共聚可制备用于rtm成型的耐高温树脂。该树脂在100℃/8

h内的黏度400℃。

石英纤维/bman树脂复合材料也拥有较好的耐高温性能,可以在350℃下使用[6]。

1.8酚醛氰酸酯树脂

酚醛氰酸酯一般是指以线型酚醛树脂为骨架,酚羟基被氰酸酯官能团所替代而形成的酚醛树脂衍生物,在热和催化剂作用下发生三环化反应,生成含有三嗪环的高交联密度网络结构大分子。其固化反应为自固化体系,固化时无挥发性小分子产生、收缩率低。该种树脂兼备丁环氧树脂的加工工艺性能、双马来酰亚胺的高温性能和酚醛树脂的阻燃特性。同时该树脂还具有优良的介电性能,是制备高速数字及高频用印刷电路板及大功率电机绝缘配件的极佳材料,同时也是制造商高性能透波结构材料和航空航天用高性能结构复合材料最理想的基体材料[7]。

北京玻璃钢研究设计院联合西北工业大学等单位[8,9],采用改进的酚—溴化氰法合成了酚醛型氰酸酯单体树脂,并用红外、凝胶实验及热失重分析(tga)对其进行了结构和性能的表征。与传统的酚-溴化氰法相比,改进的酚-溴化氰法得到了性能稳定的合成产物,该产物在200℃时的凝胶时间为6.5min,在凝胶时无冒烟、发黑现象,固化树脂在800℃时氮气氛下的残碳率为63.6%。

637所、华东理工大学等单位也进行了该类型树脂的研究工作。

1.9苯恶嗪树脂

以酚类化合物、胺类化合物和甲醛为原料合成一类含杂环结构的中间体苯并恶嗪。在加热和/或催化剂的作用下,苯并恶嗪中间体可发生开环聚合,生成含氮且类似酚醛树脂的网状结构。通常我们将这种新型树脂称为开环聚合酚醛树脂。这种苯并恶嗪树脂在成型固化过程中没有小分子释放。开环聚合过程中无低分子物释放,改善了酚醛树脂的成型加工性,制品孔隙率低、性能大大提高。

1990年以来,四川大学[10,11]先后对苯并恶嗪的合成、性能、开环反应机理、反应动力学、固化过程中的体积变化、计算机分子模拟、复合材料制备、性能研究和应用等多方面进行了系统及广泛的研究。

1.10二甲苯改性酚醛树脂

二甲苯改性酚醛树脂是在酚醛树脂的分子结构中引入疏水性结构的二甲苯环,由此改性后的酚醛树脂的耐水性、耐碱性、耐热性及电绝缘性能得到改善。

1.11二苯醚甲醛树脂

二苯醚甲醛树脂是用二苯醚代替苯酚和甲醛缩聚而成的,二苯醚甲醛树脂的玻璃纤维增强复合材料具有优良的耐热性能,可用作h级绝缘材料,它还具有良好的耐辐射性能,吸湿性也很低。

1.12双马来酰亚胺改性酚醛树脂

在酚醛树脂中引入耐热性优良的双马来酰亚胺,因两者之间发生氢离子移位加成反应,所以对部分酚羟基具有隔离或封锁作用,使改性树脂的热分解温度显著提高,对于改善摩阻材料的耐高温性能有很大作用。

双马来酰亚胺改性酚醛树脂有突出的耐热性,热变形温度(hdt)为273℃,玻璃化温度(tg)为产量及使用量增长非常迅速。

国外之所以能够广泛采用酚醛玻璃钢的主要原因,一是该类产品在性能方面有其独特的优点;二是酚醛玻璃钢的制作及研究开发工作比较成熟,几乎涉及各种工艺方法。与之相比,我国在酚醛玻璃钢的制作及其应用方面,与国外存在着很大的差距,制作成型方法不多,仅限于模压、布带缠绕,及近期开发的手糊工艺等。rtm、拉挤等酚醛玻璃钢成型工艺方法,才刚刚起步,但表现出很强的发展势头。

2.1rtm成型工艺(resintransfermolding)

rtm成型工艺[12]基本原理是将玻璃纤维或其他增强材料铺放到闭模的模腔内,用压力(或真空辅助)将树脂胶液注入模腔,浸透增强材料,然后固化,脱模成型制品。rtm成型工艺是从湿法铺层和注塑工艺演变而来的1种新的复合材料成型工艺。rtm工艺通常使用增强材料形式有短切纤维毡、连续纤维毡、三维织物或特制的复合毡等,增强材料的种类有玻璃纤维、芳纶纤维、碳纤维等。采用不饱和聚酯树脂为基体的rtm成型工艺已经得到广泛应用,对树脂体系、增强材料铺覆、流变特性、模具设计制造、制品结构设计、专用设备等

方面都有系统深入研究。

而酚醛树脂用于rtm工艺在国内近几年才出现[13]。rtm生产工艺通常要求树脂注射温度下的黏度约为250-500

mpa?s,以使纤维能很快地浸透,并避免铺层或织物结构被破坏。树脂固化过程应没有或尽量减少小分子产生,以减少制品缺陷,提高各种性能。传统的酚醛树脂由于通过缩合固化,固化过程中有小分子放出,容易造成制品缺陷,所以不太适合rtm工艺成型。

目前国内对酚醛和其他高性能树脂rtm成型工艺的需求主要来自军用产品。但由于缺少专用的rtm酚醛树脂,只能利用传统的酚醛树脂进行注射,固化时仍采用加压方式,目前已经开发出许多制品,取得了较好的效果。rtm已经成为航空航天先进复合材料重要的成型工艺之一。三江集团的佘平江[14]等人,利用rtm成型工艺方法,使用氨酚醛树脂复合了高强玻璃纤维三维编织体,分别制作了拉伸强度试片、弯曲强度试片、氧乙炔烧蚀试片,试片的纤维体积含量为55%。性能测试结果为:拉伸强度为744mpa,拉伸模量为40.6gpa,断裂应变2.07%,弯曲强度为456.4mpa,弯曲模量31.8gpa,其力学性能接近于钢,烧蚀

性能大大好于模压和缠绕复合材料。冯志海[15]等人在这方面也作了深入研究,并应用于产品生产中。除传统的氨酚醛外,华东理工大学开发的高碳酚醛树脂[16]也是针对rtm工艺开发的改性氨酚醛树脂,其具有较高的碳含量,较宽的工艺操作平台。但仍采用传统的缩合固化方式,有小分子释放,需采用加压成型。

为适应特种用途的需求,开发rtm专用改性酚醛树脂成为研究热点。中科院化学所研究的烯丙基改性酚醛和双马共聚树脂、北京玻钢院开发的氰酸酯改性酚醛(酚三嗪)、四川大学研究的开环酚醛(苯并恶嗪)均为其代表。国内其他单位在上述品种的开发上也做了许多工作,取得了很好效果。但针对酚醛树脂体系的注射工艺、流变特性等方面的研究,还没有深入进行。

我院开发的氰酸酯改性酚醛[9]熔体黏度在100℃/2h内无变化,固含量>98%,固化温度220℃,室温储存期6个月,tg在350-400℃之间,冲击强度比普通酚醛提高了约1.5~3倍,非常适于rtm成型工艺。

2)酸催化酚醛拉挤模具的耐腐蚀问题

在酚醛拉挤成型工艺的工业化生产中,首先遇到的1个问题,是模具的耐酸腐蚀问题。在生产实践中,往往只需几个小时,镀铬表面层就会遭到酸性腐蚀,从工具钢的表面剥落下来。有人企图通过在酚醛树脂内加入合适的内脱模剂,以解决模具的耐腐蚀问题。但试验结果发现,使用内脱模剂后,铬层与工具钢模具仍然会剥离下来,仅仅是剥离的时间延长一些而已。丹麦的纤维管道a/s公司的专利技术,可在不损坏模具的情况下,生产出高质量的拉挤成型件。意大利tof玻璃公司和法国permali公司,也均采用这项专利生产酸催化酚醛玻璃钢拉挤件的制品。在欧洲,大多采用酸催化酚醛拉挤工艺,也有一些采用高温固化的酚醛拉挤工艺。

3)高温固化酚醛树脂的固化及高黏度问题

为避免酸催化酚醛树脂对模具的腐蚀问题,有人曾对高温固化酚醛树脂用于拉挤工艺做过试验。些酚醛树脂,在130-150℃温度下就能很快地固化。例如砂纸用的树脂层,在130℃温度下经过5~6min即可固化。因而拉挤成型工艺采用高温固化的酚醛树脂完全是有可能的。通常,高温固化酚醛树脂的黏度较高,约为4~6pa?s。若为改善制品表面质量,需加入填料,黏度还会增大,这将会对拉挤工艺带来不利的影响。这种情况,是拉挤成型工艺所不希望的。为此,有人企图寻找各种不同的单体,以改变酚醛的化学组分结构。其中较为成功的1个例子,就是使用间苯二酚,既加快了固化速度,又不至于增加酚醛树脂的黏度和脱水量。

bp化学公司和plenco公司采用间苯二酚催化技术,这种方法已被美国的一些公司所采用,例如creative拉挤公司[18]。酚醛树脂拉挤成型时,必须有足够长的模具,较高的成型温度,并且最好直接往模具内注入树脂,而不是往胶液槽体内注入树脂。美国indspec公司开发的拉挤用酚醛树脂2074a/2026b[l9,20],已经申请了专利,用其制作的玻璃钢产品,j.v.gauchfl等人研究了酚醛拉挤工艺参数对拉挤制品质量的影响。

把经过配制混合的树脂,在成型模的前端位置上,在压力的作用下注射入模。这是1种新的拉挤工艺形式,不但省去了树脂浸胶槽,而且增强材料入模前保持为干燥状态。这种工艺方法也称为“注射拉挤工艺”(ip)。这种注射拉挤工艺方法有以下2个优点:一是树脂组分配料较为准确,可利用计量泵连续计量,以避免手工混合带来的误差;二是树脂浸渍槽由开放形式变成了全封闭形式,大大降低了树脂溅散的可能性,从而改善了拉挤工艺的工作环境。

如上所述,酚醛拉挤工艺还存在着不少的技术问题,另外,酚醛拉挤制品还不十分完美。目前还在寻找1种可在模腔内加速固化过程,但对模具钢材不会产生腐蚀作用的催化剂。最理想的是在室温下活性很低(甚至无活性)的催化剂,这样就可以延长酚醛树脂在胶槽中的贮存时间。实际使用时,先把催化剂加入到胶槽内,而后在拉挤模的高温条件下经过水解或其他反应分解,产生出反应所需的自由酸。除此以外,经过试验,一些室温下不溶的,或者难溶的,但在拉挤模腔高温条件下,溶解度和活性都变得很强的弱碱,是非常适合用作为酚醛拉挤工艺的催化剂。

另外,有些生产厂商还经常对不锈钢模具的内表面,进行必要的硬度处理,以达到具有高光洁表面和耐磨损性的要求。

使用拉挤脱模剂,也可有效地减少酸性对拉挤模具的侵蚀作用。

我公司开发的采用间苯二酚的非酸固化拉挤专用酚醛体系已经通过了工艺试验。关于界面性能、固化制度、模具设计等方面的研究还在进行中。

2.3smc/bmc模压成型工艺

smc/bmc模压工艺是将一定量的smc/bmc模压料放人金属对模中,在一定温度和压力下成型制品的1种方法。最早开发的smc产品是up-smc(即不饱和聚酯片状模塑料),现在pf-smc(即酚醛片状模塑料)作为1种玻璃纤维增强材料已经被国外广泛应用于宇航、建筑和运输等领域。pf-smc的制备方法是将酚醛树脂糊在浸渍机上浸渍无序短切玻璃纤维(一般玻璃纤维长度为1.5~50mm,用量为酚醛树脂糊质量的20%~50%),用易剥离的聚乙烯薄膜为隔膜进行连续生产,其生产工艺与up-smc相同,生产出的pf-smc需要在30~70℃的恒温内经过24~100h的熟化处理。pf-smc固化物的力学性能与up-smc的相比,室温下大体相同,但是高温下,pf-smc固化物具有更优异的力学性能,它在150℃下热老化100h,其拉伸强度和弯曲强度不发生任何变化,在200℃时,弯曲强度的保持率为73%,弯曲模量的保持率为77%,而up-smc固化物的弯曲强度和弯曲模量的保持率却只有29%和43%[21,22]北京玻钢院复合材料有限公司[22]八五期间就成功开发了酚醛树脂smc整套工艺技术和制品,包括专用树脂、增稠体系、片材组分、模压工艺等。

2.4其他成型工艺

酚醛复合材料还有连续层压成型工艺、纤维缠绕成型工艺、预浸渍模压工艺、低压模压成型工艺、手糊成型工艺、喷涂成型工艺等成型方法。手糊工艺是国外最常用的酚醛玻璃钢生产工艺之一。通常采用酸固化型酚醛树脂,其催化剂用量约为5%~8%,黏度约为600-700mpa?s。加入催化剂,通常能降低树脂的黏度,固化时间约为10~30min,比聚酯树脂的还要短一些。实践证明,只要经过认真涂敷,可以制得尺寸比较大的酚醛玻璃钢制品。涂敷好的制品件,应在适当的温度下进行固化。由于短切原丝毡的某些偶联剂,不能溶于酚醛树脂,因此并不是所有适用于聚酯树脂的玻璃纤维,都能适用于酚醛树脂。手糊成型法生产的酚醛玻璃钢制件,尺寸可以很大,例如英吉利海峡隧道列车的司机室,每个达240kg。常熟在这方面的开发应用处于国内领先地位。

另外,国外喷涂酚醛树脂在汽车防热板方面的应用量也很大。许多生产厂商经常采用与手糊工艺相近的中等黏度酚醛树脂,但混合有较强的催化剂,以加快其成型速度,减少成型时间。在喷涂酚醛树脂时,必须对喷涂聚酯的机器稍加改进,且不能使用外部混合喷枪,并要求催化剂泵输送的催化剂体积,达到树脂体积的10%左右,其喷涂部件必须能够耐化学品的腐蚀。当前,jaguar公司所用的防热板,都是由scandura

sealtex公司,采用这种喷涂沉积工艺方法所制成。

3结语

近年来,随着对酚醛树脂需求的不断增加,在研发上的投入不断增大,新的树脂品种、新的成型工艺、新的合成技术不断出现,对于酚醛发泡、酚醛蜂窝、酚醛复合材料回收等的研究都取得了很大进展。我们有理由相信,酚醛树脂及其复合材料将在许多领域发挥其更大的作用,酚醛树脂这一古老的产品必将重新焕发青春。

第5篇:树脂基复合材料成型工艺

复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发镇,其老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基符合材料的成型方法已有20多种,并成功地用于工业生产,如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺;

(3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术;

(21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。

复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点:

(1)材料制造与制品成型同时完成 一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在造反材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。

(2)制品成型比较简便 一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此,用这些材料生产复合材料制品,所需工序及设备要比其它 材料简单的多,对于某些制品仅需一套模具便能生产。 ◇ 成型工艺

层压及卷管成型工艺

1、层压成型工艺

层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。

层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。

层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序

2、卷管成型工艺

卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。

卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖贴在引头布的加热部分,与引头布相搭接。引头布的长度约为800~1200mm,视管径而定,引头布与胶布的搭接长度,一般为150~250mm。在卷制厚壁管材时,可在卷制正常运行后,将芯模的旋转速度适当加快,在接近设计壁厚时再减慢转速,至达到设计厚度时,切断胶布。然后在保持压辊压力的情况下,继续使芯模旋转1~2圈。最后提升压辊,测量管坯外径,合格后,从卷管机上取出,送入固化炉中固化成型。

3、预浸胶布制备工艺

预浸胶布是生产复合材料层压板材、卷管和布带缠绕制品的半成品。

(1)原材料 预浸胶布生产所需的主要原材料有增强材料(如玻璃布、石棉布、合成纤维布、玻璃纤维毡、石棉毡、碳纤维、芳纶纤维、石棉纸、牛皮等)和合成树脂(如酚醛树脂、氨基树脂、环氧树脂、不饱和聚酯树脂、有机硅树脂等)。

(2)预浸胶布的制备工艺 预浸胶布的制备是使用经热处理或化学处理的玻璃布,经浸胶槽浸渍树脂胶液,通过刮胶装置和牵引装置控制胶布的树脂含量,在一定的温度下,经过一定时间的洪烤,使树脂由A阶转至B阶,从而得到所需的预浸胶布。通常将此过程称之为玻璃的浸胶。 树脂传递模塑成型 树脂传递模塑成型简称RTM(Resin Transfer Molding)。RTM起始于50年代,是手糊成型工艺改进的一种闭模成型技术,可以生产出两面光的制品。在国外属于这一工艺范畴的还有树脂注射工艺(Resin Injection)和压力注射工艺(Pressure Infection)。 RTM的基本原理是将玻璃纤维增强材料铺放到闭模的模腔内,用压力将树脂胶液注入模腔,浸透玻纤增强材料,然后固化,脱模成型制品。

从上前的研究水平来看,RTM技术的研究发展方向将包括微机控制注射机组,增强材料预成型技术,低成本模具,快速树脂固化体系,工艺稳定性和适应性等。

RTM成型技术的特点:①可以制造两面光的制品;②成型效率高,适合于中等规模的玻璃钢产品生产(20000件/年以内);③RTM为闭模操作,不污染环境,不损害工人健康;④增强材料可以任意方向铺放,容易实现按制品受力状况例题铺放增强材料;⑤原材料及能源消耗少;⑥建厂投资少,上马快。

RTM技术适用范围很广,目前已广泛用于建筑、交通、电讯、卫生、航空航天等工业领域。已开发的产品有:汽车壳体及部件、娱乐车构件、螺旋浆、8.5m长的风力发电机叶片、天线罩、机器罩、浴盆、沐浴间、游泳池板、座椅、水箱、电话亭、电线杆、小型游艇等。

(1)RTM工艺及设备 成型工艺 RTM全部生产过程分11道工序,各工序的操作人员及工具、设备位置固定,模具由小车运送,依次经过每一道工序,实现流水作业。模具在流水线上的循环时间,基本上反映了制品的生产周期,小型制品一般只需十几分钟,大型制品的生产周期可以控制在1h以内完成。

成型设备 RTM成型设备主要是树脂压注机和模具。①树脂村注机 树脂压注机由树脂泵、注射枪组成。树脂泵是一组活塞式往复泵,最上端是一个空气动力泵。当压缩空气驱动空气泵活塞上下运动时,树脂泵将桶中树脂经过流量控制器、过滤器定量地抽入树脂贮存器,侧向杠杆使催化剂泵运动,将催化剂定量地抽至贮存器。压缩空气充入两个贮存器,产生与泵压力相反的缓冲力,保证树脂和催化剂能稳定的流向注射枪头。注射枪口后有一个静态紊流混合器,可使树脂和催化剂在无气状态下混合均匀,然后经枪口注入模具,混合器后面设计有清洗剂入口,它与一个有0.28MPa压力的溶剂罐相联,当机器使用完后,打开开关,溶剂自动喷出,将注射枪清洗干净。②模具 RTM模具分玻璃钢模、玻璃钢表面镀金属模和金属模3种。玻璃钢模具容易制造,价格较低,聚酯玻璃钢模具可使用2000次,环氧玻璃钢模具可使用4000次。表面镀金属的玻璃钢模具可使用10000次以上。金属模具在RTM工艺中很少使用,一般来讲,RTM的模具费仅为SMC的2%~16%。

(2)RTM原材料 RTM用的原材料有树脂体系、增强材料和填料。

树脂体系 RTM工艺用的树脂主要是不饱和聚酯树脂。

增强材料 一般RTM的增强材料主要是玻璃纤维,其含量为25%~45%(重量比);常用的增强材料有玻璃纤维连续毡、复合毡及方格布。

填料 填料对RTM工艺很重要,它不仅能降低成本,改善性能,而且能在树脂固化放热阶段吸收热量。常用的填料有氢氧化铝、玻璃微珠、碳酸钙、云母等。其用量为20%~40%。 ◇ 成型工艺

袋压法、热压罐法、液压釜法和热膨胀模塑法成型

袋压法、热压罐法、液压釜法和热膨胀模塑法统称为低压成型工艺。其成型过程是用手工铺叠方式,将增强材料和树脂(含预浸材料)按设计方向和顺序逐层铺放到模具上,达到规定厚度后,经加压、加热、固化、脱模、修整而获得制品。四种方法与手糊成型工艺的区别仅在于加压固化这道工序。因此,它们只是手糊成型工艺的改进,是为了提高制品的密实度和层间粘接强度。

以高强度玻璃纤维、碳纤维、硼纤维、芳纶纤维和环氧树脂为原材料,用低压成型方法制造的高性能复合材料制品,已广泛用于飞机、导弹、卫星和航天飞机。如飞机舱门、整流罩、机载雷达罩,支架、机翼、尾翼、隔板、壁板及隐形飞机等。 (1)袋压法

袋压成型是将手糊成型的未固化制品,通过橡胶袋或其它弹性材料向其施加气体或液体压力,使制品在压力下密实,固化。

袋压成型法的优点是:①产品两面光滑;②能适应聚酯、环氧和酚醛树脂;③产品重量比手糊高。

袋压成型分压力袋法和真空袋法2种:①压力袋法 压力袋法是将手糊成型未固化的制品放入一橡胶袋,固定好盖板,然后通入压缩空气或蒸汽(0.25~0.5MPa),使制品在热压条件下固化。②真空袋法 此法是将手糊成型未固化的制品,加盖一层橡胶膜,制品处于橡胶膜和模具之间,密封周边,抽真空(0.05~0.07MPa),使制品中的气泡和挥发物排除。真空袋成型法由于真空压力较小,故此法仅用于聚酯和环氧复合材料制品的湿法成型。 (2)热压釜和液压釜法

热压釜和液压釜法都是在金属容器内,通过压缩气体或液体对未固化的手糊制品加热、加压,使其固化成型的一种工艺。

热压釜法 热压釜是一个卧式金属压力容器,未固化的手糊制品,加上密封胶袋,抽真空,然后连同模具用小车推进热压釜内,通入蒸汽(压力为1.5~2.5MPa),并抽真空,对制品加压、加热,排出气泡,使其在热压条件下固化。它综合了压力袋法和真空袋法的优点,生产周期短,产品质量高。热压釜法能够生产尺寸较大、形状复杂的高质量、高性能复合材料制品。产品尺寸受热压釜限制,目前国内最大的热压釜直径为2.5m,长18m,已开发应用的产品有机翼、尾翼、卫星天线反射器,导弹再入体、机载夹层结构雷达罩等。此法的最大缺点是设备投资大,重量大,结构复杂,费用高等。

液压釜法 液压釜是一个密闭的压力容器,体积比热压釜小,直立放置,生产时通入压力热水,对未固化的手糊制品加热、加压,使其固化。液压釜的压力可达到2MPa或更高,温度为80~100℃。用油载体、热度可达200℃。此法生产的产品密实,周期短,液压釜法的缺点是设备投资较大。

(3)热膨胀模塑法

热膨胀模塑法是用于生产空腹、薄壁高性能复合材料制品的一种工艺。其工作原理是采用不同膨胀系数的模具材料,利用其受热体积膨胀不同产生的挤压力,对制品施工压力。热膨胀模塑法的阳模是膨胀系数大的硅橡胶,阴模是膨胀系数小的金属材料,手糊未固化的制品放在阳模和阴模之间。加热时由于阳、阴模的膨胀系数不同,产生巨大的变形差异,使制品在热压下固化。 ◇ 成型工艺

喷射成型技术

喷射成型技术是手糊成型的改进,半机械化程度。喷射成型技术在复合材料成型工艺中所占比例较大,如美国占9.1%,西欧占11.3%,日本占21%。目前国内用的喷射成型机主要是从美国进口。

(1)喷射成型工艺原理及优缺点

喷射成型工艺是将混有引发剂和促进剂的两种聚酯分别从喷枪两侧喷出,同时将切断的玻纤粗纱,由喷枪中心喷出,使其与树脂均匀混合,沉积到模具上,当沉积到一定厚度时,用辊轮压实,使纤维浸透树脂,排除气泡,固化后成制品。

喷射成型的优点:①用玻纤粗纱代替织物,可降低材料成本;②生产效率比手糊的高2~4倍;③产品整体性好,无接缝,层间剪切强度高,树脂含量高,抗腐蚀、耐渗漏性好;④可减少飞边,裁布屑及剩余胶液的消耗;⑤产品尺寸、形状不受限制。其缺点为:①树脂含量高,制品强度低;②产品只能做到单面光滑;③污染环境,有害工人健康。

喷射成型效率达15kg/min,故适合于大型船体制造。已广泛用于加工浴盆、机器外罩、整体卫生间,汽车车身构件及大型浮雕制品等。

(2)生产准备

场地 喷射成型场地除满足手糊工艺要求外,要特别注意环境排风。根据产品尺寸大小,操作间可建成密闭式,以节省能源。 材料准备 原材料主要是树脂(主要用不饱和聚酯树脂)和无捻玻纤粗纱。

模具准备 准备工作包括清理、组装及涂脱模剂等。

喷射成型设备 喷射成型机分压力罐式和泵供式两种:①泵式供胶喷射成型机,是将树脂引发剂和促进剂分别由泵输送到静态混合器中,充分混合后再由喷枪喷出,称为枪内混合型。其组成部分为气动控制系统、树脂泵、助剂泵、混合器、喷枪、纤维切割喷射器等。树脂泵和助剂泵由摇臂刚性连接,调节助剂泵在摇臂上的位置,可保证配料比例。在空压机作用下,树脂和助剂在混合器内均匀混合,经喷枪形成雾滴,与切断的纤维连续地喷射到模具表面。这种喷射机只有一个胶液喷枪,结构简单,重量轻,引发剂浪费少,但因系内混合,使完后要立即清洗,以防止喷射堵塞。②压力罐式供胶喷射机是将树脂胶液分别装在压力罐中,靠进入罐中的气体压力,使胶液进入喷枪连续喷出。安是由两个树脂罐、管道、阀门、喷枪、纤维切割喷射器、小车及支架组成。工作时,接通压缩空气气源,使压缩空气经过气水分离器进入树脂罐、玻纤切割器和喷枪,使树脂和玻璃纤维连续不断的由喷枪喷出,树脂雾化,玻纤分散,混合均匀后沉落到模具上。这种喷射机是树脂在喷枪外混合,故不易堵塞喷枪嘴。 (3)喷射成型工艺控制

喷射工艺参数选择:①树脂含量 喷射成型的制品中,树脂含量控制在60%左右。②喷雾压力 当树脂粘度为0.2Pa²s,树脂罐压力为0.05~0.15MPa时,雾化压力为0.3~0.55MPa,方能保证组分混合均匀。③喷枪夹角 不同夹角喷出来的树脂混合交距不同,一般选用20°夹角,喷枪与模具的距离为350~400mm。改变距离,要高速喷枪夹角,保证各组分在靠近模具表面处交集混合,防止胶液飞失。

喷射成型应注意事项:①环境温度应控制在(25±5)℃,过高,易引起喷枪堵塞;过低,混合不均匀,固化慢;②喷射机系统内不允许有水分存在,否则会影响产品质量;③成型前,模具上先喷一层树脂,然后再喷树脂纤维混合层;④喷射成型前,先调整气压,控制树脂和玻纤含量;⑤喷枪要均匀移动,防止漏喷,不能走弧线,两行之间的重叠富庶小于1/3,要保证覆盖均匀和厚度均匀;⑥喷完一层后,立即用辊轮压实,要注意棱角和凹凸表面,保证每层压平,排出气泡,防止带起纤维造成毛刺;⑦每层喷完后,要进行检查,合格后再喷下一层;⑧最后一层要喷薄些,使表面光滑;⑨喷射机用完后要立即清洗,防止树脂固化,损坏设备。 ◇ 成型工艺

泡沫塑料夹层结构制造技术

(1)原材料 泡沫塑料夹层结构用的原材料分为面板(蒙皮)材料、夹芯材料和粘接剂。①面板材料 主要是用玻璃布和树脂制成的薄板,与蜂窝夹层结构面板用的材料相同。②粘接剂 面板和夹芯材料的粘接剂,主要取决于泡沫塑料种类,如聚苯乙烯泡沫塑料,不能用不饱和聚酯树脂粘接。③泡沫夹芯材料 泡沫塑料的种类很多,其分类方法有两种:一种是按树脂基体分,可分为:聚氯乙烯泡沫塑料,聚苯乙烯泡沫塑料,聚乙烯泡沫塑料,聚氨酯泡沫塑料,酚醛,环氧及不饱和聚酯等热固性泡沫塑料等。另一种是近硬度分,可分为硬质、半硬质和软质三种。用泡沫塑料芯材生产夹层结构的最大优点是防寒、绝热,隔音性能好,质量轻,与蒙面粘接面大,能均匀传递荷载,抗冲击性能好等。

(2)泡沫塑料制造技术 生产泡沫塑料的发泡方法较多,有机械发泡法、惰性气体混溶减压发泡法、低沸点液体蒸发发泡法、发泡剂分解放气发泡法和原料组分相互反应放气发泡法等。①机械发泡法 利用强烈机械搅拌,将气体混入到聚合物溶液、乳液或悬浮液中,形成泡沫体,然后经固化而获得泡沫塑料。②惰性气体混溶减压发泡法 利用惰性气体(如氮气、二氧化碳等)无色、无臭、难与其它化学元素化合的原理,在高压下压入聚合物中,经升温、减压、使气体膨胀发泡。③低沸点液体蒸发发泡法 将低沸点液体压入聚合物中,然后加热聚合物,当聚合物软化、液体达到沸点时,借助液体气化产生的蒸气压力,使聚合物发泡成泡沫体。④化学发泡剂发泡法 借助发泡剂在热作用下分解产生的气体,使聚合物体积膨胀,形成泡沫塑料。⑤原料化学反应发泡法 此法是利用能发泡的原料组分,相互反应放出二氧化碳或氮气等使聚合物膨胀发泡成泡沫体。

(3)泡沫塑料夹层结构制造 泡沫塑料夹层结构的制造方法有:预制粘接法、现场浇注成型法和连续机械成型法三种。①预制粘接法 将蒙皮和泡沫塑料芯材分别制造,然后再将它们粘接成整体。预制成型法的优点是能适用各种泡沫塑料,工艺简单,不需要复杂机械设备等。其缺点是生产效率低,质量不易保证。②整体浇注成型法 先预制好夹层结构的外壳,然后将混合均匀的泡沫料浆浇入壳体内,经过发泡成型和固化处理,使泡沫涨满腔体,并和壳体粘接成一个整体结构。③连续成型法 适用于生产泡沫塑料夹层结构板材。 其它成型工艺

聚合物基复合材料的其它成型工艺,主要指离心成型工艺、浇铸成型工艺、弹性体贮存树脂成型工艺(ERM)、增强反应注射成型工艺(RRIM)等。

1、离心成型工艺

离心成型工艺在复合材料制品生产中,主要是用于制造管材(地埋管),它是将树脂、玻璃纤维和填料按一定比例和方法加入到旋转的模腔内,依靠高速旋转产生的离心力,使物料挤压密实,固化成型。

离心玻璃钢管分为压力管非压力管两类,其使用压力为0~18MPa。这种管的管径一般为φ400~φ2500mm,最大管径或达5m,以φ1200mm以上管径经济效果最佳,离心管的长度2~12m,一般为6 m。

离心玻璃钢管的优点很多,与普通玻璃钢管和混凝土管相比,它强度高、重量轻,防腐、耐磨(是石棉水泥管的5~10倍)、节能、耐久(50年以上)及综合工程造价低,特别是大口径管等;与缠绕加砂玻璃钢管相比,其最大特点是刚度大,成本低,管壁可以按其功能设计成多层结构。离心法制管质量稳定,原材料损耗少,其综合成本低于钢管。离心玻璃钢管可埋深15m,能随真空及外压。其缺点是内表面不够光滑,水力学特性比较差。

离心玻璃钢管的应用前景十分广阔,其主要应用范围包括:给水及排水工程干管,油田注水管、污水管、化工防腐管等。

(1)原材料

生产离心管的原材料有树脂、玻璃纤维及填料(粉状和粒状填料)等。

树脂 应用最广的是不饱和聚酯树脂,可根据使用条件和工艺要求选择树脂牌号和固化剂。

增强材料 主工是玻璃纤维及其制品。玻纤制品有连续纤维毡、网格布及单向布等,制造异形断面制品时,可先将玻纤制成预制品,然后放入模内。

填料 填料的作是用增加制品的刚度、厚度、降低成本,填料的种类要根据使用要求选择,一般为石英砂、石英粉、辉绿岩粉等。 (2)工艺流程

离心制管的加料方法与缠绕成型工艺不同,加料系统是把树脂、纤维和填料的供料装置,统一安装在可往复运动的小车上。

(3)模具 离心法生产玻璃钢管的模具,主要是钢模,模具分整体式和拼装式两种:小于φ800mm管的模具,用整体式,大于φ800mm管的模具,可以用拼装式。

模具设计要保证有足够的强度和刚度,防止旋转、震动过程中变形。模具由管身、封头、托轮箍组成。管身由钢板卷焊而成,小直径管身可用无缝钢管。封头的作用是增加管模端头的强度和防止物料外流。托轮箍的作用是支撑模具,传递旋转力,使模具在离心机上高速度旋转,模具的管身内表面必须平整,光滑,一般都要精加工和抛光,保证顺利脱模。

2、浇注成型工艺

浇注成型主要用于生产无纤维增强的复合材料制品,如人造大理石,钮扣、包埋动、植物标本、工艺品、锚杆固定剂、装饰板等。

浇注成型比较简单,但要生产出优质产品,则需要熟练的操作技术。

(1)钮扣生产工艺

用聚酯树脂浇注的钮扣,具有硬度高,光泽好,耐磨、耐烫、耐干洗、花色品种多及价格低等优点,目前在国内外已基本取代了有机玻璃钮扣,占钮扣市场80%以上。 生产钮扣的原料主要是不饱和聚酯树脂、固化剂(引发剂采用过氧化甲乙酮)和辅助材料(包括色浆、珠光粉、触变剂等)。

聚酯钮扣采用离心浇注式棒材浇注法生产,先制成板材或棒材,然后经切板、切棒制成钮扣,再经热处理、刮面、刮底、铣槽、打眼、抛光等工序制成钮扣。

(2)人造石材生产工艺

人造石材是用不饱和聚酯树脂和填料制成的。由于所选用的填料不同,制成的人造石材分为人造大理石、人造玛瑙、人造花岗石和聚酯混凝土等。

生产人造石材的原材料是不饱和聚酯树脂,填料和颜料:①树脂 生产人造石材的树脂分面层和结构层两各,表面装饰层树脂要求收缩性小,有韧性、硬度好,耐热、耐磨、耐水等,同时要求易调色。辛戌二醇邻苯型树脂用于人造石材,辛戌二醇间苯型树脂用于生产卫生洁具。固化体系,常用过氧化甲乙酮、萘酸钴溶液。②填料 生产人造石材的填料有很多,生产人造大理石的填料是大理石粉,石英粉、白云石粉、碳酸钙粉等,生产人造花岗石的填料是用粒料级配,不同品种花岗石用不同色彩的粒料,生产人玛瑙的填料要有一定透明性,一般选用氢氧化铝或三氧化二铝等。③颜料 生产人造石材需要各色颜料,如制人造大理石或人造玛瑙浴盆,应选择耐热、耐水的色浆,制造装饰板及工艺品时,要选用耐光、耐水及耐久的颜料。 生产人造大理石、花岗石板材用的模具材料有玻璃钢、不锈钢、塑料、玻璃等。生产人造石板材的模板,要求表面平整,光泽、有足够的强度和刚度,能经受生产过程中的热应力、搬运荷载及碰撞等。

3、弹性体贮树脂模塑成型技术

弹性体贮树脂模塑成型(Elastic Reservir Molding, ERM)是80年代在欧美出现的新工艺,它是用柔性材料(开孔聚氨酯泡沫塑料)作为芯材并渗入树脂糊。这种渗有树脂糊的泡沫体留在成型好的ERM材料中间,泡沫体使ERM制成的产品密度降低,冲击强度和刚度提高,故可称为压制成型的夹层结构制品。

ERM与SMC一样,同属于模压成型的片状模塑料,只是由于ERM具有夹层结构的构造,给它带来优于SMC的特点:(1)重量轻:ERM比用毡和SMC制成的制品轻30%以上;(2)ERM制品的比刚度优于SMC、铝和钢制成的制品;(3)搞冲击强度高:在增强材料含量相同的条件下,ERM比SMC的抗冲击强度高很多;(4)物理力学性能高:在增强材料含量相同的条件下,ERM制品的物理力学性能优于SMC制品;(5)投资费用低:ERM成型机组比SMC机组简单,ERM制品成型压力比SMC制品低10倍左右,故生产ERM制品时可以采用低吨位压机和低强度材料模具,从而减少建投资。

ERM制品生产工艺分为ERM制造和ERM制品成型两个过程: (1)ERM生产工艺 ERM生产原材料为开孔聚氨酯泡沫塑料,各种纤维制品(如玻璃纤维、碳纤维、芳纶纤维制成的短切毡、连续纤维毡、针织毡等)和各种热固性树脂。其生产过程如下:先在ERM机组上将调好的树脂糊浸渍开孔聚氨酯泡沫塑料,通过涂刮器将树脂糊涂到泡沫上,用压辊将树脂糊压挤到泡沫体的孔内,然后将两层泡沫复合到一起,最后在上下两个面铺放玻纤维毡或其它纤维制品,制成ERM夹层材料,切割成适宜的尺寸,用于压制成型或贮存。

(2)ERM制品生产工艺 ERM制品生产过程与其它热固性模压料(玻纤布或毡预浸料、SMC等)相比,需要在热压条件下固化成型,但成型压力比SMC小很多,大约是SMC成型压力的1/10,为0.5~0.7MPa。

ERM技术目前主要用于汽车工业材料和轻质建筑复合材料工业。由于ERM具有夹层结构材料的特点,是适用于生产大型结构的组合部件,各种轻质板材,活动房屋、雷达罩,房门等。在汽车工业中的制品有行李车拖斗、盖板、仪表盘、保险杠、车门、底板等。

4、增强反应注射模塑技术

增强反应注射模塑工艺(Reinforced Reaction Injection Molding, RRIM)是利用高压冲击来混合两种单体物料及短纤维增强材料,并将其注射到模腔内,经快速固化反应形成制品的一种成型方法。如果不用增强材料,则称为反应注射模塑(Reaction Injection Moling, RIM)。采用连续纤维增强时,称为结构反应注射模塑(Structure Reaction Injection Molding, SRIM)。 RRIM的原材料分树脂体系和增强材料两类

(1)树脂体系 生产RRIM的树脂应滞如下要求:①必须由两种以上的单体组成;②单体在室温条件下能保持稳定;③粘度适当,容易用泵输送;④单体混合后,能快速固化;⑤固化反应不产生副产物。应用最多的是聚氨酯树脂、不饱和聚酯树脂和环氧树脂。

(2)增强材料 常用的增强材料有玻璃纤维粉、玻璃纤维和玻璃微珠。为了增加增强材料与树脂的粘接强度,上述增强材料都采用增强偶联剂进行表面处理。

RRIM的工艺特点:①产品设计自由度大,可以生产大尺寸部件;②成型压力低(0.35~0.7MPa),反应成型时,无模压应力,产品在模内发热量小;③制品收缩率低,尺寸稳定性好,因加有大量填料和增强材料,减少了树脂固化收缩;④制品镶嵌件工艺简便;⑤制品表面质量好,玻璃粉和玻璃微珠能提高制品耐磨性和耐热性;⑥生产设备简单,模具费用低,成型周期短,制品生产成本低。

RRIM制品的最大用户是汽车工为,可做汽车保险杠、仪表盘,高强度RRIM制品可以做汽车的结构材料、承载材料。由于其成型周期短,性能可设计,在电绝缘工程、防腐工程、机械仪表工业中代替工程塑料及高分子合金应用。

第6篇:复合材料成型工艺发展综述(模版)

上海海事大学

先进复合材料成型工艺课程论文

学 院: 海洋科学与工程学院

专 业:

班 级: 材料132

姓 名:

学 号:

论文题目: 复合材料成型工艺发展综述

指导老师:

二〇一六年 一月 复合材料成型工艺发展综述

XXXXX

上海海事大学 海洋科学与工程学院

【摘要】 本文主要介绍了树脂基复合材料成型工艺及其发展趋势。其中提到了“手糊成型”、“拉挤成型”、“模压成型”等。也从复合材料生产各要素的方面,简要阐述其发展的趋势。本文章也表明了复合材料作为国家建设的战略材料,得到了越来越来多的重视,了解其成型工艺的发展有其重要的意义。 【关键词】 复合材料 成型工艺 发展

The Summary of Development on Composites Molding Technology

Xxxx Onion College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai

Abstract:

This thesis describes the resin composites molding process and its development trend. Some specific processes are mentioned, such as ‘Hand paste molding’ , ‘Pull extrusion forming’ ,‘Compression molding’ and so on. Also, a brief description of its development trend are made in terms of production factors of manufacturing composites. This thesis also shows the composite material, as a nation-building strategy material, has been more popular and it’s important to understand the development of its molding process.

Key Words: composites

molding process

development

前言

人类在生产生活中需要利用到各种各样的材料,它是人们生产生活水平能够提升物质保障。在人类的发展历史中,材料工业的大的革新往往能够引起人类社会大的变革,推动人类社会的发展。复合材料就是指由两种以上的材料进行加工合成后产生的新型材料,它与陶瓷、金属、高聚物被人们称之为四大材料。[1-5]先进的复合材料具有热性能优越、耐疲劳、可设计性、各向异性和比模量高等优良特性,凭借这些优良的特性,很快就获得了广泛的应用,复合材料在工业领域得到广泛应用,也是衡量一个国家科技和经济实力的重要标志。先进复合材料不仅强度高,而且耐热性能和抗疲劳性能优良,在航空航天、交通运输、机械化工等领域得到广泛应用。[6-15]

1 复合材料成型工艺

复合成型工艺生产过程中的关键是在保证制品的形状和尺寸以及制品表面质量的前提下,让增强材料能够按照预先设定好的方向均匀的进行配置,并尽量的防止制品的性能受到影响,使基体材料能够比较充分的完成固化反应。经过几十年发展与技术进步,树脂基复合材料成型工艺取得不断发展,种类进一步增多,并存在相同点和不同点,主要体现在以下方面。

1.2手糊成型

手糊成型又称接触成型,是用纤维增强材料和树脂胶液在模具上铺敷成型,室温(或加热)、无压(或低压)条件下固化,脱模成制品的工艺方法。手糊成型按成型固化压力可分为两类:接触压和低压(接触压以上)。前者为手糊成型、喷手糊成型是复合材料最早的一种成型方法。虽然它在各国复合材料成型中所占比重呈下降趋势,但仍不失为主要的成型方法。[16-17]这是由于手糊成型具有下列优点:手糊成型不受产品尺寸和形状限制,适宜尺寸大、批量小、形状复杂产品的生产;设备简单,投资少,设备折旧费低;工艺简便;易于满足产品设计要求,可以在产品不同部位任意增补增强材料;制品树脂含量较高,耐腐烛性好。手糊成型的缺点为:生产效率低,劳动强度大,劳动卫生条件差;产品质量不易控制,性能稳定性不高;产品力学性能偏低。

1.2 拉挤成型

将已浸润的连续纤维束在牵引结构拉力下,用成型模成型,在模中固化,连续生产出复合型材。成型过程需要成型模挤压和外牵引拉拨,整个生产过程是连续的。[18]该工艺控制方便,产品质量稳定,成本低,生产效率高,制品的拉伸强度和弯曲强度高。目前拉挤工艺主要用于生产玻璃钢棒、工字型、角型、槽型、方型等,技术取得不断发展,产品质量也进一步提升。[19]

1.3 模压成型

模压成型是将一定量的模压料放入金属对摸中,在一定的温度和压力作用下固化成型制品的 一种方法。[20-21]在模压成型过程中需加热和加压,使模压料塑化、流动充满模腔,并使树力旨固化。在模压料充满摸腔的流动过程中,不仅树脂流动,增强材料也要随之流动,所以模压成型工艺的成型压力较其他方法高,属于高压成型。因此,它既需要能对压力进行控制的液压机,又需要高强度、高精度、耐高温的金属模具。

1.4 缠绕成型

将连续纤维按一定规律缠绕至芯模,经固化和脱模形成产品,产品可靠性高,生产效率高,强度高,并且可以节约成本,技术经济效益明显。该工艺在航天、军工领域应用广泛,并朝着自动化、集成化方向发展。[22-26]

1.6 RTM 成型

该技术为适应飞机雷达罩成型发展而来,在纤维增强复合材料生产中得到广泛应用。该技术可为构件提供双面光滑表面的能力,制造品质好、精度高的构件,成型效率高,挥发型物质少,不会影响人的身体健康。[27]近年来还开展大量颇有成效的技术,设备、树脂、模具不断改进和完善,在工业制造领域也发挥更大的作用。

1.5 铺放成型

包括自动铺丝束技术和自动窄带铺放技术,实现加工制造的全自动化,在航空航天、特殊结构构件的应用非常广泛。随着技术进步,控制系统升级到全数字控制,自动铺放新技术出现并得到愈加广泛的应用,在战斗机、商用飞机方面采用自动铺丝技术,带动航空制造技术变革。并且新技术将不断出现,促进复合材料的变革和进步。

2 复合材料成型工艺的发展

复合材料制造技术在现代社会正朝着自动化和智能化的方向发展。快速固化技术、复合材料构件的生产自动化、纤维自动缠绕技术等一个个新技术的研究开发推动者复合材料成型工艺的长久发展,也改变着人类的生活方式。[28-32] 2.1 预浸料制备

预浸料是半成品,推动复合材料工艺发展,其工艺改进也带来众多新技术的应用,如熔融浸渍、纤维混合法、粉末混合工艺等。预浸料制备发展到机械化和自动化形式,编制预浸料标准,促进工艺技术革新和进步。如自动控制技术的发展, 纤维缠绕发展成为纤维铺放。在纤维铺放的过程中,我们需要把预先浸泡好的多团纱束集合起来形成一个直的带状纱布, 把这个纱布铺放在模具或者是芯模的表面,这样做的制品形状并不一定是回转体,也可以是一些形状曲率变化很大的制品,甚至是一些有凹形表面的制品。自动纤维铺放就是计算机在纤维缠绕上的实际应用成果,使纤维的力学设计得到了更多的自由度。

2.2 优化固化过程

计算机技术、过程控制技术、人工智能技术的开发和应用,再加上超声和介电技术支持,实现在线固化的可能性,对固化压力、温度等实现连续监测,调整固化气孔率、厚度等,推动产品质量提升。

2.3 模具发展

模具结构形式多种多样,推动复合材料构件制造多样化。目前复合材料模具、软模、芯模技术取得较大进步,促进模具和产品膨胀系数基本一致,减轻结构自重,方便材料卸载,有利于控制构件尺寸和厚度,保证产品质量。[33]

2.4 原材料的发展

碳纤维、氧化铝纤维、芳纶纤维,新型高性能树脂、金属和陶瓷基体等出现并得到应用,其韧性、耐高温性更优,有利于提高产品质量和综合性能。[34-36]如近些年,把长短纤维作为增强材料,以热固性、热塑性树脂作为基础性材料的各种类别复合材料模压成型工艺发展十分迅速,产品的性价比也比较高,且生产效率高,污染环境少适合航空航天、汽车灯工业的需求。

3结语

随着技术发展和改进,复合材料呈现智能化和自动化趋势,将在工业领域得到更加广泛的应用,其工艺方式也将得到不断改善,在民用方面,将更加其适用性。同时更为重要的是,将为国家战略发展提供一个新的起点。 参考文献

[1] 殷东平, 王亚锋, 李直. 某复合材料机载构件制造工艺研究[J]. 电子机械工程2010(05). [2] Zhang F, Comas-Cardona S, Binetruy C. Statistical modeling of in-plane permeability of non-woven random fibrous reinforcement. Compos Sci Technol 2012;72:1368–79. [3] Pandey G, Deffor H, Thostenson ET, Heider D. Smart tooling with integrated time domain reflectometry sensing line for non-invasive flow and cure monitoring during composites manufacturing. Compos Part A Appl Sci Manuf 2013;47:102–8. [4] 赵娟. 基于ANSYS的碳纤维复合材料传动轴的铺层设计[D]. 武汉理工大学. 2011. [5] 张胜佳. 环氧树脂增韧的研究进展[J]. 宁波化工,2015(1):1-6. [6] Masoodi R, Pillai KM, Grahl N, Tan H. Numerical simulation of LCM mold-filling during the manufacture of natural fiber composites. J Reinf Plast Compos,2012;31(6):363–78. [7] Francucci G, Rodríguez ES, Morán J. Novel approach for mold filling simulation of the processing of natural fiber reinforced composites by resin transfer molding. J Compos Mater 2014;48:191–200. [8] Alix S, Lebrun L, Morvan C, Marais S. Study of water behaviour of chemically treated flax fibres-based composites: a way to approach the hydric interface. Compos Sci Technol 2011;71:893–9. [9] Nguyen VH. Characterization of natural fiber and modeling resin transfer molding process in natural fiber preform, Ph.D. thesis, Ecole des Mines de Douai, France; 2014. [10] Khalil HA, Bhat A, Yusra AI. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 2012;87(2):963-79. [11] 何亚飞. 树脂基复合材料成型工艺的发展[J].纤维复合材料,2011(2):7-13. [12] 蔡闻峰. 树脂基碳纤维复合材料成型工艺现状及发展方向[J]. 航空制造技术,2008(10):54-57. [13] 陈婷. 浅谈树脂基复合材料的成型工艺[J]. 山东工业技术,2015(4):6. [14] 杨川. 芳纶纤维柔性复合材料制备及其防刺性能研究[D]. 哈尔滨工业大. 2010. [15] 郭丽敏, 白彦坤. 低碳、环保的植物纤维餐具[N]. 中国包装报,2010. [16] 杨文志, 朱锡, 陈悦等. 复合材料螺旋桨RTM成型工艺研究[J]. 材料科学与工艺,2015,06:1-6. [17] 谭小波. 试论酚醛树脂及其复合材料成型工艺的研究进展[J]. 山东工业技术,2015,24:7. [18] 邵刚强, 李国萍. 竹纤维-聚丙烯复合材料板材的成型工艺研究及优化[J]. 合成纤维,2015,01:40-42. [19] 王永红,郭敏骁,林星. 某型飞机隔音复合材料内装饰成型工艺研究[J]. 航空制造技术,2012,07:81-83+88.

[20] 魏俊伟,郭万涛,张用兵. 夹芯结构复合材料构件VARI工艺仿真计算与成型实验[J]. 材料开发与应用,2012,02:51-58.

[21] 刘刚, 罗楚养, 李雪芹等. 复合材料厚壁连杆RTM成型工艺模拟及制造验证[J]. 复合材料学报,2012,04:105-112.

[22] 谢超. 复合材料成型工艺方法的研讨[J]. 湖南农机,2014,09:62-63.

[23] 涂伟, 郑贤义, 赵鹏. 基于VARI工艺的复合材料成型技术探讨[J]. 广船科技,2014,03:37-40. [24] 陈蔚, 成理, 张晨乾等. CCF300/5228A复合材料RFI成型工艺参数[J]. 航空材料学报,2014,06:54-61. [25] 徐伟丽, 张玉生, 张璇等. 大尺寸多格栅复合材料框架共固化成型工艺[J]. 宇航材料工艺,2014,06:46-48.

[26] 王共冬, 王军, 王巍. 粗糙集在复合材料成型工艺事例推理中应用[J]. 武汉理工大学学报,2012,06:27-31.

[27] 陈跃鹏, 武永琴. 航空工业复合材料制件成型工艺进展[J]. 科技与企业,2012,13:346.

[28] 匡宁, 陈同海, 钱育胜等. 中空复合材料的成型工艺及应用进展[J]. 工程塑料应用,2015,01:120-123. [29] Jonoobi M, Harun J, Mathew AP, Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 2010;70(12):1742-7. [30] Bondeson D, Syre P, Niska KO. All cellulose nanocomposites produced by extrusion. J Biobased Mater Bioenergy 2007;1(3):367-71. [31] 刘志杰, 闫超, 罗辑等. 复合材料多隔板框梁结构的RTM工艺成型[J]. 玻璃钢/复合材料,2015,01:82-87.

[32] 马俊龙. 复合材料LCM整体成型工艺发展及应用[J]. 科技创新与应用,2015,10:109.

[33] 杨文志, 朱锡, 陈悦等. 复合材料螺旋桨RTM成型工艺研究[J]. 材料科学与工艺,2015,06:1-6. [34] 谭小波. 试论酚醛树脂及其复合材料成型工艺的研究进展[J]. 山东工业技术,2015,24:7. [35] 张小溪. 复合材料成型工艺方法及优缺点分析[J]. 科技与企业,2014,18:165. [36] 马俊龙. 复合材料LCM整体成型工艺发展及应用[J]. 科技创新与应用,2015,10:109.

第7篇:快速成型典型工艺的比较

快速成型典型工艺的比较 快速成型简称RP。是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不同模具和工具的条件下生成几乎任意复杂的零部件,极大的提高了生产效率和制造柔性。

快速成型典型工艺包括:1.光固化法。2.选择性激光烧结(SLS激光快速成型)。3.熔融沉积成型。4.分层实体制造。5.三维印刷法。与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数据成型系统,用激光束或其他方法将材料堆积而形成的实体零件。湖南华曙高科专业人员给大家分析快速成型工艺方法的优缺点。

优点:1.光固化成型:成型速度快、自动化程度高、尺寸精度高、可成形任意复杂形状、材料的利用率接近100%、成型件强度高。2.分层实体制造:无需后固化处理和支撑结构、原材料价格便宜,成本低。3.选择性激光烧结:制造工艺简单、柔性度高、材料选择范围广、材料价格便宜、成本低、材料利用率高、成型速度快。4. 熔融沉积成型:成型材料种类多、成型件强度高、精度高、表面质量好、易于装配、无公害、可在办公室环境下进行。

5. 三维打印技术:成型速度快、成型设备便宜。

缺点:1.光固化成型:需要支撑结构、成型过程发生物理和化学变化、容易翘曲变形、原材料有污染、需要固化处理、且不便进行。2.分层实体制造:不适宜做薄壁原型、表面比较粗糙成型后需要打磨、易吸湿膨胀、工件强度差、缺少弹性、材料浪费大、清理废料比较困难。3.选择性激光烧结:成型件的强度和精度较差、能量消耗高、后处理工艺复杂、样件的变形较大。4. 熔融沉积成型:成型时间较长、需要支撑、沿成型轴垂直方向的强度比较弱。5. 三维打印技术:一般需要后序固化、精度相对较低。

本文由湖南华曙高科手板模型小编整理完成。

第8篇:PET吹塑瓶成型工艺的探讨

近年来,PET吹塑瓶以其质轻(占同等玻璃瓶的1/10)、强度高、透明、无毒等优点被大量用于饮料包装,特别是碳酸性饮料的包装(如可乐等)更是异军突起。另外,由于捆装的玻璃啤酒瓶屡次出现爆炸伤人事故,国外已有意转向PET瓶包装,因此PET吹塑瓶市场前景广阔。

PET吹塑瓶的生产按型坯的预成型不同,可分为注射拉伸吹塑(简称注拉吹)和挤出拉伸吹塑(简称挤拉吹)两种成型方法。注拉吹的工艺过程为,先注射有底瓶坯,冷却后由输送带连续送至加热炉(红外线或电加热)经加热至拉伸温度,而后纳入吹塑模内借助拉伸棒进行轴向拉伸,最后经吹胀吹制成型。笔者对预成型瓶坯经过再加热、拉伸吹塑成型的工艺影响因素进行了探讨。

1、设备

目前国内使用的多为德、法等国制造的、国际上较先进的二步吹塑机,该种设备自动化程度高、产量大、废次品率低、工艺易控制,每台设备可装4-40个模具,多的可达60个以上,每小时产量约几千个,有的可达二万个。这类设备一般由供坯系统、加热系统、主机、控制系统和辅机五大部分组成,其中较重要的是主机,全电脑控制,包括主机启闭、烘箱灯管启闭和成型工艺的调整等。

2、影晌因素

工艺中的影响因素有:瓶坯及其加热,预吹(位置、压力和流量),拉伸杆,高压吹(压力、位置),以及模具等。

2.1 瓶坯

瓶坯又称为型坯,是PET粒料经注射成型的,它要求回收料比例不能超过10%,回收次数不能超过两次。注塑成型后的瓶坯或加热后再用的瓶坯必须冷却48h以上,而且使用的瓶坯存放时间不能超过6个月,不同生产日期,特别是间隔过长的瓶坯不能混用,主要原因是瓶坯所用原料型号、混入的二次料比例和瓶坯内残余应力不同所致,而这些因素对吹瓶的成型工艺都有重大影响,应根据实际情况具体对待。

2.2 加热

瓶坯的加热由加热炉来完成,由人工设定,自动调节。加热炉的高度在25mm左右为宜,离输送轮19.6mm左右。瓶坯在输送轮上连续运转通过整个烘箱,这样瓶坯受热较为均匀,能更好地成型,克服了以前瓶坯静止加热、人工转动而受热不匀的缺点。但是加热炉如调整不当,会造成吹制的瓶子壁厚上下分布不匀(如上轻下重)、瓶口变大超标、硬颈等制品缺陷,甚至造成机械部件的扭力故障。

瓶坯加热温度一般设定为85-120℃,无色瓶坯要高一些,带色瓶坯则要低些。温度设定太高或太低都会造成制品缺陷,如拉破、白雾等。各个区域的温度可根据制品成型情况具体调整,同时要考虑烘箱灯管开启情况。另外,烘箱输出功率的设定对瓶坯的加热也有很大影响,它控制着整个烘箱热量的输出。当长期不开机,再次开机时,初始输出功率应相应设定高一些,正常生产过程中再逐步降低到正常状态,输出功率一般为80%左右为宜,特别是环境温度在5℃以下时,效果更为显著。

吹瓶生产工艺与生产环境温度也有一定关系,环境温度一般以室温(22℃左右)为宜。如温度太高,则制品易出现凝点结块;温度太低,机器启动时产品性能不稳定,具体操作要根据实际情况和经验来调节。

2.3 预吹

预吹在吹制过程中的作用是使瓶坯初具形状,同时由拉伸棒纵向拉伸增大其纵向强度。整个过程是预吹凸轮在吹瓶过程中把三通阀推到预吹位置,并由单向阀配合完成。预吹位置、压力和流量都能影响瓶子的质量。

(1)位置 预吹位置提前,会出现瓶子底部中心点偏斜、变薄,脚部壁厚不匀且发白,上重下轻,硬颈,甚至底部穿透等缺陷;预吹位置错后,则会出现上轻下重、中心点变厚、凹陷等缺陷。

(2)气流量 预吹气流量由单向阀控制,一般开3-4圈为宜。气流量大,底部重,中心点薄、偏,脚部发白,壁厚不匀;气流量小,中心点变厚,分段件重超标。

(3)压力 预吹气压力在0.8-1MPa为宜。压力高时,可能造成上重下轻,中心点偏斜,脚部壁厚不匀,发白等;压力低时,不能充分拉伸,底部重,中心点厚。

瓶子脚部、中心点的成型情况对瓶子质量影响最大,调整不当常引起爆瓶(正常实验条件下)、渗漏等致命缺陷。

2.4 拉伸杆

拉伸杆是在预吹的同时在预吹气配合下把加热后的瓶坯拉伸的装置,它在高压吹后、排气前复位。拉伸杆必须在吹瓶过程中能上下垂直平稳移动,驱动压力为0.55-0.8MPa,与底模的间隙为2.3-2.5mm,也即瓶坯厚度1/3-1/2。间隙过大,会造成瓶底中心点偏移;间隙过小,中心点变薄。

2.5 高压吹

高压吹的作用是使熔料充分伸展,紧贴模具壁,使瓶子充分成型,同时进行

三、 生产过程中影响耐热PET瓶品质的几种主要因素

1. 瓶坯:特性粘度≥0.81cm3/g,粘度降≤4%,存放时间不能超过3个月。色泽纯洁、透明、无杂质、无异色、注点长度及周围晕斑合适。

2. 加热:在烘箱中由远红外灯管发出远红外线对瓶坯辐射加热,由烘箱底部风机进行热循环,使烘箱内温度均匀。瓶坯在烘箱中向前运动的同时自转,使瓶坯壁受热均匀。烘箱的热量由灯管开启数量、整体温度而设定,烘箱功率及各段加热比共同控制。

3. 预吹:拉伸杆下降的同时开始预吹气,使瓶坯初具形状。预吹位置、预吹压力、吹气流量是三个重要工艺因素。

4. 模具温度:模具的温度控制在120℃~145℃,用来消除瓶胚拉伸产生的内应力,提高瓶身塑料结晶度以抵受高温热液,使瓶子不变形。

5. 环境:室温、低温(空调)状态下为佳。

四、耐热PET瓶子在生产工艺中出现的一般质量问题产生的原因及解决方法

瓶颈歪斜

1. 油路堵塞 疏通模身油路

2. 拉伸杆排气孔堵塞 疏通拉伸杆吹气孔

3. 喷嘴密封圈损坏 更换喷嘴密封圈

中心点偏

1. 预吹气压力太高 降低预吹气压力

2. 预吹流量太大 减小预吹气流量

3. 预吹气位置太早 推迟预吹气位置

4. 拉伸杆弯曲 更换拉伸杆

5. 拉伸杆离底模间隙太大 调整拉伸杆间隙

6. 瓶坯温度太高 降低瓶坯设定温度

瓶子底部变形

1. 底模油温太高 降低热油机油温

2. 底模吹气阀损坏 更换底模吹气阀

3. 瓶坯底部温度太高 降低瓶坯底部温度

瓶底部褶皱

1. 预吹气压力太小 增大预吹气压力

2. 预吹气流量太小 增大预吹气流量

3. 预吹气太迟 提早预吹气

硬颈

1. 颈部加热不足 增加颈部加热量

2. 预吹气压力太大 减小预吹气压力

3. 预吹气流量太大 减小预吹气流量

4. 预吹气太早 延迟预吹气

5. 加热炉位置太高 调整加热炉位置

6. 拉伸杆速度慢 检修拉伸气缸

合模线成形不良

1. 模具补偿密封圈损坏 更换补偿密封圈

2. 模具间隙调整不当 调整好模具间隙

灌前侧壁变形

1. 冷却吹气时间太短 延长冷却吹气时间

2. 模身温度太高 降低模身温度

3. 拉伸杆中无冷却气吹出 检修拉伸杆吹气系统

灌后侧壁变形

1. 模身温度太低 提高模身热油温度

2. 瓶坯设定温度太低 提高瓶坯设定温度

3. 冷却吹气时间太长 减少冷却吹气时间

4. 塑料分布不匀 调整吹瓶工艺使料分布均匀

5. 热油流量太小 疏通油路及清洗油路过滤网

收缩率大

1. 模具温度低 提高模具温度

2. 瓶坯温度低 提高瓶坯设定温度

3. 冷却吹气时间太长 缩短冷却吹气时间

4. 油路堵塞 疏通油路

直径偏大或偏小

1. 冷却吹气时间设定不当 调整冷却吹气时间

2. 塑料分布不均匀 调整工艺使料分布均匀

五、PET瓶在热灌装线使用过程的常见问题及其解决方法

1. 储存和运输条件及瓶子的储存期。

由于PET具有吸湿性能,因此将PET(包括切片、瓶坯和瓶子)摆放在空气中,它就会吸收空气中的水分,摆放时间越长,吸水越多。而PET中的水分含量会直接影响到它的性能。对于热灌装瓶子,会影响到热灌装瓶子的耐热温度。水分含量越多,瓶子的耐热温度就越低。一般对于热灌装瓶来讲,从瓶坯生产到灌装饮料期间,摆放时间建议:

瓶子储存期:>1L两周内使用,<1L三周内使用;但近来越来越多的厂商使用了轻量瓶并连线生产,即吹即灌,瓶子贮存期在6小时内。即吹即灌的瓶子可灌装95℃的热液,吹后存放超过24小时以上的瓶子只能灌装88℃的热液。

瓶子的材料、储存条件(室温、相对湿度、储存时间的长短),都会影响到热灌装瓶子的技术指标,即:生产瓶子时要根据以上不同的材料、储存条件、客户要求等,相应地调整吹瓶的工艺、技术参数等。

PET在通常湿度情况下,进行熔融塑化时会发生水解反应。高湿度含量常常导致立即反应,

结果分子链断裂、降解,分子量降低(也就是IV降低)。PET的机械性能与特性粘度IV有关,IV越低则PET的机械性能越差。

江南和沿海地区全年平均相对湿度为85%,部分地区春天和夏天相对湿度可高达90%以上,在高湿度环境下,PET会吸湿并达到最大的饱和湿度。

水分含量越高,则PET的IV值下降越大。某一型号PET在含水量为0.01%时,其特性粘度为0.73,含水量为0.02%时其特性粘度变为0.63。在180℃时由于干燥时间减少3/4小时,特性粘度下降0.10。

干燥时间越长则PET原料里水分越低,但过度干燥也会造成PET降解。当加热至180℃时,对于最大初始水分含量0.3%的原料,水分下降至0.14%;干燥4小时可获得0.004%的水分含量,这是瓶坯控制水分含量的上限。瓶口部分的分子内的水分会加快PET的结晶,而瓶身部分分子内的水分会影响分子链的排列。

2. 耐热性能不良。

◆ 热灌装瓶是这样实现耐热的:

(1) 用特别的模具设计来抵受瓶内负压:

① 瓶身有长方形凹块(在模具上可进出移动),用来吸收液体冷却后瓶内产生的负压。 ② 瓶子设计,用颈、腰(凹环)来防止瓶子变成椭圆形。

③ 用瓶底设计(一般为花瓣形)来抵受应力或二氧化碳压力(常温灌装高温杀菌类瓶子采用凹底设计)。

(2) 用热油机高温油提高模温(模具温度在120℃~145℃),用来消除瓶坯拉伸产生的内应力,提高瓶身塑料结晶度,以抵受高温热液,使瓶子不变形。

改善瓶子耐热性能的措施:

① 选择合理的瓶坯与瓶子设计。最优化的瓶坯形状设计与瓶子模具设计有助于改善瓶子的壁厚分布状况,避免在瓶身不同区域产生扭曲或收缩变形;

② 瓶坯注射冷却时间控制。严格控制瓶坯注射冷却时间,让瓶坯尽早脱模。这样即可缩短成型周期并提高产量,又可因较高的残余温度而诱发球状结晶。球状结晶的晶体直径极小(仅0.3mm~0.7mm),并不影响透明度;

③ 严格控制注射和拉坯-吹瓶工艺参数以及各区域温度分布,避免残余应力在PET玻璃化温度(>75℃)下释放而导致瓶子变形。

④吹瓶模调温技术的运用。通常用热油循环法给吹瓶模加温,吹瓶模调温共有三种循环: 瓶身热油循环。将吹瓶模加热至120℃~145℃。这样,瓶坯与吹瓶模腔间的温度差减小,促发进一步结晶。延长吹瓶保压时间,使瓶壁与型腔长时间接触并有充足时间来提高瓶身结晶度,达到35%左右,但又不破坏透明度。100℃以下的模温对瓶身结晶度的影响极小,因为瓶身结晶发生在100℃以上。

瓶底冷却水循环。瓶子底部保持低温(10℃~30℃),避免未经拉伸的瓶底部分过度结晶而发白。

瓶颈调温(选用)。非结晶瓶口部分从注塑模脱模后一直处于完全冷却状态。非结晶瓶口多数采用加强瓶口设计(增加瓶口壁厚),从而改善封口性能,避免压盖过程中瓶口变形。通常,灌装后瓶口椭圆度控制在0.2mm以内,螺纹外径收缩率低于0.6%。

⑤ 循环吹气技术。当采用热吹瓶模时,如何控制瓶子脱模后变形至关重要。吹瓶模开模前吹入空气并排空循环,对瓶身进行冷却并定形,从而控制脱模后的变形量。循环冷却空气的进气通过与初吹、二次吹相同的通道,但从拉坯杆头部小孔经拉坯杆内排气。循环吹气时间约为0.5秒~2秒。因此,耐热瓶制瓶机的高压空气消耗量比普通瓶制瓶机高得多。

3. 容量波动较大。

双轴拉伸PET瓶具有一定的收缩率,最大收缩率约为2%左右,影响PET瓶容量的因素主要有以下几个方面:

(1) 模具的影响

PET瓶的容量主要受模具尺寸和形状影响。每一种瓶型模具尺寸通常是固定不变的。不同形状的瓶子在设计其收缩率时会有所不同,瓶身上加强筋越少、瓶厚度越薄则瓶的收缩率越大。

(2) 环境因素的影响环境温度和湿度对瓶子的容量影响较大,环境温度越高,湿度越大瓶的容量收缩越大。

(3) 生产工艺的影响

形状复杂的瓶子吹瓶时要求有较高的吹瓶压力,如吹瓶压力不足,则瓶成型不良,容量会偏小;模具温度偏高也会造成容量偏小。

(4) 瓶子的自然收缩

由于PET瓶会自然收缩,瓶模具尺寸在设计时应设计成可调形式(加减垫片)。以1.5LPET瓶为例,刚生产的瓶子平均容量为1508ml左右,室温下存放3天后,瓶容量会减少5ml~6ml;随着瓶存放时间延长瓶子容量还会缩小并难以控制。目前,越来越多的生产线采用连线吹瓶,即吹即灌,避免瓶子(容量与耐热性能)的衰减问题。

(5) 灌装方式的影响

不同的灌装方式,对容量控制的影响也有较大差别。定量灌装方式对容量影响最小,自重式灌装对容量影响最大,对1.5LPET瓶,最多可能差别20 ml~25ml。

所以,要解决瓶子的容量问题,可适当调整模具(垫片),控制生产工艺,改善仓储条件,最重要的是应尽可能缩短瓶子的储存。

第9篇:成型各工序工艺要求

一:成型前段流水工序

1. 穿鞋带:松紧要适度. 2. 套楦:套楦要求鞋面的标志点部位与鞋楦的相应点对正,尤其是后帮中缝与鞋楦的后弧中心线对正,鞋面的前端中心点与鞋楦的同一部位对点对正,鞋面口门中心与鞋楦背中心线对正,鞋面套在鞋楦上时,不得歪斜,扭转,各个部位的松紧程度均与一致。(针对全套和半套鞋)

3. 车网脚线:车缝是时尽量靠边,车缝距离1-3毫米,针距2.5-3针/厘米,沿皮料边高出0.3厘米车缝。前后车缝需拉顺、平整,不可起皱、要车缝住里布,车缝一圈。如果里布长度不足,须加接长,在车缝网脚。(针对敲帮鞋) 4. 刷港宝药水:要均匀到位,不能刷太多外溢,或没有刷到位。及刷过药水的要及时生产,不能堆放太久,以免港宝药水挥发。(针对使用港宝后衬的鞋面)

5. 刷白乳胶:刷中底上的白乳胶宽度为2-3厘米,鞋面上网脚的宽度为1.2-1.5厘米,不能刷得太宽,或污染到鞋面。且中底和鞋面号码一定要配套,不能错码,(如果中底不是用订上去的要在鞋楦和中底两头刷少许白乳胶) 6. 过加热烤箱

7. 绷前帮:根据鞋楦的大小型号,调整好爪子形状,撑台高度(撑台上升高度超过扫刀1-2毫米),压头压着时间为3-4秒,二次压力为200-400千牛。绷帮前将鞋面套在鞋楦上,鞋面可能较紧,这时将鞋面后跟抬高,先用第一抓对准中心点将鞋面固定,绷第

二、三抓时,将鞋面里布拉顺往下拉,用力要适中,保证鞋面贴楦。为第三抓留下余地。要保证鞋头不可歪斜、高低。 8. 拉中帮:拉帮顺序为,先内腰、后外腰,外腰由左至右,内腰由右至左。要到贴楦,内外腰高低一致。

9. 绷后帮:后帮机压着时间为3秒,压着力为350-400千牛,后跟高低要一致,里布不能有起皱现象。

10. 定点:用圆规等工具在鞋头或后跟上规定的高度标记画线,确保同一双鞋的高度统一。

11. 画线:根据每款鞋的型体配置各种鞋底画线模,左右两台画线机的压力要一致,鞋面上的画线要清晰,要与大底弧度一致,同双鞋鞋头后跟高度要一致。 12. 鞋面皮料打磨:打磨深度要严格控制,不能太深或过浅,及不要超出画的线的弧度。

13. 品检: 1. 鞋面、中衬、楦头不可混码或代用楦头,否则一律返工。

2. 车网脚线一律在0.5厘米以内,针句2.5-4针/厘米。

3. 鞋面与中底爆开,脱落,鞋面不贴楦需返工。

4. 左右脚、内外腰画线要一致,高低相差不得超过2㎜,线迹必须清晰、流畅。

5. 鞋面破损、划伤、车线爆开一律返工。

6. 鞋面任何部位花角、发角、折皱不平顺,一律返工。

7. 鞋头高低误差1.5㎜以上者一律返工。

8. 后跟歪斜误差2㎜以上者一律返工。

9. 鞋头绷帮大小需符合工艺说明要求,左右脚大小统一,高低误差1.5㎜内配双。

10. 针车脱线、跳针、浮线以及裁断皮革缺陷或者装饰配件松动脱落等不良现象应返修。

11. 中底不可超出鞋楦边缘1.5㎜,中底走位,卷折一律返工。 二:成型中段流水工艺要求

1. 配双:同双的半成品,左右脚号码一致、配色必须一致。检查鞋头大小;后跟高度是否一致,如有问题必须及时调整更改,并向管理人员反映。 2. 配底:检查鞋底品质,如有不良应剔除。同一双鞋底左右脚号码必须一致,且鞋底号码必须与鞋面号码配对。检查鞋面号码与鞋楦号码是否一致,有无同边,单脚,将同号码的楦、底配双成对放入流水线。

3. 刷鞋面和鞋底处理剂:鞋面/大底处理按不同材质正确使用处理剂,刷鞋面时必须按画线来刷,不能超过画线标记。刷完边侧,底部也需回刷。刷鞋底时不能把处理剂漏到大底边或凝结在大底上,且各个部位药水都要全部刷到位。

4. 刷鞋面和鞋底胶:1. 刷鞋面胶按照定位线从鞋后跟外侧刷起,经鞋头绕鞋一圈,不能出现积胶、欠胶、溢胶、接缝处回胶现象。胶水要刷均匀且薄,不要使刷胶部位的胶水粘到不该刷得地方。不要使胶水凝结在皮料的连接处。周围刷胶不可超出画线及没有刷到画线处。二次刷胶和第一次刷法一样,就是不能未刷到或超过一次胶。2. 刷大底胶第一遍要稀一些,使胶水能够充分侵润被粘物的表面,有利于胶水被粘物内部的扩散和渗透。刷胶方法是往复推刷,因为单向刷胶时,被粘物表面上被磨起的绒毛会向一侧倾倒,产出绒毛上部有胶、下部无胶的结果。而双向往复刷胶则可使胶水充分侵润被粘物的表面。第二遍刷胶的浓度要高于头遍胶,二遍胶对提高剥离强度起着决定性的作用。头遍胶对黏合强度的提高几乎不起作用,但由于头遍胶的作用是侵润被粘物的表面,并扩散、渗透到被粘去的内部,以便形成胶粘过度层,为二遍胶发挥作用打好基础。刷胶方法是单向推刷,这样可以避免胶水产生堆积,胶膜的厚薄也比较均匀,刷胶时应用力适中,每次刷胶完后都必须干燥至“指触干”。且各个部位都要刷到,刷好,不要把胶水污染到鞋底上。要来回多次刷,避免胶水过厚及凝结。

5. 贴底:贴底的操作方法有两种,一中是将鞋楦底朝上,放在两腿间或流水线边缘,手拿鞋底边缘,黏合面朝下,对正后黏合。另一种是将鞋底平放在腿上,黏合面朝上,手拿鞋楦,楦底朝下对准鞋底黏合。贴底前应检查鞋底与楦头的号码是否相符,从鞋头贴起,先贴鞋头内外侧,后贴后跟,在贴外腰和内腰时,发现不顺或未粘着现象,可用竹板撬开鞋底后在贴上。贴合时要按照胶线贴合,不能超过或低于胶线。鞋子要端正,不可歪斜,边墙要贴流畅,不可变形。

6. 压底:压合时间要根据不同鞋型来定,一般压合时间为6---8秒。左右脚要分开压合,根据不同鞋型调整机台上压杆的位置,压底机的左右脚的内外腰需垫半圆形橡胶片及压底模型,使边与鞋子完全密合。

7. 补胶:开胶的地方补胶要均匀细致,所补胶必须到缝隙,不可留有缝隙及堆胶或污染到鞋面。

8. 配双:同双鞋,左右脚号码、颜色必须一致。鞋头、后跟高度是否一致,领口左右高度是否对称。

9. 手工压鞋底边:要把补胶的部位压贴合、平顺。

10. 上冷冻箱:把配双、配色后的鞋子放在冷冻箱传送带上,温度控制在0---10度。

三:成型后段流水工艺要求

1. 松鞋带:鞋子必须冷确后在松结,力度不可太猛。

2. 拔鞋楦:应先解开鞋带,拔鞋楦时不得把后领口拔变形或起皱。拔出的鞋楦分号码及型号放入相应鞋楦车里。 3. 车大底线:车大底线的针距为一英寸2.5---3针,不准脱线。要对准大底线槽车线、松紧要适度,大底线上的油不能污染到鞋面,线头必须剪干净。 4. 放面衬(鞋垫):要根据样鞋核对颜色是否正确,面衬号码要与鞋面号码一致,放入鞋子是需垫平顺。如需刷胶在垫面衬的,刷胶要均匀且不能污染到鞋面。垫完后用压垫器在鞋垫上前后移动,让鞋垫粘牢在中底上。 5. 塞鞋头纸:把鞋头纸塞到鞋头必须平顺,使鞋头形状保持与放置鞋楦时的形状一样,不可把鞋塞变形,塞纸时纸团要松懈,不能抓得太死。

6. 穿鞋带(整理鞋带):根据指令单及样鞋穿鞋带,鞋带松紧要均匀、平顺、不得转折,两头长度要一样,左右脚长度要一致,鞋带不可拧结,把鞋带放到鞋内,不可看到结头。(不用穿鞋带的鞋不需要这到工序)

7. 清洁鞋面/鞋底:用白色碎布或刷子蘸专用清洁水清洗鞋面或者鞋底有污染的地方,确保鞋面的清洁度,不能太用力把鞋面材料洗坏。

8. 烘线头:根据不同材质把温度作适当调整,过长的线头先用剪刀修剪干净,不能考伤鞋面,尼龙网布类材料不能进行烘烤。

9. 质量检验:检查鞋的颜色、工艺、材料与确认样/指令单是否相符;鞋头、后跟高度是否一致,大底长短,颜色色差,号码是否配双等。

10. 贴内盒标和挂吊牌:核对指令单号、号码、颜色按客户要求正确操作。 11. 小包装:鞋子号码、颜色、单号要与内盒相符必须用正确的鞋盒包装。左右脚号码要一致,不能是一边脚。鞋子包法为S型,盒内必须加干燥剂,包装纸规格不能用错。

12. 后段品质检验:1. 检查左右脚及大底、鞋垫、鞋舌布标及内盒号码、是否一致。吊牌,内盒,包装纸,鞋垫,等是否用错。2. 鞋头大小误差1.5---2毫米以内可配双放行,误差2.5毫米以上一律不行剔除。3. 无论任何部位有严重色差,一律剔除,轻微色差配双,严重的应作报废处理。4. 贴底造成歪斜、大底翘、不平伏等不良现象一律返工。5. 鞋子任何部位有损伤、破损、皱折严重现象一律剔除。6. 鞋子任何部位粘胶和粘处理水、有污染等,及超胶1.5毫米无法清洁干净的一律剔除。7. 内里及反口里未绷入中底一律剔除。8. 港宝变形、发软无法返工应一律剔除。9. 大底有车外线的针距为4㎝/3—3.5针,车线必须车到沟槽中央,不可爬墙,超出,两端要车到位不可超出,不可外露线头,否则剔除。 10. 鞋垫必须垫到位,压平,不可放歪、走位或须刷胶的未粘牢的一律返工处理。11. 穿鞋带要按客户指定的穿法,要求分段,长度正确,并且要穿顺,否则返工。12. 塞鞋头纸时要将鞋头形状塞出,赛实,切不可变形。 13. 针车断线、滑边、针距过密或过大等不良现象一律返工,如不能返工一律剔除。14. 金属扣松动变形、生锈、掉漆、刺手者需返工。15. 欠胶、脱胶1毫米以上一律返工。16. 超胶1.5毫米以上一律返工。17. 帮底脱空严重一律返工。18. 皮面鞋面打粗太高或造成打粗外露的,一律返工;无法返修的应一律剔除。19. 同双鞋头高低、长短、色差、双面绒材料粒面粗细不一致,轻微需配双处理,严重剔除。20. 各种贴标需按客户规定要求操作,不可脱落,且要贴正贴牢,歪斜2毫米以上需返工处理。

13. 大包装:核对外箱是否与指令单相符,按单号、颜色、号码或配码装箱进行封箱打打包带。

上一篇:口腔科手术前护理下一篇:谈美读书报告